Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw2N Structured version   Visualization version   GIF version

Theorem omllaw2N 35930
Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 29053 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omllaw.b 𝐵 = (Base‘𝐾)
omllaw.l = (le‘𝐾)
omllaw.j = (join‘𝐾)
omllaw.m = (meet‘𝐾)
omllaw.o = (oc‘𝐾)
Assertion
Ref Expression
omllaw2N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 (( 𝑋) 𝑌)) = 𝑌))

Proof of Theorem omllaw2N
StepHypRef Expression
1 omllaw.b . . 3 𝐵 = (Base‘𝐾)
2 omllaw.l . . 3 = (le‘𝐾)
3 omllaw.j . . 3 = (join‘𝐾)
4 omllaw.m . . 3 = (meet‘𝐾)
5 omllaw.o . . 3 = (oc‘𝐾)
61, 2, 3, 4, 5omllaw 35929 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
7 eqcom 2802 . . 3 ((𝑋 (( 𝑋) 𝑌)) = 𝑌𝑌 = (𝑋 (( 𝑋) 𝑌)))
8 omllat 35928 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ Lat)
983ad2ant1 1126 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
10 omlop 35927 . . . . . . . 8 (𝐾 ∈ OML → 𝐾 ∈ OP)
111, 5opoccl 35880 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1210, 11sylan 580 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
13123adant3 1125 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
14 simp3 1131 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
151, 4latmcom 17514 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌) = (𝑌 ( 𝑋)))
169, 13, 14, 15syl3anc 1364 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌) = (𝑌 ( 𝑋)))
1716oveq2d 7032 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) = (𝑋 (𝑌 ( 𝑋))))
1817eqeq2d 2805 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = (𝑋 (( 𝑋) 𝑌)) ↔ 𝑌 = (𝑋 (𝑌 ( 𝑋)))))
197, 18syl5bb 284 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
206, 19sylibrd 260 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 (( 𝑋) 𝑌)) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1080   = wceq 1522  wcel 2081   class class class wbr 4962  cfv 6225  (class class class)co 7016  Basecbs 16312  lecple 16401  occoc 16402  joincjn 17383  meetcmee 17384  Latclat 17484  OPcops 35858  OMLcoml 35861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-glb 17414  df-meet 17416  df-lat 17485  df-oposet 35862  df-ol 35864  df-oml 35865
This theorem is referenced by:  omllaw5N  35933  cmtcomlemN  35934  cmtbr3N  35940
  Copyright terms: Public domain W3C validator