![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtcld1 | Structured version Visualization version GIF version |
Description: A downward ray (-∞, 𝑃] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ordttopon.3 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
ordtcld1 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3947 | . . 3 ⊢ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ⊆ 𝑋 | |
2 | ordttopon.3 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
3 | 2 | ordttopon 21505 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
4 | 3 | adantr 473 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
5 | toponuni 21226 | . . . 4 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 = ∪ (ordTop‘𝑅)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 = ∪ (ordTop‘𝑅)) |
7 | 1, 6 | syl5sseq 3910 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ⊆ ∪ (ordTop‘𝑅)) |
8 | notrab 4168 | . . . 4 ⊢ (𝑋 ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃}) = {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} | |
9 | 6 | difeq1d 3989 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (𝑋 ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃}) = (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃})) |
10 | 8, 9 | syl5eqr 2829 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} = (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃})) |
11 | 2 | ordtopn1 21506 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅)) |
12 | 10, 11 | eqeltrrd 2868 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃}) ∈ (ordTop‘𝑅)) |
13 | topontop 21225 | . . 3 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top) | |
14 | eqid 2779 | . . . 4 ⊢ ∪ (ordTop‘𝑅) = ∪ (ordTop‘𝑅) | |
15 | 14 | iscld 21339 | . . 3 ⊢ ((ordTop‘𝑅) ∈ Top → ({𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ⊆ ∪ (ordTop‘𝑅) ∧ (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃}) ∈ (ordTop‘𝑅)))) |
16 | 4, 13, 15 | 3syl 18 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ⊆ ∪ (ordTop‘𝑅) ∧ (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃}) ∈ (ordTop‘𝑅)))) |
17 | 7, 12, 16 | mpbir2and 700 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 {crab 3093 ∖ cdif 3827 ⊆ wss 3830 ∪ cuni 4712 class class class wbr 4929 dom cdm 5407 ‘cfv 6188 ordTopcordt 16628 Topctop 21205 TopOnctopon 21222 Clsdccld 21328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-en 8307 df-fin 8310 df-fi 8670 df-topgen 16573 df-ordt 16630 df-top 21206 df-topon 21223 df-bases 21258 df-cld 21331 |
This theorem is referenced by: ordtcld3 21511 |
Copyright terms: Public domain | W3C validator |