![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omllaw3 | Structured version Visualization version GIF version |
Description: Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 31465 analog.) (Contributed by NM, 19-Oct-2011.) |
Ref | Expression |
---|---|
omllaw3.b | ⊢ 𝐵 = (Base‘𝐾) |
omllaw3.l | ⊢ ≤ = (le‘𝐾) |
omllaw3.m | ⊢ ∧ = (meet‘𝐾) |
omllaw3.o | ⊢ ⊥ = (oc‘𝐾) |
omllaw3.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
omllaw3 | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7439 | . . . . . 6 ⊢ ((𝑌 ∧ ( ⊥ ‘𝑋)) = 0 → (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))) = (𝑋(join‘𝐾) 0 )) | |
2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))) = (𝑋(join‘𝐾) 0 )) |
3 | omlol 39222 | . . . . . . . 8 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
4 | omllaw3.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
5 | eqid 2735 | . . . . . . . . 9 ⊢ (join‘𝐾) = (join‘𝐾) | |
6 | omllaw3.z | . . . . . . . . 9 ⊢ 0 = (0.‘𝐾) | |
7 | 4, 5, 6 | olj01 39207 | . . . . . . . 8 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
8 | 3, 7 | sylan 580 | . . . . . . 7 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
9 | 8 | 3adant3 1131 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
10 | 9 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
11 | 2, 10 | eqtr2d 2776 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
12 | 11 | adantrl 716 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
13 | omllaw3.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
14 | omllaw3.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
15 | omllaw3.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
16 | 4, 13, 5, 14, 15 | omllaw 39225 | . . . . 5 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))))) |
17 | 16 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
18 | 17 | adantrr 717 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
19 | 12, 18 | eqtr4d 2778 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑋 = 𝑌) |
20 | 19 | ex 412 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 occoc 17306 joincjn 18369 meetcmee 18370 0.cp0 18481 OLcol 39156 OMLcoml 39157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18352 df-poset 18371 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-lat 18490 df-oposet 39158 df-ol 39160 df-oml 39161 |
This theorem is referenced by: omlfh1N 39240 atlatmstc 39301 |
Copyright terms: Public domain | W3C validator |