| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omndtos | Structured version Visualization version GIF version | ||
| Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| omndtos | ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2731 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 3 | eqid 2731 | . . 3 ⊢ (le‘𝑀) = (le‘𝑀) | |
| 4 | 1, 2, 3 | isomnd 20030 | . 2 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g‘𝑀)𝑐)(le‘𝑀)(𝑏(+g‘𝑀)𝑐)))) |
| 5 | 4 | simp2bi 1146 | 1 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 lecple 17163 Tosetctos 18315 Mndcmnd 18637 oMndcomnd 20026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-omnd 20028 |
| This theorem is referenced by: omndadd2d 20037 omndadd2rd 20038 submomnd 20039 omndmul2 20040 omndmul 20042 gsumle 20052 orngsqr 20776 ofldtos 20783 isarchi3 33148 archirng 33149 archirngz 33150 archiabllem1a 33152 archiabllem1b 33153 archiabllem2a 33155 archiabllem2c 33156 archiabllem2b 33157 archiabl 33159 |
| Copyright terms: Public domain | W3C validator |