Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw2N Structured version   Visualization version   GIF version

Theorem omllaw2N 39237
Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 31514 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omllaw.b 𝐵 = (Base‘𝐾)
omllaw.l = (le‘𝐾)
omllaw.j = (join‘𝐾)
omllaw.m = (meet‘𝐾)
omllaw.o = (oc‘𝐾)
Assertion
Ref Expression
omllaw2N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 (( 𝑋) 𝑌)) = 𝑌))

Proof of Theorem omllaw2N
StepHypRef Expression
1 omllaw.b . . 3 𝐵 = (Base‘𝐾)
2 omllaw.l . . 3 = (le‘𝐾)
3 omllaw.j . . 3 = (join‘𝐾)
4 omllaw.m . . 3 = (meet‘𝐾)
5 omllaw.o . . 3 = (oc‘𝐾)
61, 2, 3, 4, 5omllaw 39236 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
7 eqcom 2736 . . 3 ((𝑋 (( 𝑋) 𝑌)) = 𝑌𝑌 = (𝑋 (( 𝑋) 𝑌)))
8 omllat 39235 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ Lat)
983ad2ant1 1133 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
10 omlop 39234 . . . . . . . 8 (𝐾 ∈ OML → 𝐾 ∈ OP)
111, 5opoccl 39187 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1210, 11sylan 580 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
13123adant3 1132 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
14 simp3 1138 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
151, 4latmcom 18422 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌) = (𝑌 ( 𝑋)))
169, 13, 14, 15syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌) = (𝑌 ( 𝑋)))
1716oveq2d 7403 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) = (𝑋 (𝑌 ( 𝑋))))
1817eqeq2d 2740 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = (𝑋 (( 𝑋) 𝑌)) ↔ 𝑌 = (𝑋 (𝑌 ( 𝑋)))))
197, 18bitrid 283 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
206, 19sylibrd 259 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 (( 𝑋) 𝑌)) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  occoc 17228  joincjn 18272  meetcmee 18273  Latclat 18390  OPcops 39165  OMLcoml 39168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-glb 18306  df-meet 18308  df-lat 18391  df-oposet 39169  df-ol 39171  df-oml 39172
This theorem is referenced by:  omllaw5N  39240  cmtcomlemN  39241  cmtbr3N  39247
  Copyright terms: Public domain W3C validator