| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omllaw3 | Structured version Visualization version GIF version | ||
| Description: Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 31416 analog.) (Contributed by NM, 19-Oct-2011.) |
| Ref | Expression |
|---|---|
| omllaw3.b | ⊢ 𝐵 = (Base‘𝐾) |
| omllaw3.l | ⊢ ≤ = (le‘𝐾) |
| omllaw3.m | ⊢ ∧ = (meet‘𝐾) |
| omllaw3.o | ⊢ ⊥ = (oc‘𝐾) |
| omllaw3.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| omllaw3 | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . . . 6 ⊢ ((𝑌 ∧ ( ⊥ ‘𝑋)) = 0 → (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))) = (𝑋(join‘𝐾) 0 )) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))) = (𝑋(join‘𝐾) 0 )) |
| 3 | omlol 39287 | . . . . . . . 8 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 4 | omllaw3.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | eqid 2731 | . . . . . . . . 9 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 6 | omllaw3.z | . . . . . . . . 9 ⊢ 0 = (0.‘𝐾) | |
| 7 | 4, 5, 6 | olj01 39272 | . . . . . . . 8 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
| 8 | 3, 7 | sylan 580 | . . . . . . 7 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
| 9 | 8 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
| 11 | 2, 10 | eqtr2d 2767 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
| 12 | 11 | adantrl 716 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
| 13 | omllaw3.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 14 | omllaw3.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 15 | omllaw3.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
| 16 | 4, 13, 5, 14, 15 | omllaw 39290 | . . . . 5 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))))) |
| 17 | 16 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
| 18 | 17 | adantrr 717 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
| 19 | 12, 18 | eqtr4d 2769 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑋 = 𝑌) |
| 20 | 19 | ex 412 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 occoc 17169 joincjn 18217 meetcmee 18218 0.cp0 18327 OLcol 39221 OMLcoml 39222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-oposet 39223 df-ol 39225 df-oml 39226 |
| This theorem is referenced by: omlfh1N 39305 atlatmstc 39366 |
| Copyright terms: Public domain | W3C validator |