MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrege0 Structured version   Visualization version   GIF version

Theorem rlimrege0 15486
Description: The limit of a sequence of complex numbers with nonnegative real part has nonnegative real part. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimrege0.4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimrege0.5 ((𝜑𝑥𝐴) → 0 ≤ (ℜ‘𝐵))
Assertion
Ref Expression
rlimrege0 (𝜑 → 0 ≤ (ℜ‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimrege0
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcld2.1 . . 3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2 rlimcld2.2 . . 3 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
3 ssrab2 4031 . . . 4 {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ⊆ ℂ
43a1i 11 . . 3 (𝜑 → {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ⊆ ℂ)
5 eldifi 4082 . . . . . 6 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑦 ∈ ℂ)
65adantl 481 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → 𝑦 ∈ ℂ)
76recld 15101 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → (ℜ‘𝑦) ∈ ℝ)
8 fveq2 6822 . . . . . . . . . 10 (𝑤 = 𝑦 → (ℜ‘𝑤) = (ℜ‘𝑦))
98breq2d 5104 . . . . . . . . 9 (𝑤 = 𝑦 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝑦)))
109notbid 318 . . . . . . . 8 (𝑤 = 𝑦 → (¬ 0 ≤ (ℜ‘𝑤) ↔ ¬ 0 ≤ (ℜ‘𝑦)))
11 notrab 4273 . . . . . . . 8 (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) = {𝑤 ∈ ℂ ∣ ¬ 0 ≤ (ℜ‘𝑤)}
1210, 11elrab2 3651 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) ↔ (𝑦 ∈ ℂ ∧ ¬ 0 ≤ (ℜ‘𝑦)))
1312simprbi 496 . . . . . 6 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → ¬ 0 ≤ (ℜ‘𝑦))
1413adantl 481 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → ¬ 0 ≤ (ℜ‘𝑦))
15 0re 11117 . . . . . 6 0 ∈ ℝ
16 ltnle 11195 . . . . . 6 (((ℜ‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤ (ℜ‘𝑦)))
177, 15, 16sylancl 586 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤ (ℜ‘𝑦)))
1814, 17mpbird 257 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → (ℜ‘𝑦) < 0)
197, 18negelrpd 12929 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → -(ℜ‘𝑦) ∈ ℝ+)
207renegcld 11547 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → -(ℜ‘𝑦) ∈ ℝ)
2120adantr 480 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ∈ ℝ)
22 elrabi 3643 . . . . . . 7 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 𝑧 ∈ ℂ)
2322adantl 481 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑧 ∈ ℂ)
246adantr 480 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑦 ∈ ℂ)
2523, 24subcld 11475 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (𝑧𝑦) ∈ ℂ)
2625recld 15101 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) ∈ ℝ)
2725abscld 15346 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (abs‘(𝑧𝑦)) ∈ ℝ)
28 0red 11118 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 0 ∈ ℝ)
2923recld 15101 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘𝑧) ∈ ℝ)
3024recld 15101 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘𝑦) ∈ ℝ)
31 fveq2 6822 . . . . . . . . . 10 (𝑤 = 𝑧 → (ℜ‘𝑤) = (ℜ‘𝑧))
3231breq2d 5104 . . . . . . . . 9 (𝑤 = 𝑧 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝑧)))
3332elrab 3648 . . . . . . . 8 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ↔ (𝑧 ∈ ℂ ∧ 0 ≤ (ℜ‘𝑧)))
3433simprbi 496 . . . . . . 7 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 0 ≤ (ℜ‘𝑧))
3534adantl 481 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 0 ≤ (ℜ‘𝑧))
3628, 29, 30, 35lesub1dd 11736 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (0 − (ℜ‘𝑦)) ≤ ((ℜ‘𝑧) − (ℜ‘𝑦)))
37 df-neg 11350 . . . . . 6 -(ℜ‘𝑦) = (0 − (ℜ‘𝑦))
3837a1i 11 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) = (0 − (ℜ‘𝑦)))
3923, 24resubd 15123 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) = ((ℜ‘𝑧) − (ℜ‘𝑦)))
4036, 38, 393brtr4d 5124 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ≤ (ℜ‘(𝑧𝑦)))
4125releabsd 15361 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) ≤ (abs‘(𝑧𝑦)))
4221, 26, 27, 40, 41letrd 11273 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ≤ (abs‘(𝑧𝑦)))
43 fveq2 6822 . . . . 5 (𝑤 = 𝐵 → (ℜ‘𝑤) = (ℜ‘𝐵))
4443breq2d 5104 . . . 4 (𝑤 = 𝐵 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝐵)))
45 rlimrege0.4 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
46 rlimrege0.5 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ (ℜ‘𝐵))
4744, 45, 46elrabd 3650 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})
481, 2, 4, 19, 42, 47rlimcld2 15485 . 2 (𝜑𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})
49 fveq2 6822 . . . . 5 (𝑤 = 𝐶 → (ℜ‘𝑤) = (ℜ‘𝐶))
5049breq2d 5104 . . . 4 (𝑤 = 𝐶 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝐶)))
5150elrab 3648 . . 3 (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ↔ (𝐶 ∈ ℂ ∧ 0 ≤ (ℜ‘𝐶)))
5251simprbi 496 . 2 (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 0 ≤ (ℜ‘𝐶))
5348, 52syl 17 1 (𝜑 → 0 ≤ (ℜ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3394  cdif 3900  wss 3903   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  supcsup 9330  cc 11007  cr 11008  0cc0 11009  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348  cre 15004  abscabs 15141  𝑟 crli 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-rlim 15396
This theorem is referenced by:  rlimge0  15488
  Copyright terms: Public domain W3C validator