| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omllaw2N | Structured version Visualization version GIF version | ||
| Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 31563 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| omllaw.b | ⊢ 𝐵 = (Base‘𝐾) |
| omllaw.l | ⊢ ≤ = (le‘𝐾) |
| omllaw.j | ⊢ ∨ = (join‘𝐾) |
| omllaw.m | ⊢ ∧ = (meet‘𝐾) |
| omllaw.o | ⊢ ⊥ = (oc‘𝐾) |
| Ref | Expression |
|---|---|
| omllaw2N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllaw.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | omllaw.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | omllaw.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | omllaw.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 5 | omllaw.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | omllaw 39288 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
| 7 | eqcom 2738 | . . 3 ⊢ ((𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌 ↔ 𝑌 = (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌))) | |
| 8 | omllat 39287 | . . . . . . 7 ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) | |
| 9 | 8 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 10 | omlop 39286 | . . . . . . . 8 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
| 11 | 1, 5 | opoccl 39239 | . . . . . . . 8 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 12 | 10, 11 | sylan 580 | . . . . . . 7 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 13 | 12 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 14 | simp3 1138 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 15 | 1, 4 | latmcom 18369 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ 𝑌) = (𝑌 ∧ ( ⊥ ‘𝑋))) |
| 16 | 9, 13, 14, 15 | syl3anc 1373 | . . . . 5 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ 𝑌) = (𝑌 ∧ ( ⊥ ‘𝑋))) |
| 17 | 16 | oveq2d 7362 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋)))) |
| 18 | 17 | eqeq2d 2742 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 = (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) ↔ 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
| 19 | 7, 18 | bitrid 283 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌 ↔ 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
| 20 | 6, 19 | sylibrd 259 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 occoc 17169 joincjn 18217 meetcmee 18218 Latclat 18337 OPcops 39217 OMLcoml 39220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-glb 18251 df-meet 18253 df-lat 18338 df-oposet 39221 df-ol 39223 df-oml 39224 |
| This theorem is referenced by: omllaw5N 39292 cmtcomlemN 39293 cmtbr3N 39299 |
| Copyright terms: Public domain | W3C validator |