Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndtos Structured version   Visualization version   GIF version

Theorem omndtos 32218
Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Assertion
Ref Expression
omndtos (𝑀 ∈ oMnd β†’ 𝑀 ∈ Toset)

Proof of Theorem omndtos
Dummy variables π‘Ž 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
2 eqid 2732 . . 3 (+gβ€˜π‘€) = (+gβ€˜π‘€)
3 eqid 2732 . . 3 (leβ€˜π‘€) = (leβ€˜π‘€)
41, 2, 3isomnd 32214 . 2 (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ βˆ€π‘Ž ∈ (Baseβ€˜π‘€)βˆ€π‘ ∈ (Baseβ€˜π‘€)βˆ€π‘ ∈ (Baseβ€˜π‘€)(π‘Ž(leβ€˜π‘€)𝑏 β†’ (π‘Ž(+gβ€˜π‘€)𝑐)(leβ€˜π‘€)(𝑏(+gβ€˜π‘€)𝑐))))
54simp2bi 1146 1 (𝑀 ∈ oMnd β†’ 𝑀 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  lecple 17203  Tosetctos 18368  Mndcmnd 18624  oMndcomnd 32210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-omnd 32212
This theorem is referenced by:  omndadd2d  32221  omndadd2rd  32222  submomnd  32223  omndmul2  32225  omndmul  32227  gsumle  32237  isarchi3  32328  archirng  32329  archirngz  32330  archiabllem1a  32332  archiabllem1b  32333  archiabllem2a  32335  archiabllem2c  32336  archiabllem2b  32337  archiabl  32339  orngsqr  32417  ofldtos  32424
  Copyright terms: Public domain W3C validator