![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omllaw2N | Structured version Visualization version GIF version |
Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 30816 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omllaw.b | ⊢ 𝐵 = (Base‘𝐾) |
omllaw.l | ⊢ ≤ = (le‘𝐾) |
omllaw.j | ⊢ ∨ = (join‘𝐾) |
omllaw.m | ⊢ ∧ = (meet‘𝐾) |
omllaw.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
omllaw2N | ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omllaw.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | omllaw.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | omllaw.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | omllaw.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
5 | omllaw.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
6 | 1, 2, 3, 4, 5 | omllaw 38051 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
7 | eqcom 2740 | . . 3 ⊢ ((𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌 ↔ 𝑌 = (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌))) | |
8 | omllat 38050 | . . . . . . 7 ⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) | |
9 | 8 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
10 | omlop 38049 | . . . . . . . 8 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | |
11 | 1, 5 | opoccl 38002 | . . . . . . . 8 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
12 | 10, 11 | sylan 581 | . . . . . . 7 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
13 | 12 | 3adant3 1133 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
14 | simp3 1139 | . . . . . 6 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
15 | 1, 4 | latmcom 18412 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ 𝑌) = (𝑌 ∧ ( ⊥ ‘𝑋))) |
16 | 9, 13, 14, 15 | syl3anc 1372 | . . . . 5 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ 𝑌) = (𝑌 ∧ ( ⊥ ‘𝑋))) |
17 | 16 | oveq2d 7420 | . . . 4 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋)))) |
18 | 17 | eqeq2d 2744 | . . 3 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 = (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) ↔ 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
19 | 7, 18 | bitrid 283 | . 2 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌 ↔ 𝑌 = (𝑋 ∨ (𝑌 ∧ ( ⊥ ‘𝑋))))) |
20 | 6, 19 | sylibrd 259 | 1 ⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑋 ∨ (( ⊥ ‘𝑋) ∧ 𝑌)) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5147 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 lecple 17200 occoc 17201 joincjn 18260 meetcmee 18261 Latclat 18380 OPcops 37980 OMLcoml 37983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-glb 18296 df-meet 18298 df-lat 18381 df-oposet 37984 df-ol 37986 df-oml 37987 |
This theorem is referenced by: omllaw5N 38055 cmtcomlemN 38056 cmtbr3N 38062 |
Copyright terms: Public domain | W3C validator |