Step | Hyp | Ref
| Expression |
1 | | rlimcld2.1 |
. . 3
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
+∞) |
2 | | rlimcld2.2 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
3 | | ssrab2 4018 |
. . . 4
⊢ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} ⊆
ℂ |
4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} ⊆
ℂ) |
5 | | eldifi 4066 |
. . . . . 6
⊢ (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
𝑦 ∈
ℂ) |
6 | 5 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
𝑦 ∈
ℂ) |
7 | 6 | recld 14903 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
(ℜ‘𝑦) ∈
ℝ) |
8 | | fveq2 6771 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (ℜ‘𝑤) = (ℜ‘𝑦)) |
9 | 8 | breq2d 5091 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤
(ℜ‘𝑦))) |
10 | 9 | notbid 318 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (¬ 0 ≤ (ℜ‘𝑤) ↔ ¬ 0 ≤
(ℜ‘𝑦))) |
11 | | notrab 4251 |
. . . . . . . 8
⊢ (ℂ
∖ {𝑤 ∈ ℂ
∣ 0 ≤ (ℜ‘𝑤)}) = {𝑤 ∈ ℂ ∣ ¬ 0 ≤
(ℜ‘𝑤)} |
12 | 10, 11 | elrab2 3629 |
. . . . . . 7
⊢ (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) ↔
(𝑦 ∈ ℂ ∧
¬ 0 ≤ (ℜ‘𝑦))) |
13 | 12 | simprbi 497 |
. . . . . 6
⊢ (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
¬ 0 ≤ (ℜ‘𝑦)) |
14 | 13 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
¬ 0 ≤ (ℜ‘𝑦)) |
15 | | 0re 10978 |
. . . . . 6
⊢ 0 ∈
ℝ |
16 | | ltnle 11055 |
. . . . . 6
⊢
(((ℜ‘𝑦)
∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤
(ℜ‘𝑦))) |
17 | 7, 15, 16 | sylancl 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
((ℜ‘𝑦) < 0
↔ ¬ 0 ≤ (ℜ‘𝑦))) |
18 | 14, 17 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
(ℜ‘𝑦) <
0) |
19 | 7, 18 | negelrpd 12763 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
-(ℜ‘𝑦) ∈
ℝ+) |
20 | 7 | renegcld 11402 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) →
-(ℜ‘𝑦) ∈
ℝ) |
21 | 20 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
-(ℜ‘𝑦) ∈
ℝ) |
22 | | elrabi 3620 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} →
𝑧 ∈
ℂ) |
23 | 22 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
𝑧 ∈
ℂ) |
24 | 6 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
𝑦 ∈
ℂ) |
25 | 23, 24 | subcld 11332 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(𝑧 − 𝑦) ∈
ℂ) |
26 | 25 | recld 14903 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(ℜ‘(𝑧 −
𝑦)) ∈
ℝ) |
27 | 25 | abscld 15146 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(abs‘(𝑧 − 𝑦)) ∈
ℝ) |
28 | | 0red 10979 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) → 0
∈ ℝ) |
29 | 23 | recld 14903 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(ℜ‘𝑧) ∈
ℝ) |
30 | 24 | recld 14903 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(ℜ‘𝑦) ∈
ℝ) |
31 | | fveq2 6771 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (ℜ‘𝑤) = (ℜ‘𝑧)) |
32 | 31 | breq2d 5091 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤
(ℜ‘𝑧))) |
33 | 32 | elrab 3626 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} ↔
(𝑧 ∈ ℂ ∧ 0
≤ (ℜ‘𝑧))) |
34 | 33 | simprbi 497 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} → 0
≤ (ℜ‘𝑧)) |
35 | 34 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) → 0
≤ (ℜ‘𝑧)) |
36 | 28, 29, 30, 35 | lesub1dd 11591 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(0 − (ℜ‘𝑦)) ≤ ((ℜ‘𝑧) − (ℜ‘𝑦))) |
37 | | df-neg 11208 |
. . . . . 6
⊢
-(ℜ‘𝑦) =
(0 − (ℜ‘𝑦)) |
38 | 37 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
-(ℜ‘𝑦) = (0
− (ℜ‘𝑦))) |
39 | 23, 24 | resubd 14925 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(ℜ‘(𝑧 −
𝑦)) = ((ℜ‘𝑧) − (ℜ‘𝑦))) |
40 | 36, 38, 39 | 3brtr4d 5111 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
-(ℜ‘𝑦) ≤
(ℜ‘(𝑧 −
𝑦))) |
41 | 25 | releabsd 15161 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
(ℜ‘(𝑧 −
𝑦)) ≤ (abs‘(𝑧 − 𝑦))) |
42 | 21, 26, 27, 40, 41 | letrd 11132 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)})) ∧
𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) →
-(ℜ‘𝑦) ≤
(abs‘(𝑧 − 𝑦))) |
43 | | fveq2 6771 |
. . . . 5
⊢ (𝑤 = 𝐵 → (ℜ‘𝑤) = (ℜ‘𝐵)) |
44 | 43 | breq2d 5091 |
. . . 4
⊢ (𝑤 = 𝐵 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤
(ℜ‘𝐵))) |
45 | | rlimrege0.4 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
46 | | rlimrege0.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (ℜ‘𝐵)) |
47 | 44, 45, 46 | elrabd 3628 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) |
48 | 1, 2, 4, 19, 42, 47 | rlimcld2 15285 |
. 2
⊢ (𝜑 → 𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)}) |
49 | | fveq2 6771 |
. . . . 5
⊢ (𝑤 = 𝐶 → (ℜ‘𝑤) = (ℜ‘𝐶)) |
50 | 49 | breq2d 5091 |
. . . 4
⊢ (𝑤 = 𝐶 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤
(ℜ‘𝐶))) |
51 | 50 | elrab 3626 |
. . 3
⊢ (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} ↔
(𝐶 ∈ ℂ ∧ 0
≤ (ℜ‘𝐶))) |
52 | 51 | simprbi 497 |
. 2
⊢ (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤
(ℜ‘𝑤)} → 0
≤ (ℜ‘𝐶)) |
53 | 48, 52 | syl 17 |
1
⊢ (𝜑 → 0 ≤ (ℜ‘𝐶)) |