| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omllaw2N | Structured version Visualization version GIF version | ||
| Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 31547 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| omllaw.b | ⊢ 𝐵 = (Base‘𝐾) |
| omllaw.l | ⊢ ≤ = (le‘𝐾) |
| omllaw.j | ⊢ ∨ = (join‘𝐾) |
| omllaw.m | ⊢ ∧ = (meet‘𝐾) |
| omllaw.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| omllaw2N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllaw.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | omllaw.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | omllaw.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | omllaw.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 5 | omllaw.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | omllaw 39224 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
| 7 | eqcom 2736 | . . 3 ⊢ ((𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌 ↔ 𝑌 = (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌))) | |
| 8 | omllat 39223 | . . . . . . 7 ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) | |
| 9 | 8 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 10 | omlop 39222 | . . . . . . . 8 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
| 11 | 1, 5 | opoccl 39175 | . . . . . . . 8 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 12 | 10, 11 | sylan 580 | . . . . . . 7 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 13 | 12 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 14 | simp3 1138 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 15 | 1, 4 | latmcom 18387 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ 𝑌) = (𝑌 ∧ ( ⊥ ‘𝑋))) |
| 16 | 9, 13, 14, 15 | syl3anc 1373 | . . . . 5 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ 𝑌) = (𝑌 ∧ ( ⊥ ‘𝑋))) |
| 17 | 16 | oveq2d 7369 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋)))) |
| 18 | 17 | eqeq2d 2740 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 = (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) ↔ 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
| 19 | 7, 18 | bitrid 283 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌 ↔ 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
| 20 | 6, 19 | sylibrd 259 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 lecple 17186 occoc 17187 joincjn 18235 meetcmee 18236 Latclat 18355 OPcops 39153 OMLcoml 39156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-glb 18269 df-meet 18271 df-lat 18356 df-oposet 39157 df-ol 39159 df-oml 39160 |
| This theorem is referenced by: omllaw5N 39228 cmtcomlemN 39229 cmtbr3N 39235 |
| Copyright terms: Public domain | W3C validator |