Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw3 Structured version   Visualization version   GIF version

Theorem omllaw3 39211
Description: Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 31338 analog.) (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
omllaw3.b 𝐵 = (Base‘𝐾)
omllaw3.l = (le‘𝐾)
omllaw3.m = (meet‘𝐾)
omllaw3.o = (oc‘𝐾)
omllaw3.z 0 = (0.‘𝐾)
Assertion
Ref Expression
omllaw3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 ) → 𝑋 = 𝑌))

Proof of Theorem omllaw3
StepHypRef Expression
1 oveq2 7377 . . . . . 6 ((𝑌 ( 𝑋)) = 0 → (𝑋(join‘𝐾)(𝑌 ( 𝑋))) = (𝑋(join‘𝐾) 0 ))
21adantl 481 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 ( 𝑋)) = 0 ) → (𝑋(join‘𝐾)(𝑌 ( 𝑋))) = (𝑋(join‘𝐾) 0 ))
3 omlol 39206 . . . . . . . 8 (𝐾 ∈ OML → 𝐾 ∈ OL)
4 omllaw3.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
5 eqid 2729 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
6 omllaw3.z . . . . . . . . 9 0 = (0.‘𝐾)
74, 5, 6olj01 39191 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋)
83, 7sylan 580 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋)
983adant3 1132 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋)
109adantr 480 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 ( 𝑋)) = 0 ) → (𝑋(join‘𝐾) 0 ) = 𝑋)
112, 10eqtr2d 2765 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑌 ( 𝑋)) = 0 ) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
1211adantrl 716 . . 3 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 )) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
13 omllaw3.l . . . . . 6 = (le‘𝐾)
14 omllaw3.m . . . . . 6 = (meet‘𝐾)
15 omllaw3.o . . . . . 6 = (oc‘𝐾)
164, 13, 5, 14, 15omllaw 39209 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋(join‘𝐾)(𝑌 ( 𝑋)))))
1716imp 406 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
1817adantrr 717 . . 3 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 )) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ( 𝑋))))
1912, 18eqtr4d 2767 . 2 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 )) → 𝑋 = 𝑌)
2019ex 412 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌 ∧ (𝑌 ( 𝑋)) = 0 ) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  occoc 17204  joincjn 18248  meetcmee 18249  0.cp0 18358  OLcol 39140  OMLcoml 39141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-oposet 39142  df-ol 39144  df-oml 39145
This theorem is referenced by:  omlfh1N  39224  atlatmstc  39285
  Copyright terms: Public domain W3C validator