MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omndtos Structured version   Visualization version   GIF version

Theorem omndtos 20034
Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Assertion
Ref Expression
omndtos (𝑀 ∈ oMnd → 𝑀 ∈ Toset)

Proof of Theorem omndtos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2731 . . 3 (+g𝑀) = (+g𝑀)
3 eqid 2731 . . 3 (le‘𝑀) = (le‘𝑀)
41, 2, 3isomnd 20030 . 2 (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))))
54simp2bi 1146 1 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  lecple 17163  Tosetctos 18315  Mndcmnd 18637  oMndcomnd 20026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-omnd 20028
This theorem is referenced by:  omndadd2d  20037  omndadd2rd  20038  submomnd  20039  omndmul2  20040  omndmul  20042  gsumle  20052  orngsqr  20776  ofldtos  20783  isarchi3  33148  archirng  33149  archirngz  33150  archiabllem1a  33152  archiabllem1b  33153  archiabllem2a  33155  archiabllem2c  33156  archiabllem2b  33157  archiabl  33159
  Copyright terms: Public domain W3C validator