Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw3 Structured version   Visualization version   GIF version

Theorem omllaw3 39224
Description: Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 31380 analog.) (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
omllaw3.b 𝐵 = (Base‘𝐾)
omllaw3.l = (le‘𝐾)
omllaw3.m = (meet‘𝐾)
omllaw3.o = (oc‘𝐾)
omllaw3.z 0 = (0.‘𝐾)
Assertion
Ref Expression
omllaw3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 ) → 𝑋 = 𝑌))

Proof of Theorem omllaw3
StepHypRef Expression
1 oveq2 7357 . . . . . 6 ((𝑌 ( 𝑋)) = 0 → (𝑋(join‘𝐾)(𝑌 ( 𝑋))) = (𝑋(join‘𝐾) 0 ))
21adantl 481 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 ( 𝑋)) = 0 ) → (𝑋(join‘𝐾)(𝑌 ( 𝑋))) = (𝑋(join‘𝐾) 0 ))
3 omlol 39219 . . . . . . . 8 (𝐾 ∈ OML → 𝐾 ∈ OL)
4 omllaw3.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
5 eqid 2729 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
6 omllaw3.z . . . . . . . . 9 0 = (0.‘𝐾)
74, 5, 6olj01 39204 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋)
83, 7sylan 580 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋)
983adant3 1132 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋)
109adantr 480 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 ( 𝑋)) = 0 ) → (𝑋(join‘𝐾) 0 ) = 𝑋)
112, 10eqtr2d 2765 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 ( 𝑋)) = 0 ) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
1211adantrl 716 . . 3 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 )) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
13 omllaw3.l . . . . . 6 = (le‘𝐾)
14 omllaw3.m . . . . . 6 = (meet‘𝐾)
15 omllaw3.o . . . . . 6 = (oc‘𝐾)
164, 13, 5, 14, 15omllaw 39222 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋(join‘𝐾)(𝑌 ( 𝑋)))))
1716imp 406 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
1817adantrr 717 . . 3 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 )) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
1912, 18eqtr4d 2767 . 2 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 )) → 𝑋 = 𝑌)
2019ex 412 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 ) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  occoc 17169  joincjn 18217  meetcmee 18218  0.cp0 18327  OLcol 39153  OMLcoml 39154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-oposet 39155  df-ol 39157  df-oml 39158
This theorem is referenced by:  omlfh1N  39237  atlatmstc  39298
  Copyright terms: Public domain W3C validator