| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omndtos | Structured version Visualization version GIF version | ||
| Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| omndtos | ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 3 | eqid 2729 | . . 3 ⊢ (le‘𝑀) = (le‘𝑀) | |
| 4 | 1, 2, 3 | isomnd 32988 | . 2 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g‘𝑀)𝑐)(le‘𝑀)(𝑏(+g‘𝑀)𝑐)))) |
| 5 | 4 | simp2bi 1146 | 1 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 lecple 17203 Tosetctos 18351 Mndcmnd 18637 oMndcomnd 32984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-omnd 32986 |
| This theorem is referenced by: omndadd2d 32995 omndadd2rd 32996 submomnd 32997 omndmul2 32999 omndmul 33001 gsumle 33011 isarchi3 33114 archirng 33115 archirngz 33116 archiabllem1a 33118 archiabllem1b 33119 archiabllem2a 33121 archiabllem2c 33122 archiabllem2b 33123 archiabl 33125 orngsqr 33255 ofldtos 33262 |
| Copyright terms: Public domain | W3C validator |