Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndtos Structured version   Visualization version   GIF version

Theorem omndtos 33055
Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Assertion
Ref Expression
omndtos (𝑀 ∈ oMnd → 𝑀 ∈ Toset)

Proof of Theorem omndtos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2740 . . 3 (+g𝑀) = (+g𝑀)
3 eqid 2740 . . 3 (le‘𝑀) = (le‘𝑀)
41, 2, 3isomnd 33051 . 2 (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))))
54simp2bi 1146 1 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3067   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  lecple 17318  Tosetctos 18486  Mndcmnd 18772  oMndcomnd 33047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-omnd 33049
This theorem is referenced by:  omndadd2d  33058  omndadd2rd  33059  submomnd  33060  omndmul2  33062  omndmul  33064  gsumle  33074  isarchi3  33167  archirng  33168  archirngz  33169  archiabllem1a  33171  archiabllem1b  33172  archiabllem2a  33174  archiabllem2c  33175  archiabllem2b  33176  archiabl  33178  orngsqr  33299  ofldtos  33306
  Copyright terms: Public domain W3C validator