Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omndtos | Structured version Visualization version GIF version |
Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
Ref | Expression |
---|---|
omndtos | ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | eqid 2738 | . . 3 ⊢ (le‘𝑀) = (le‘𝑀) | |
4 | 1, 2, 3 | isomnd 31229 | . 2 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g‘𝑀)𝑐)(le‘𝑀)(𝑏(+g‘𝑀)𝑐)))) |
5 | 4 | simp2bi 1144 | 1 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 lecple 16895 Tosetctos 18049 Mndcmnd 18300 oMndcomnd 31225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-omnd 31227 |
This theorem is referenced by: omndadd2d 31236 omndadd2rd 31237 submomnd 31238 omndmul2 31240 omndmul 31242 gsumle 31252 isarchi3 31343 archirng 31344 archirngz 31345 archiabllem1a 31347 archiabllem1b 31348 archiabllem2a 31350 archiabllem2c 31351 archiabllem2b 31352 archiabl 31354 orngsqr 31405 ofldtos 31412 |
Copyright terms: Public domain | W3C validator |