![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omllaw2N | Structured version Visualization version GIF version |
Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 29053 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omllaw.b | ⊢ 𝐵 = (Base‘𝐾) |
omllaw.l | ⊢ ≤ = (le‘𝐾) |
omllaw.j | ⊢ ∨ = (join‘𝐾) |
omllaw.m | ⊢ ∧ = (meet‘𝐾) |
omllaw.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
omllaw2N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omllaw.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | omllaw.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | omllaw.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | omllaw.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
5 | omllaw.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
6 | 1, 2, 3, 4, 5 | omllaw 35929 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
7 | eqcom 2802 | . . 3 ⊢ ((𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌 ↔ 𝑌 = (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌))) | |
8 | omllat 35928 | . . . . . . 7 ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) | |
9 | 8 | 3ad2ant1 1126 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
10 | omlop 35927 | . . . . . . . 8 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
11 | 1, 5 | opoccl 35880 | . . . . . . . 8 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
12 | 10, 11 | sylan 580 | . . . . . . 7 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
13 | 12 | 3adant3 1125 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
14 | simp3 1131 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
15 | 1, 4 | latmcom 17514 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ 𝑌) = (𝑌 ∧ ( ⊥ ‘𝑋))) |
16 | 9, 13, 14, 15 | syl3anc 1364 | . . . . 5 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ 𝑌) = (𝑌 ∧ ( ⊥ ‘𝑋))) |
17 | 16 | oveq2d 7032 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋)))) |
18 | 17 | eqeq2d 2805 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 = (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) ↔ 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
19 | 7, 18 | syl5bb 284 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌 ↔ 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
20 | 6, 19 | sylibrd 260 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 class class class wbr 4962 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 lecple 16401 occoc 16402 joincjn 17383 meetcmee 17384 Latclat 17484 OPcops 35858 OMLcoml 35861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-glb 17414 df-meet 17416 df-lat 17485 df-oposet 35862 df-ol 35864 df-oml 35865 |
This theorem is referenced by: omllaw5N 35933 cmtcomlemN 35934 cmtbr3N 35940 |
Copyright terms: Public domain | W3C validator |