MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcld1 Structured version   Visualization version   GIF version

Theorem ordtcld1 21805
Description: A downward ray (-∞, 𝑃] is closed. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtcld1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtcld1
StepHypRef Expression
1 ssrab2 4042 . . 3 {𝑥𝑋𝑥𝑅𝑃} ⊆ 𝑋
2 ordttopon.3 . . . . . 6 𝑋 = dom 𝑅
32ordttopon 21801 . . . . 5 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
43adantr 484 . . . 4 ((𝑅𝑉𝑃𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
5 toponuni 21522 . . . 4 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 = (ordTop‘𝑅))
64, 5syl 17 . . 3 ((𝑅𝑉𝑃𝑋) → 𝑋 = (ordTop‘𝑅))
71, 6sseqtrid 4005 . 2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑥𝑅𝑃} ⊆ (ordTop‘𝑅))
8 notrab 4265 . . . 4 (𝑋 ∖ {𝑥𝑋𝑥𝑅𝑃}) = {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃}
96difeq1d 4084 . . . 4 ((𝑅𝑉𝑃𝑋) → (𝑋 ∖ {𝑥𝑋𝑥𝑅𝑃}) = ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑥𝑅𝑃}))
108, 9syl5eqr 2873 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} = ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑥𝑅𝑃}))
112ordtopn1 21802 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑥𝑅𝑃} ∈ (ordTop‘𝑅))
1210, 11eqeltrrd 2917 . 2 ((𝑅𝑉𝑃𝑋) → ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑥𝑅𝑃}) ∈ (ordTop‘𝑅))
13 topontop 21521 . . 3 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top)
14 eqid 2824 . . . 4 (ordTop‘𝑅) = (ordTop‘𝑅)
1514iscld 21635 . . 3 ((ordTop‘𝑅) ∈ Top → ({𝑥𝑋𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥𝑋𝑥𝑅𝑃} ⊆ (ordTop‘𝑅) ∧ ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑥𝑅𝑃}) ∈ (ordTop‘𝑅))))
164, 13, 153syl 18 . 2 ((𝑅𝑉𝑃𝑋) → ({𝑥𝑋𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥𝑋𝑥𝑅𝑃} ⊆ (ordTop‘𝑅) ∧ ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑥𝑅𝑃}) ∈ (ordTop‘𝑅))))
177, 12, 16mpbir2and 712 1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑥𝑅𝑃} ∈ (Clsd‘(ordTop‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  {crab 3137  cdif 3916  wss 3919   cuni 4824   class class class wbr 5052  dom cdm 5542  cfv 6343  ordTopcordt 16772  Topctop 21501  TopOnctopon 21518  Clsdccld 21624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-fin 8509  df-fi 8872  df-topgen 16717  df-ordt 16774  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627
This theorem is referenced by:  ordtcld3  21807
  Copyright terms: Public domain W3C validator