| Step | Hyp | Ref
| Expression |
| 1 | | rlimcld2.1 |
. . 3
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
+∞) |
| 2 | | rlimcld2.2 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
| 3 | | ssrab2 4060 |
. . . 4
⊢ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} ⊆
ℂ |
| 4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} ⊆
ℂ) |
| 5 | | eldifi 4111 |
. . . . . 6
⊢ (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
𝑦 ∈
ℂ) |
| 6 | 5 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
𝑦 ∈
ℂ) |
| 7 | 6 | recld 15218 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
(ℜ‘𝑦) ∈
ℝ) |
| 8 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (ℜ‘𝑤) = (ℜ‘𝑦)) |
| 9 | 8 | breq2d 5136 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤
(ℜ‘𝑦))) |
| 10 | 9 | notbid 318 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (¬ 0 ≤ (ℜ‘𝑤) ↔ ¬ 0 ≤
(ℜ‘𝑦))) |
| 11 | | notrab 4302 |
. . . . . . . 8
⊢ (ℂ
∖ {𝑤 ∈ ℂ
∣ 0 ≤ (ℜ‘𝑤)}) = {𝑤 ∈ ℂ ∣ ¬ 0 ≤
(ℜ‘𝑤)} |
| 12 | 10, 11 | elrab2 3679 |
. . . . . . 7
⊢ (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) ↔
(𝑦 ∈ ℂ ∧
¬ 0 ≤ (ℜ‘𝑦))) |
| 13 | 12 | simprbi 496 |
. . . . . 6
⊢ (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
¬ 0 ≤ (ℜ‘𝑦)) |
| 14 | 13 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
¬ 0 ≤ (ℜ‘𝑦)) |
| 15 | | 0re 11242 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 16 | | ltnle 11319 |
. . . . . 6
⊢
(((ℜ‘𝑦)
∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤
(ℜ‘𝑦))) |
| 17 | 7, 15, 16 | sylancl 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
((ℜ‘𝑦) < 0
↔ ¬ 0 ≤ (ℜ‘𝑦))) |
| 18 | 14, 17 | mpbird 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
(ℜ‘𝑦) <
0) |
| 19 | 7, 18 | negelrpd 13048 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
-(ℜ‘𝑦) ∈
ℝ+) |
| 20 | 7 | renegcld 11669 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
-(ℜ‘𝑦) ∈
ℝ) |
| 21 | 20 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
-(ℜ‘𝑦) ∈
ℝ) |
| 22 | | elrabi 3671 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} →
𝑧 ∈
ℂ) |
| 23 | 22 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
𝑧 ∈
ℂ) |
| 24 | 6 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
𝑦 ∈
ℂ) |
| 25 | 23, 24 | subcld 11599 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(𝑧 − 𝑦) ∈
ℂ) |
| 26 | 25 | recld 15218 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(ℜ‘(𝑧 −
𝑦)) ∈
ℝ) |
| 27 | 25 | abscld 15460 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(abs‘(𝑧 − 𝑦)) ∈
ℝ) |
| 28 | | 0red 11243 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) → 0
∈ ℝ) |
| 29 | 23 | recld 15218 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(ℜ‘𝑧) ∈
ℝ) |
| 30 | 24 | recld 15218 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(ℜ‘𝑦) ∈
ℝ) |
| 31 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (ℜ‘𝑤) = (ℜ‘𝑧)) |
| 32 | 31 | breq2d 5136 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤
(ℜ‘𝑧))) |
| 33 | 32 | elrab 3676 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} ↔
(𝑧 ∈ ℂ ∧ 0
≤ (ℜ‘𝑧))) |
| 34 | 33 | simprbi 496 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} → 0
≤ (ℜ‘𝑧)) |
| 35 | 34 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) → 0
≤ (ℜ‘𝑧)) |
| 36 | 28, 29, 30, 35 | lesub1dd 11858 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(0 − (ℜ‘𝑦)) ≤ ((ℜ‘𝑧) − (ℜ‘𝑦))) |
| 37 | | df-neg 11474 |
. . . . . 6
⊢
-(ℜ‘𝑦) =
(0 − (ℜ‘𝑦)) |
| 38 | 37 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
-(ℜ‘𝑦) = (0
− (ℜ‘𝑦))) |
| 39 | 23, 24 | resubd 15240 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(ℜ‘(𝑧 −
𝑦)) = ((ℜ‘𝑧) − (ℜ‘𝑦))) |
| 40 | 36, 38, 39 | 3brtr4d 5156 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
-(ℜ‘𝑦) ≤
(ℜ‘(𝑧 −
𝑦))) |
| 41 | 25 | releabsd 15475 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(ℜ‘(𝑧 −
𝑦)) ≤ (abs‘(𝑧 − 𝑦))) |
| 42 | 21, 26, 27, 40, 41 | letrd 11397 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
-(ℜ‘𝑦) ≤
(abs‘(𝑧 − 𝑦))) |
| 43 | | fveq2 6881 |
. . . . 5
⊢ (𝑤 = 𝐵 → (ℜ‘𝑤) = (ℜ‘𝐵)) |
| 44 | 43 | breq2d 5136 |
. . . 4
⊢ (𝑤 = 𝐵 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤
(ℜ‘𝐵))) |
| 45 | | rlimrege0.4 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 46 | | rlimrege0.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (ℜ‘𝐵)) |
| 47 | 44, 45, 46 | elrabd 3678 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) |
| 48 | 1, 2, 4, 19, 42, 47 | rlimcld2 15599 |
. 2
⊢ (𝜑 → 𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) |
| 49 | | fveq2 6881 |
. . . . 5
⊢ (𝑤 = 𝐶 → (ℜ‘𝑤) = (ℜ‘𝐶)) |
| 50 | 49 | breq2d 5136 |
. . . 4
⊢ (𝑤 = 𝐶 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤
(ℜ‘𝐶))) |
| 51 | 50 | elrab 3676 |
. . 3
⊢ (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} ↔
(𝐶 ∈ ℂ ∧ 0
≤ (ℜ‘𝐶))) |
| 52 | 51 | simprbi 496 |
. 2
⊢ (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} → 0
≤ (ℜ‘𝐶)) |
| 53 | 48, 52 | syl 17 |
1
⊢ (𝜑 → 0 ≤ (ℜ‘𝐶)) |