Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw2N Structured version   Visualization version   GIF version

Theorem omllaw2N 39416
Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 31586 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omllaw.b 𝐵 = (Base‘𝐾)
omllaw.l = (le‘𝐾)
omllaw.j = (join‘𝐾)
omllaw.m = (meet‘𝐾)
omllaw.o = (oc‘𝐾)
Assertion
Ref Expression
omllaw2N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 (( 𝑋) 𝑌)) = 𝑌))

Proof of Theorem omllaw2N
StepHypRef Expression
1 omllaw.b . . 3 𝐵 = (Base‘𝐾)
2 omllaw.l . . 3 = (le‘𝐾)
3 omllaw.j . . 3 = (join‘𝐾)
4 omllaw.m . . 3 = (meet‘𝐾)
5 omllaw.o . . 3 = (oc‘𝐾)
61, 2, 3, 4, 5omllaw 39415 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
7 eqcom 2740 . . 3 ((𝑋 (( 𝑋) 𝑌)) = 𝑌𝑌 = (𝑋 (( 𝑋) 𝑌)))
8 omllat 39414 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ Lat)
983ad2ant1 1133 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
10 omlop 39413 . . . . . . . 8 (𝐾 ∈ OML → 𝐾 ∈ OP)
111, 5opoccl 39366 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1210, 11sylan 580 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
13123adant3 1132 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
14 simp3 1138 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
151, 4latmcom 18377 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌) = (𝑌 ( 𝑋)))
169, 13, 14, 15syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌) = (𝑌 ( 𝑋)))
1716oveq2d 7371 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) = (𝑋 (𝑌 ( 𝑋))))
1817eqeq2d 2744 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = (𝑋 (( 𝑋) 𝑌)) ↔ 𝑌 = (𝑋 (𝑌 ( 𝑋)))))
197, 18bitrid 283 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
206, 19sylibrd 259 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 (( 𝑋) 𝑌)) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  occoc 17176  joincjn 18225  meetcmee 18226  Latclat 18345  OPcops 39344  OMLcoml 39347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-glb 18259  df-meet 18261  df-lat 18346  df-oposet 39348  df-ol 39350  df-oml 39351
This theorem is referenced by:  omllaw5N  39419  cmtcomlemN  39420  cmtbr3N  39426
  Copyright terms: Public domain W3C validator