![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtcld1 | Structured version Visualization version GIF version |
Description: A downward ray (-∞, 𝑃] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ordttopon.3 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
ordtcld1 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4073 | . . 3 ⊢ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ⊆ 𝑋 | |
2 | ordttopon.3 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
3 | 2 | ordttopon 23146 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
4 | 3 | adantr 479 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
5 | toponuni 22865 | . . . 4 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 = ∪ (ordTop‘𝑅)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 = ∪ (ordTop‘𝑅)) |
7 | 1, 6 | sseqtrid 4029 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ⊆ ∪ (ordTop‘𝑅)) |
8 | notrab 4311 | . . . 4 ⊢ (𝑋 ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃}) = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} | |
9 | 6 | difeq1d 4117 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (𝑋 ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃}) = (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃})) |
10 | 8, 9 | eqtr3id 2779 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} = (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃})) |
11 | 2 | ordtopn1 23147 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅)) |
12 | 10, 11 | eqeltrrd 2826 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃}) ∈ (ordTop‘𝑅)) |
13 | topontop 22864 | . . 3 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top) | |
14 | eqid 2725 | . . . 4 ⊢ ∪ (ordTop‘𝑅) = ∪ (ordTop‘𝑅) | |
15 | 14 | iscld 22980 | . . 3 ⊢ ((ordTop‘𝑅) ∈ Top → ({𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ⊆ ∪ (ordTop‘𝑅) ∧ (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃}) ∈ (ordTop‘𝑅)))) |
16 | 4, 13, 15 | 3syl 18 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ⊆ ∪ (ordTop‘𝑅) ∧ (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃}) ∈ (ordTop‘𝑅)))) |
17 | 7, 12, 16 | mpbir2and 711 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 ∖ cdif 3941 ⊆ wss 3944 ∪ cuni 4909 class class class wbr 5149 dom cdm 5678 ‘cfv 6549 ordTopcordt 17489 Topctop 22844 TopOnctopon 22861 Clsdccld 22969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-om 7872 df-1o 8487 df-2o 8488 df-en 8965 df-fin 8968 df-fi 9441 df-topgen 17433 df-ordt 17491 df-top 22845 df-topon 22862 df-bases 22898 df-cld 22972 |
This theorem is referenced by: ordtcld3 23152 |
Copyright terms: Public domain | W3C validator |