MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimrege0 Structured version   Visualization version   GIF version

Theorem rlimrege0 15625
Description: The limit of a sequence of complex numbers with nonnegative real part has nonnegative real part. (Contributed by Mario Carneiro, 10-May-2016.)
Hypotheses
Ref Expression
rlimcld2.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimcld2.2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
rlimrege0.4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimrege0.5 ((𝜑𝑥𝐴) → 0 ≤ (ℜ‘𝐵))
Assertion
Ref Expression
rlimrege0 (𝜑 → 0 ≤ (ℜ‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimrege0
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimcld2.1 . . 3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2 rlimcld2.2 . . 3 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐶)
3 ssrab2 4103 . . . 4 {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ⊆ ℂ
43a1i 11 . . 3 (𝜑 → {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ⊆ ℂ)
5 eldifi 4154 . . . . . 6 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑦 ∈ ℂ)
65adantl 481 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → 𝑦 ∈ ℂ)
76recld 15243 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → (ℜ‘𝑦) ∈ ℝ)
8 fveq2 6920 . . . . . . . . . 10 (𝑤 = 𝑦 → (ℜ‘𝑤) = (ℜ‘𝑦))
98breq2d 5178 . . . . . . . . 9 (𝑤 = 𝑦 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝑦)))
109notbid 318 . . . . . . . 8 (𝑤 = 𝑦 → (¬ 0 ≤ (ℜ‘𝑤) ↔ ¬ 0 ≤ (ℜ‘𝑦)))
11 notrab 4341 . . . . . . . 8 (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) = {𝑤 ∈ ℂ ∣ ¬ 0 ≤ (ℜ‘𝑤)}
1210, 11elrab2 3711 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) ↔ (𝑦 ∈ ℂ ∧ ¬ 0 ≤ (ℜ‘𝑦)))
1312simprbi 496 . . . . . 6 (𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → ¬ 0 ≤ (ℜ‘𝑦))
1413adantl 481 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → ¬ 0 ≤ (ℜ‘𝑦))
15 0re 11292 . . . . . 6 0 ∈ ℝ
16 ltnle 11369 . . . . . 6 (((ℜ‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤ (ℜ‘𝑦)))
177, 15, 16sylancl 585 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → ((ℜ‘𝑦) < 0 ↔ ¬ 0 ≤ (ℜ‘𝑦)))
1814, 17mpbird 257 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → (ℜ‘𝑦) < 0)
197, 18negelrpd 13091 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → -(ℜ‘𝑦) ∈ ℝ+)
207renegcld 11717 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) → -(ℜ‘𝑦) ∈ ℝ)
2120adantr 480 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ∈ ℝ)
22 elrabi 3703 . . . . . . 7 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 𝑧 ∈ ℂ)
2322adantl 481 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑧 ∈ ℂ)
246adantr 480 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 𝑦 ∈ ℂ)
2523, 24subcld 11647 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (𝑧𝑦) ∈ ℂ)
2625recld 15243 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) ∈ ℝ)
2725abscld 15485 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (abs‘(𝑧𝑦)) ∈ ℝ)
28 0red 11293 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 0 ∈ ℝ)
2923recld 15243 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘𝑧) ∈ ℝ)
3024recld 15243 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘𝑦) ∈ ℝ)
31 fveq2 6920 . . . . . . . . . 10 (𝑤 = 𝑧 → (ℜ‘𝑤) = (ℜ‘𝑧))
3231breq2d 5178 . . . . . . . . 9 (𝑤 = 𝑧 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝑧)))
3332elrab 3708 . . . . . . . 8 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ↔ (𝑧 ∈ ℂ ∧ 0 ≤ (ℜ‘𝑧)))
3433simprbi 496 . . . . . . 7 (𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 0 ≤ (ℜ‘𝑧))
3534adantl 481 . . . . . 6 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → 0 ≤ (ℜ‘𝑧))
3628, 29, 30, 35lesub1dd 11906 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (0 − (ℜ‘𝑦)) ≤ ((ℜ‘𝑧) − (ℜ‘𝑦)))
37 df-neg 11523 . . . . . 6 -(ℜ‘𝑦) = (0 − (ℜ‘𝑦))
3837a1i 11 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) = (0 − (ℜ‘𝑦)))
3923, 24resubd 15265 . . . . 5 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) = ((ℜ‘𝑧) − (ℜ‘𝑦)))
4036, 38, 393brtr4d 5198 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ≤ (ℜ‘(𝑧𝑦)))
4125releabsd 15500 . . . 4 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → (ℜ‘(𝑧𝑦)) ≤ (abs‘(𝑧𝑦)))
4221, 26, 27, 40, 41letrd 11447 . . 3 (((𝜑𝑦 ∈ (ℂ ∖ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})) ∧ 𝑧 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)}) → -(ℜ‘𝑦) ≤ (abs‘(𝑧𝑦)))
43 fveq2 6920 . . . . 5 (𝑤 = 𝐵 → (ℜ‘𝑤) = (ℜ‘𝐵))
4443breq2d 5178 . . . 4 (𝑤 = 𝐵 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝐵)))
45 rlimrege0.4 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
46 rlimrege0.5 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ (ℜ‘𝐵))
4744, 45, 46elrabd 3710 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})
481, 2, 4, 19, 42, 47rlimcld2 15624 . 2 (𝜑𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)})
49 fveq2 6920 . . . . 5 (𝑤 = 𝐶 → (ℜ‘𝑤) = (ℜ‘𝐶))
5049breq2d 5178 . . . 4 (𝑤 = 𝐶 → (0 ≤ (ℜ‘𝑤) ↔ 0 ≤ (ℜ‘𝐶)))
5150elrab 3708 . . 3 (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} ↔ (𝐶 ∈ ℂ ∧ 0 ≤ (ℜ‘𝐶)))
5251simprbi 496 . 2 (𝐶 ∈ {𝑤 ∈ ℂ ∣ 0 ≤ (ℜ‘𝑤)} → 0 ≤ (ℜ‘𝐶))
5348, 52syl 17 1 (𝜑 → 0 ≤ (ℜ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  cdif 3973  wss 3976   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521  cre 15146  abscabs 15283  𝑟 crli 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-rlim 15535
This theorem is referenced by:  rlimge0  15627
  Copyright terms: Public domain W3C validator