| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omndtos | Structured version Visualization version GIF version | ||
| Description: A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| omndtos | ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2733 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 3 | eqid 2733 | . . 3 ⊢ (le‘𝑀) = (le‘𝑀) | |
| 4 | 1, 2, 3 | isomnd 20043 | . 2 ⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)∀𝑐 ∈ (Base‘𝑀)(𝑎(le‘𝑀)𝑏 → (𝑎(+g‘𝑀)𝑐)(le‘𝑀)(𝑏(+g‘𝑀)𝑐)))) |
| 5 | 4 | simp2bi 1146 | 1 ⊢ (𝑀 ∈ oMnd → 𝑀 ∈ Toset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∀wral 3048 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 lecple 17175 Tosetctos 18328 Mndcmnd 18650 oMndcomnd 20039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-omnd 20041 |
| This theorem is referenced by: omndadd2d 20050 omndadd2rd 20051 submomnd 20052 omndmul2 20053 omndmul 20055 gsumle 20065 orngsqr 20790 ofldtos 20797 isarchi3 33197 archirng 33198 archirngz 33199 archiabllem1a 33201 archiabllem1b 33202 archiabllem2a 33204 archiabllem2c 33205 archiabllem2b 33206 archiabl 33208 |
| Copyright terms: Public domain | W3C validator |