![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omllaw3 | Structured version Visualization version GIF version |
Description: Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 31468 analog.) (Contributed by NM, 19-Oct-2011.) |
Ref | Expression |
---|---|
omllaw3.b | ⊢ 𝐵 = (Base‘𝐾) |
omllaw3.l | ⊢ ≤ = (le‘𝐾) |
omllaw3.m | ⊢ ∧ = (meet‘𝐾) |
omllaw3.o | ⊢ ⊥ = (oc‘𝐾) |
omllaw3.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
omllaw3 | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . . . 6 ⊢ ((𝑌 ∧ ( ⊥ ‘𝑋)) = 0 → (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))) = (𝑋(join‘𝐾) 0 )) | |
2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))) = (𝑋(join‘𝐾) 0 )) |
3 | omlol 39196 | . . . . . . . 8 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
4 | omllaw3.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
5 | eqid 2740 | . . . . . . . . 9 ⊢ (join‘𝐾) = (join‘𝐾) | |
6 | omllaw3.z | . . . . . . . . 9 ⊢ 0 = (0.‘𝐾) | |
7 | 4, 5, 6 | olj01 39181 | . . . . . . . 8 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
8 | 3, 7 | sylan 579 | . . . . . . 7 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
9 | 8 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
10 | 9 | adantr 480 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → (𝑋(join‘𝐾) 0 ) = 𝑋) |
11 | 2, 10 | eqtr2d 2781 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
12 | 11 | adantrl 715 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑋 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
13 | omllaw3.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
14 | omllaw3.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
15 | omllaw3.o | . . . . . 6 ⊢ ⊥ = (oc‘𝐾) | |
16 | 4, 13, 5, 14, 15 | omllaw 39199 | . . . . 5 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋))))) |
17 | 16 | imp 406 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
18 | 17 | adantrr 716 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑌 = (𝑋(join‘𝐾)(𝑌 ∧ ( ⊥ ‘𝑋)))) |
19 | 12, 18 | eqtr4d 2783 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 )) → 𝑋 = 𝑌) |
20 | 19 | ex 412 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ (𝑌 ∧ ( ⊥ ‘𝑋)) = 0 ) → 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 occoc 17319 joincjn 18381 meetcmee 18382 0.cp0 18493 OLcol 39130 OMLcoml 39131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-oposet 39132 df-ol 39134 df-oml 39135 |
This theorem is referenced by: omlfh1N 39214 atlatmstc 39275 |
Copyright terms: Public domain | W3C validator |