MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrege0 Structured version   Visualization version   GIF version

Theorem rlimrege0 15545
Description: The limit of a sequence of complex numbers with nonnegative real part has nonnegative real part. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimrege0.4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimrege0.5 ((𝜑𝑥𝐴) → 0 ≤ (ℜ‘𝐵))
Assertion
Ref Expression
rlimrege0 (𝜑 → 0 ≤ (ℜ‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimrege0
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcld2.1 . . 3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2 rlimcld2.2 . . 3 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
3 ssrab2 4043 . . . 4 {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ⊆ ℂ
43a1i 11 . . 3 (𝜑 → {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ⊆ ℂ)
5 eldifi 4094 . . . . . 6 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑦 ∈ ℂ)
65adantl 481 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → 𝑦 ∈ ℂ)
76recld 15160 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → (ℜ‘𝑦) ∈ ℝ)
8 fveq2 6858 . . . . . . . . . 10 (𝑤 = 𝑦 → (ℜ‘𝑤) = (ℜ‘𝑦))
98breq2d 5119 . . . . . . . . 9 (𝑤 = 𝑦 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝑦)))
109notbid 318 . . . . . . . 8 (𝑤 = 𝑦 → (¬ 0 ≤ (ℜ‘𝑤) ↔ ¬ 0 ≤ (ℜ‘𝑦)))
11 notrab 4285 . . . . . . . 8 (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) = {𝑤 ∈ ℂ ∣ ¬ 0 ≤ (ℜ‘𝑤)}
1210, 11elrab2 3662 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) ↔ (𝑦 ∈ ℂ ∧ ¬ 0 ≤ (ℜ‘𝑦)))
1312simprbi 496 . . . . . 6 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → ¬ 0 ≤ (ℜ‘𝑦))
1413adantl 481 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → ¬ 0 ≤ (ℜ‘𝑦))
15 0re 11176 . . . . . 6 0 ∈ ℝ
16 ltnle 11253 . . . . . 6 (((ℜ‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤ (ℜ‘𝑦)))
177, 15, 16sylancl 586 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤ (ℜ‘𝑦)))
1814, 17mpbird 257 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → (ℜ‘𝑦) < 0)
197, 18negelrpd 12987 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → -(ℜ‘𝑦) ∈ ℝ+)
207renegcld 11605 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → -(ℜ‘𝑦) ∈ ℝ)
2120adantr 480 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ∈ ℝ)
22 elrabi 3654 . . . . . . 7 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 𝑧 ∈ ℂ)
2322adantl 481 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑧 ∈ ℂ)
246adantr 480 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑦 ∈ ℂ)
2523, 24subcld 11533 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (𝑧𝑦) ∈ ℂ)
2625recld 15160 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) ∈ ℝ)
2725abscld 15405 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (abs‘(𝑧𝑦)) ∈ ℝ)
28 0red 11177 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 0 ∈ ℝ)
2923recld 15160 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘𝑧) ∈ ℝ)
3024recld 15160 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘𝑦) ∈ ℝ)
31 fveq2 6858 . . . . . . . . . 10 (𝑤 = 𝑧 → (ℜ‘𝑤) = (ℜ‘𝑧))
3231breq2d 5119 . . . . . . . . 9 (𝑤 = 𝑧 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝑧)))
3332elrab 3659 . . . . . . . 8 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ↔ (𝑧 ∈ ℂ ∧ 0 ≤ (ℜ‘𝑧)))
3433simprbi 496 . . . . . . 7 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 0 ≤ (ℜ‘𝑧))
3534adantl 481 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 0 ≤ (ℜ‘𝑧))
3628, 29, 30, 35lesub1dd 11794 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (0 − (ℜ‘𝑦)) ≤ ((ℜ‘𝑧) − (ℜ‘𝑦)))
37 df-neg 11408 . . . . . 6 -(ℜ‘𝑦) = (0 − (ℜ‘𝑦))
3837a1i 11 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) = (0 − (ℜ‘𝑦)))
3923, 24resubd 15182 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) = ((ℜ‘𝑧) − (ℜ‘𝑦)))
4036, 38, 393brtr4d 5139 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ≤ (ℜ‘(𝑧𝑦)))
4125releabsd 15420 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) ≤ (abs‘(𝑧𝑦)))
4221, 26, 27, 40, 41letrd 11331 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ≤ (abs‘(𝑧𝑦)))
43 fveq2 6858 . . . . 5 (𝑤 = 𝐵 → (ℜ‘𝑤) = (ℜ‘𝐵))
4443breq2d 5119 . . . 4 (𝑤 = 𝐵 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝐵)))
45 rlimrege0.4 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
46 rlimrege0.5 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ (ℜ‘𝐵))
4744, 45, 46elrabd 3661 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})
481, 2, 4, 19, 42, 47rlimcld2 15544 . 2 (𝜑𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})
49 fveq2 6858 . . . . 5 (𝑤 = 𝐶 → (ℜ‘𝑤) = (ℜ‘𝐶))
5049breq2d 5119 . . . 4 (𝑤 = 𝐶 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝐶)))
5150elrab 3659 . . 3 (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ↔ (𝐶 ∈ ℂ ∧ 0 ≤ (ℜ‘𝐶)))
5251simprbi 496 . 2 (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 0 ≤ (ℜ‘𝐶))
5348, 52syl 17 1 (𝜑 → 0 ≤ (ℜ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  cdif 3911  wss 3914   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  supcsup 9391  cc 11066  cr 11067  0cc0 11068  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406  cre 15063  abscabs 15200  𝑟 crli 15451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-rlim 15455
This theorem is referenced by:  rlimge0  15547
  Copyright terms: Public domain W3C validator