Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw2N Structured version   Visualization version   GIF version

Theorem omllaw2N 39208
Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 31512 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omllaw.b 𝐵 = (Base‘𝐾)
omllaw.l = (le‘𝐾)
omllaw.j = (join‘𝐾)
omllaw.m = (meet‘𝐾)
omllaw.o = (oc‘𝐾)
Assertion
Ref Expression
omllaw2N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 (( 𝑋) 𝑌)) = 𝑌))

Proof of Theorem omllaw2N
StepHypRef Expression
1 omllaw.b . . 3 𝐵 = (Base‘𝐾)
2 omllaw.l . . 3 = (le‘𝐾)
3 omllaw.j . . 3 = (join‘𝐾)
4 omllaw.m . . 3 = (meet‘𝐾)
5 omllaw.o . . 3 = (oc‘𝐾)
61, 2, 3, 4, 5omllaw 39207 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
7 eqcom 2742 . . 3 ((𝑋 (( 𝑋) 𝑌)) = 𝑌𝑌 = (𝑋 (( 𝑋) 𝑌)))
8 omllat 39206 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ Lat)
983ad2ant1 1133 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
10 omlop 39205 . . . . . . . 8 (𝐾 ∈ OML → 𝐾 ∈ OP)
111, 5opoccl 39158 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
1210, 11sylan 580 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
13123adant3 1132 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
14 simp3 1138 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
151, 4latmcom 18471 . . . . . 6 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌) = (𝑌 ( 𝑋)))
169, 13, 14, 15syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌) = (𝑌 ( 𝑋)))
1716oveq2d 7419 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) = (𝑋 (𝑌 ( 𝑋))))
1817eqeq2d 2746 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = (𝑋 (( 𝑋) 𝑌)) ↔ 𝑌 = (𝑋 (𝑌 ( 𝑋)))))
197, 18bitrid 283 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
206, 19sylibrd 259 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑋 (( 𝑋) 𝑌)) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6530  (class class class)co 7403  Basecbs 17226  lecple 17276  occoc 17277  joincjn 18321  meetcmee 18322  Latclat 18439  OPcops 39136  OMLcoml 39139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-glb 18355  df-meet 18357  df-lat 18440  df-oposet 39140  df-ol 39142  df-oml 39143
This theorem is referenced by:  omllaw5N  39211  cmtcomlemN  39212  cmtbr3N  39218
  Copyright terms: Public domain W3C validator