![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndtos | Structured version Visualization version GIF version |
Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
omndtos | β’ (π β oMnd β π β Toset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2732 | . . 3 β’ (+gβπ) = (+gβπ) | |
3 | eqid 2732 | . . 3 β’ (leβπ) = (leβπ) | |
4 | 1, 2, 3 | isomnd 32214 | . 2 β’ (π β oMnd β (π β Mnd β§ π β Toset β§ βπ β (Baseβπ)βπ β (Baseβπ)βπ β (Baseβπ)(π(leβπ)π β (π(+gβπ)π)(leβπ)(π(+gβπ)π)))) |
5 | 4 | simp2bi 1146 | 1 β’ (π β oMnd β π β Toset) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 βwral 3061 class class class wbr 5148 βcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 lecple 17203 Tosetctos 18368 Mndcmnd 18624 oMndcomnd 32210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-omnd 32212 |
This theorem is referenced by: omndadd2d 32221 omndadd2rd 32222 submomnd 32223 omndmul2 32225 omndmul 32227 gsumle 32237 isarchi3 32328 archirng 32329 archirngz 32330 archiabllem1a 32332 archiabllem1b 32333 archiabllem2a 32335 archiabllem2c 32336 archiabllem2b 32337 archiabl 32339 orngsqr 32417 ofldtos 32424 |
Copyright terms: Public domain | W3C validator |