MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcld1 Structured version   Visualization version   GIF version

Theorem ordtcld1 23226
Description: A downward ray (-∞, 𝑃] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtcld1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtcld1
StepHypRef Expression
1 ssrab2 4103 . . 3 {𝑥𝑋𝑥𝑅𝑃} ⊆ 𝑋
2 ordttopon.3 . . . . . 6 𝑋 = dom 𝑅
32ordttopon 23222 . . . . 5 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
43adantr 480 . . . 4 ((𝑅𝑉𝑃𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
5 toponuni 22941 . . . 4 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 = (ordTop‘𝑅))
64, 5syl 17 . . 3 ((𝑅𝑉𝑃𝑋) → 𝑋 = (ordTop‘𝑅))
71, 6sseqtrid 4061 . 2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑥𝑅𝑃} ⊆ (ordTop‘𝑅))
8 notrab 4341 . . . 4 (𝑋 ∖ {𝑥𝑋𝑥𝑅𝑃}) = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃}
96difeq1d 4148 . . . 4 ((𝑅𝑉𝑃𝑋) → (𝑋 ∖ {𝑥𝑋𝑥𝑅𝑃}) = ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑥𝑅𝑃}))
108, 9eqtr3id 2794 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑥𝑅𝑃}))
112ordtopn1 23223 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅))
1210, 11eqeltrrd 2845 . 2 ((𝑅𝑉𝑃𝑋) → ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑥𝑅𝑃}) ∈ (ordTop‘𝑅))
13 topontop 22940 . . 3 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top)
14 eqid 2740 . . . 4 (ordTop‘𝑅) = (ordTop‘𝑅)
1514iscld 23056 . . 3 ((ordTop‘𝑅) ∈ Top → ({𝑥𝑋𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥𝑋𝑥𝑅𝑃} ⊆ (ordTop‘𝑅) ∧ ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑥𝑅𝑃}) ∈ (ordTop‘𝑅))))
164, 13, 153syl 18 . 2 ((𝑅𝑉𝑃𝑋) → ({𝑥𝑋𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥𝑋𝑥𝑅𝑃} ⊆ (ordTop‘𝑅) ∧ ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑥𝑅𝑃}) ∈ (ordTop‘𝑅))))
177, 12, 16mpbir2and 712 1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  cdif 3973  wss 3976   cuni 4931   class class class wbr 5166  dom cdm 5700  cfv 6573  ordTopcordt 17559  Topctop 22920  TopOnctopon 22937  Clsdccld 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-topgen 17503  df-ordt 17561  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048
This theorem is referenced by:  ordtcld3  23228
  Copyright terms: Public domain W3C validator