![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omllaw2N | Structured version Visualization version GIF version |
Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 31093 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omllaw.b | β’ π΅ = (BaseβπΎ) |
omllaw.l | β’ β€ = (leβπΎ) |
omllaw.j | β’ β¨ = (joinβπΎ) |
omllaw.m | β’ β§ = (meetβπΎ) |
omllaw.o | β’ β₯ = (ocβπΎ) |
Ref | Expression |
---|---|
omllaw2N | β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β (π β¨ (( β₯ βπ) β§ π)) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omllaw.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | omllaw.l | . . 3 β’ β€ = (leβπΎ) | |
3 | omllaw.j | . . 3 β’ β¨ = (joinβπΎ) | |
4 | omllaw.m | . . 3 β’ β§ = (meetβπΎ) | |
5 | omllaw.o | . . 3 β’ β₯ = (ocβπΎ) | |
6 | 1, 2, 3, 4, 5 | omllaw 38416 | . 2 β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β π = (π β¨ (π β§ ( β₯ βπ))))) |
7 | eqcom 2739 | . . 3 β’ ((π β¨ (( β₯ βπ) β§ π)) = π β π = (π β¨ (( β₯ βπ) β§ π))) | |
8 | omllat 38415 | . . . . . . 7 β’ (πΎ β OML β πΎ β Lat) | |
9 | 8 | 3ad2ant1 1133 | . . . . . 6 β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β πΎ β Lat) |
10 | omlop 38414 | . . . . . . . 8 β’ (πΎ β OML β πΎ β OP) | |
11 | 1, 5 | opoccl 38367 | . . . . . . . 8 β’ ((πΎ β OP β§ π β π΅) β ( β₯ βπ) β π΅) |
12 | 10, 11 | sylan 580 | . . . . . . 7 β’ ((πΎ β OML β§ π β π΅) β ( β₯ βπ) β π΅) |
13 | 12 | 3adant3 1132 | . . . . . 6 β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β ( β₯ βπ) β π΅) |
14 | simp3 1138 | . . . . . 6 β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β π β π΅) | |
15 | 1, 4 | latmcom 18420 | . . . . . 6 β’ ((πΎ β Lat β§ ( β₯ βπ) β π΅ β§ π β π΅) β (( β₯ βπ) β§ π) = (π β§ ( β₯ βπ))) |
16 | 9, 13, 14, 15 | syl3anc 1371 | . . . . 5 β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (( β₯ βπ) β§ π) = (π β§ ( β₯ βπ))) |
17 | 16 | oveq2d 7427 | . . . 4 β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β¨ (( β₯ βπ) β§ π)) = (π β¨ (π β§ ( β₯ βπ)))) |
18 | 17 | eqeq2d 2743 | . . 3 β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π = (π β¨ (( β₯ βπ) β§ π)) β π = (π β¨ (π β§ ( β₯ βπ))))) |
19 | 7, 18 | bitrid 282 | . 2 β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β ((π β¨ (( β₯ βπ) β§ π)) = π β π = (π β¨ (π β§ ( β₯ βπ))))) |
20 | 6, 19 | sylibrd 258 | 1 β’ ((πΎ β OML β§ π β π΅ β§ π β π΅) β (π β€ π β (π β¨ (( β₯ βπ) β§ π)) = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 (class class class)co 7411 Basecbs 17148 lecple 17208 occoc 17209 joincjn 18268 meetcmee 18269 Latclat 18388 OPcops 38345 OMLcoml 38348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-glb 18304 df-meet 18306 df-lat 18389 df-oposet 38349 df-ol 38351 df-oml 38352 |
This theorem is referenced by: omllaw5N 38420 cmtcomlemN 38421 cmtbr3N 38427 |
Copyright terms: Public domain | W3C validator |