MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrege0 Structured version   Visualization version   GIF version

Theorem rlimrege0 15286
Description: The limit of a sequence of complex numbers with nonnegative real part has nonnegative real part. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimrege0.4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimrege0.5 ((𝜑𝑥𝐴) → 0 ≤ (ℜ‘𝐵))
Assertion
Ref Expression
rlimrege0 (𝜑 → 0 ≤ (ℜ‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimrege0
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcld2.1 . . 3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2 rlimcld2.2 . . 3 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
3 ssrab2 4018 . . . 4 {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ⊆ ℂ
43a1i 11 . . 3 (𝜑 → {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ⊆ ℂ)
5 eldifi 4066 . . . . . 6 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑦 ∈ ℂ)
65adantl 482 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → 𝑦 ∈ ℂ)
76recld 14903 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → (ℜ‘𝑦) ∈ ℝ)
8 fveq2 6771 . . . . . . . . . 10 (𝑤 = 𝑦 → (ℜ‘𝑤) = (ℜ‘𝑦))
98breq2d 5091 . . . . . . . . 9 (𝑤 = 𝑦 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝑦)))
109notbid 318 . . . . . . . 8 (𝑤 = 𝑦 → (¬ 0 ≤ (ℜ‘𝑤) ↔ ¬ 0 ≤ (ℜ‘𝑦)))
11 notrab 4251 . . . . . . . 8 (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) = {𝑤 ∈ ℂ ∣ ¬ 0 ≤ (ℜ‘𝑤)}
1210, 11elrab2 3629 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) ↔ (𝑦 ∈ ℂ ∧ ¬ 0 ≤ (ℜ‘𝑦)))
1312simprbi 497 . . . . . 6 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → ¬ 0 ≤ (ℜ‘𝑦))
1413adantl 482 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → ¬ 0 ≤ (ℜ‘𝑦))
15 0re 10978 . . . . . 6 0 ∈ ℝ
16 ltnle 11055 . . . . . 6 (((ℜ‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤ (ℜ‘𝑦)))
177, 15, 16sylancl 586 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤ (ℜ‘𝑦)))
1814, 17mpbird 256 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → (ℜ‘𝑦) < 0)
197, 18negelrpd 12763 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → -(ℜ‘𝑦) ∈ ℝ+)
207renegcld 11402 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → -(ℜ‘𝑦) ∈ ℝ)
2120adantr 481 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ∈ ℝ)
22 elrabi 3620 . . . . . . 7 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 𝑧 ∈ ℂ)
2322adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑧 ∈ ℂ)
246adantr 481 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑦 ∈ ℂ)
2523, 24subcld 11332 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (𝑧𝑦) ∈ ℂ)
2625recld 14903 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) ∈ ℝ)
2725abscld 15146 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (abs‘(𝑧𝑦)) ∈ ℝ)
28 0red 10979 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 0 ∈ ℝ)
2923recld 14903 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘𝑧) ∈ ℝ)
3024recld 14903 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘𝑦) ∈ ℝ)
31 fveq2 6771 . . . . . . . . . 10 (𝑤 = 𝑧 → (ℜ‘𝑤) = (ℜ‘𝑧))
3231breq2d 5091 . . . . . . . . 9 (𝑤 = 𝑧 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝑧)))
3332elrab 3626 . . . . . . . 8 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ↔ (𝑧 ∈ ℂ ∧ 0 ≤ (ℜ‘𝑧)))
3433simprbi 497 . . . . . . 7 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 0 ≤ (ℜ‘𝑧))
3534adantl 482 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 0 ≤ (ℜ‘𝑧))
3628, 29, 30, 35lesub1dd 11591 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (0 − (ℜ‘𝑦)) ≤ ((ℜ‘𝑧) − (ℜ‘𝑦)))
37 df-neg 11208 . . . . . 6 -(ℜ‘𝑦) = (0 − (ℜ‘𝑦))
3837a1i 11 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) = (0 − (ℜ‘𝑦)))
3923, 24resubd 14925 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) = ((ℜ‘𝑧) − (ℜ‘𝑦)))
4036, 38, 393brtr4d 5111 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ≤ (ℜ‘(𝑧𝑦)))
4125releabsd 15161 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) ≤ (abs‘(𝑧𝑦)))
4221, 26, 27, 40, 41letrd 11132 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ≤ (abs‘(𝑧𝑦)))
43 fveq2 6771 . . . . 5 (𝑤 = 𝐵 → (ℜ‘𝑤) = (ℜ‘𝐵))
4443breq2d 5091 . . . 4 (𝑤 = 𝐵 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝐵)))
45 rlimrege0.4 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
46 rlimrege0.5 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ (ℜ‘𝐵))
4744, 45, 46elrabd 3628 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})
481, 2, 4, 19, 42, 47rlimcld2 15285 . 2 (𝜑𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})
49 fveq2 6771 . . . . 5 (𝑤 = 𝐶 → (ℜ‘𝑤) = (ℜ‘𝐶))
5049breq2d 5091 . . . 4 (𝑤 = 𝐶 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝐶)))
5150elrab 3626 . . 3 (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ↔ (𝐶 ∈ ℂ ∧ 0 ≤ (ℜ‘𝐶)))
5251simprbi 497 . 2 (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 0 ≤ (ℜ‘𝐶))
5348, 52syl 17 1 (𝜑 → 0 ≤ (ℜ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  {crab 3070  cdif 3889  wss 3892   class class class wbr 5079  cmpt 5162  cfv 6432  (class class class)co 7271  supcsup 9177  cc 10870  cr 10871  0cc0 10872  +∞cpnf 11007  *cxr 11009   < clt 11010  cle 11011  cmin 11205  -cneg 11206  cre 14806  abscabs 14943  𝑟 crli 15192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-rlim 15196
This theorem is referenced by:  rlimge0  15288
  Copyright terms: Public domain W3C validator