Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omndtos Structured version   Visualization version   GIF version

Theorem omndtos 31331
Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Assertion
Ref Expression
omndtos (𝑀 ∈ oMnd → 𝑀 ∈ Toset)

Proof of Theorem omndtos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2738 . . 3 (+g𝑀) = (+g𝑀)
3 eqid 2738 . . 3 (le‘𝑀) = (le‘𝑀)
41, 2, 3isomnd 31327 . 2 (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))))
54simp2bi 1145 1 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3064   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  lecple 16969  Tosetctos 18134  Mndcmnd 18385  oMndcomnd 31323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-omnd 31325
This theorem is referenced by:  omndadd2d  31334  omndadd2rd  31335  submomnd  31336  omndmul2  31338  omndmul  31340  gsumle  31350  isarchi3  31441  archirng  31442  archirngz  31443  archiabllem1a  31445  archiabllem1b  31446  archiabllem2a  31448  archiabllem2c  31449  archiabllem2b  31450  archiabl  31452  orngsqr  31503  ofldtos  31510
  Copyright terms: Public domain W3C validator