MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omndtos Structured version   Visualization version   GIF version

Theorem omndtos 20047
Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.)
Assertion
Ref Expression
omndtos (𝑀 ∈ oMnd → 𝑀 ∈ Toset)

Proof of Theorem omndtos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2733 . . 3 (+g𝑀) = (+g𝑀)
3 eqid 2733 . . 3 (le‘𝑀) = (le‘𝑀)
41, 2, 3isomnd 20043 . 2 (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g𝑀)𝑐)(le‘𝑀)(𝑏(+g𝑀)𝑐))))
54simp2bi 1146 1 (𝑀 ∈ oMnd → 𝑀 ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wral 3048   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  +gcplusg 17168  lecple 17175  Tosetctos 18328  Mndcmnd 18650  oMndcomnd 20039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-omnd 20041
This theorem is referenced by:  omndadd2d  20050  omndadd2rd  20051  submomnd  20052  omndmul2  20053  omndmul  20055  gsumle  20065  orngsqr  20790  ofldtos  20797  isarchi3  33197  archirng  33198  archirngz  33199  archiabllem1a  33201  archiabllem1b  33202  archiabllem2a  33204  archiabllem2c  33205  archiabllem2b  33206  archiabl  33208
  Copyright terms: Public domain W3C validator