MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrege0 Structured version   Visualization version   GIF version

Theorem rlimrege0 15564
Description: The limit of a sequence of complex numbers with nonnegative real part has nonnegative real part. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimrege0.4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimrege0.5 ((𝜑𝑥𝐴) → 0 ≤ (ℜ‘𝐵))
Assertion
Ref Expression
rlimrege0 (𝜑 → 0 ≤ (ℜ‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimrege0
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcld2.1 . . 3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2 rlimcld2.2 . . 3 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
3 ssrab2 4073 . . . 4 {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ⊆ ℂ
43a1i 11 . . 3 (𝜑 → {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ⊆ ℂ)
5 eldifi 4123 . . . . . 6 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑦 ∈ ℂ)
65adantl 480 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → 𝑦 ∈ ℂ)
76recld 15182 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → (ℜ‘𝑦) ∈ ℝ)
8 fveq2 6896 . . . . . . . . . 10 (𝑤 = 𝑦 → (ℜ‘𝑤) = (ℜ‘𝑦))
98breq2d 5161 . . . . . . . . 9 (𝑤 = 𝑦 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝑦)))
109notbid 317 . . . . . . . 8 (𝑤 = 𝑦 → (¬ 0 ≤ (ℜ‘𝑤) ↔ ¬ 0 ≤ (ℜ‘𝑦)))
11 notrab 4311 . . . . . . . 8 (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) = {𝑤 ∈ ℂ ∣ ¬ 0 ≤ (ℜ‘𝑤)}
1210, 11elrab2 3682 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) ↔ (𝑦 ∈ ℂ ∧ ¬ 0 ≤ (ℜ‘𝑦)))
1312simprbi 495 . . . . . 6 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → ¬ 0 ≤ (ℜ‘𝑦))
1413adantl 480 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → ¬ 0 ≤ (ℜ‘𝑦))
15 0re 11253 . . . . . 6 0 ∈ ℝ
16 ltnle 11330 . . . . . 6 (((ℜ‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤ (ℜ‘𝑦)))
177, 15, 16sylancl 584 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤ (ℜ‘𝑦)))
1814, 17mpbird 256 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → (ℜ‘𝑦) < 0)
197, 18negelrpd 13048 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → -(ℜ‘𝑦) ∈ ℝ+)
207renegcld 11678 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → -(ℜ‘𝑦) ∈ ℝ)
2120adantr 479 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ∈ ℝ)
22 elrabi 3673 . . . . . . 7 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 𝑧 ∈ ℂ)
2322adantl 480 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑧 ∈ ℂ)
246adantr 479 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑦 ∈ ℂ)
2523, 24subcld 11608 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (𝑧𝑦) ∈ ℂ)
2625recld 15182 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) ∈ ℝ)
2725abscld 15424 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (abs‘(𝑧𝑦)) ∈ ℝ)
28 0red 11254 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 0 ∈ ℝ)
2923recld 15182 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘𝑧) ∈ ℝ)
3024recld 15182 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘𝑦) ∈ ℝ)
31 fveq2 6896 . . . . . . . . . 10 (𝑤 = 𝑧 → (ℜ‘𝑤) = (ℜ‘𝑧))
3231breq2d 5161 . . . . . . . . 9 (𝑤 = 𝑧 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝑧)))
3332elrab 3679 . . . . . . . 8 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ↔ (𝑧 ∈ ℂ ∧ 0 ≤ (ℜ‘𝑧)))
3433simprbi 495 . . . . . . 7 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 0 ≤ (ℜ‘𝑧))
3534adantl 480 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 0 ≤ (ℜ‘𝑧))
3628, 29, 30, 35lesub1dd 11867 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (0 − (ℜ‘𝑦)) ≤ ((ℜ‘𝑧) − (ℜ‘𝑦)))
37 df-neg 11484 . . . . . 6 -(ℜ‘𝑦) = (0 − (ℜ‘𝑦))
3837a1i 11 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) = (0 − (ℜ‘𝑦)))
3923, 24resubd 15204 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) = ((ℜ‘𝑧) − (ℜ‘𝑦)))
4036, 38, 393brtr4d 5181 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ≤ (ℜ‘(𝑧𝑦)))
4125releabsd 15439 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) ≤ (abs‘(𝑧𝑦)))
4221, 26, 27, 40, 41letrd 11408 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ≤ (abs‘(𝑧𝑦)))
43 fveq2 6896 . . . . 5 (𝑤 = 𝐵 → (ℜ‘𝑤) = (ℜ‘𝐵))
4443breq2d 5161 . . . 4 (𝑤 = 𝐵 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝐵)))
45 rlimrege0.4 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
46 rlimrege0.5 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ (ℜ‘𝐵))
4744, 45, 46elrabd 3681 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})
481, 2, 4, 19, 42, 47rlimcld2 15563 . 2 (𝜑𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})
49 fveq2 6896 . . . . 5 (𝑤 = 𝐶 → (ℜ‘𝑤) = (ℜ‘𝐶))
5049breq2d 5161 . . . 4 (𝑤 = 𝐶 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝐶)))
5150elrab 3679 . . 3 (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ↔ (𝐶 ∈ ℂ ∧ 0 ≤ (ℜ‘𝐶)))
5251simprbi 495 . 2 (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 0 ≤ (ℜ‘𝐶))
5348, 52syl 17 1 (𝜑 → 0 ≤ (ℜ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3418  cdif 3941  wss 3944   class class class wbr 5149  cmpt 5232  cfv 6549  (class class class)co 7419  supcsup 9470  cc 11143  cr 11144  0cc0 11145  +∞cpnf 11282  *cxr 11284   < clt 11285  cle 11286  cmin 11481  -cneg 11482  cre 15085  abscabs 15222  𝑟 crli 15470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9472  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-seq 14008  df-exp 14068  df-cj 15087  df-re 15088  df-im 15089  df-sqrt 15223  df-abs 15224  df-rlim 15474
This theorem is referenced by:  rlimge0  15566
  Copyright terms: Public domain W3C validator