![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndtos | Structured version Visualization version GIF version |
Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
omndtos | ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2740 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | eqid 2740 | . . 3 ⊢ (le‘𝑀) = (le‘𝑀) | |
4 | 1, 2, 3 | isomnd 33051 | . 2 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g‘𝑀)𝑐)(le‘𝑀)(𝑏(+g‘𝑀)𝑐)))) |
5 | 4 | simp2bi 1146 | 1 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 lecple 17318 Tosetctos 18486 Mndcmnd 18772 oMndcomnd 33047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-omnd 33049 |
This theorem is referenced by: omndadd2d 33058 omndadd2rd 33059 submomnd 33060 omndmul2 33062 omndmul 33064 gsumle 33074 isarchi3 33167 archirng 33168 archirngz 33169 archiabllem1a 33171 archiabllem1b 33172 archiabllem2a 33174 archiabllem2c 33175 archiabllem2b 33176 archiabl 33178 orngsqr 33299 ofldtos 33306 |
Copyright terms: Public domain | W3C validator |