Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw4 Structured version   Visualization version   GIF version

Theorem omllaw4 39202
Description: Orthomodular law equivalent. Remark in [Holland95] p. 223. (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
omllaw4.b 𝐵 = (Base‘𝐾)
omllaw4.l = (le‘𝐾)
omllaw4.m = (meet‘𝐾)
omllaw4.o = (oc‘𝐾)
Assertion
Ref Expression
omllaw4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (( ‘(( 𝑋) 𝑌)) 𝑌) = 𝑋))

Proof of Theorem omllaw4
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
2 omlop 39197 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ OP)
323ad2ant1 1133 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
4 simp3 1138 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
5 omllaw4.b . . . . 5 𝐵 = (Base‘𝐾)
6 omllaw4.o . . . . 5 = (oc‘𝐾)
75, 6opoccl 39150 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
83, 4, 7syl2anc 583 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
9 simp2 1137 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
105, 6opoccl 39150 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
113, 9, 10syl2anc 583 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
12 omllaw4.l . . . 4 = (le‘𝐾)
13 eqid 2740 . . . 4 (join‘𝐾) = (join‘𝐾)
14 omllaw4.m . . . 4 = (meet‘𝐾)
155, 12, 13, 14, 6omllaw 39199 . . 3 ((𝐾 ∈ OML ∧ ( 𝑌) ∈ 𝐵 ∧ ( 𝑋) ∈ 𝐵) → (( 𝑌) ( 𝑋) → ( 𝑋) = (( 𝑌)(join‘𝐾)(( 𝑋) ( ‘( 𝑌))))))
161, 8, 11, 15syl3anc 1371 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) ( 𝑋) → ( 𝑋) = (( 𝑌)(join‘𝐾)(( 𝑋) ( ‘( 𝑌))))))
175, 12, 6oplecon3b 39156 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ( 𝑌) ( 𝑋)))
182, 17syl3an1 1163 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ( 𝑌) ( 𝑋)))
19 omllat 39198 . . . . . 6 (𝐾 ∈ OML → 𝐾 ∈ Lat)
20193ad2ant1 1133 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
215, 14latmcl 18510 . . . . . . 7 ((𝐾 ∈ Lat ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) 𝑌) ∈ 𝐵)
2220, 11, 4, 21syl3anc 1371 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) 𝑌) ∈ 𝐵)
235, 6opoccl 39150 . . . . . 6 ((𝐾 ∈ OP ∧ (( 𝑋) 𝑌) ∈ 𝐵) → ( ‘(( 𝑋) 𝑌)) ∈ 𝐵)
243, 22, 23syl2anc 583 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( 𝑋) 𝑌)) ∈ 𝐵)
255, 14latmcl 18510 . . . . 5 ((𝐾 ∈ Lat ∧ ( ‘(( 𝑋) 𝑌)) ∈ 𝐵𝑌𝐵) → (( ‘(( 𝑋) 𝑌)) 𝑌) ∈ 𝐵)
2620, 24, 4, 25syl3anc 1371 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( ‘(( 𝑋) 𝑌)) 𝑌) ∈ 𝐵)
275, 6opcon3b 39152 . . . 4 ((𝐾 ∈ OP ∧ (( ‘(( 𝑋) 𝑌)) 𝑌) ∈ 𝐵𝑋𝐵) → ((( ‘(( 𝑋) 𝑌)) 𝑌) = 𝑋 ↔ ( 𝑋) = ( ‘(( ‘(( 𝑋) 𝑌)) 𝑌))))
283, 26, 9, 27syl3anc 1371 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((( ‘(( 𝑋) 𝑌)) 𝑌) = 𝑋 ↔ ( 𝑋) = ( ‘(( ‘(( 𝑋) 𝑌)) 𝑌))))
295, 13latjcom 18517 . . . . . 6 ((𝐾 ∈ Lat ∧ (( 𝑋) 𝑌) ∈ 𝐵 ∧ ( 𝑌) ∈ 𝐵) → ((( 𝑋) 𝑌)(join‘𝐾)( 𝑌)) = (( 𝑌)(join‘𝐾)(( 𝑋) 𝑌)))
3020, 22, 8, 29syl3anc 1371 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((( 𝑋) 𝑌)(join‘𝐾)( 𝑌)) = (( 𝑌)(join‘𝐾)(( 𝑋) 𝑌)))
31 omlol 39196 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ OL)
32313ad2ant1 1133 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
335, 13, 14, 6oldmm2 39174 . . . . . 6 ((𝐾 ∈ OL ∧ (( 𝑋) 𝑌) ∈ 𝐵𝑌𝐵) → ( ‘(( ‘(( 𝑋) 𝑌)) 𝑌)) = ((( 𝑋) 𝑌)(join‘𝐾)( 𝑌)))
3432, 22, 4, 33syl3anc 1371 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( ‘(( 𝑋) 𝑌)) 𝑌)) = ((( 𝑋) 𝑌)(join‘𝐾)( 𝑌)))
355, 6opococ 39151 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
363, 4, 35syl2anc 583 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑌)) = 𝑌)
3736oveq2d 7464 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) ( ‘( 𝑌))) = (( 𝑋) 𝑌))
3837oveq2d 7464 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌)(join‘𝐾)(( 𝑋) ( ‘( 𝑌)))) = (( 𝑌)(join‘𝐾)(( 𝑋) 𝑌)))
3930, 34, 383eqtr4d 2790 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(( ‘(( 𝑋) 𝑌)) 𝑌)) = (( 𝑌)(join‘𝐾)(( 𝑋) ( ‘( 𝑌)))))
4039eqeq2d 2751 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) = ( ‘(( ‘(( 𝑋) 𝑌)) 𝑌)) ↔ ( 𝑋) = (( 𝑌)(join‘𝐾)(( 𝑋) ( ‘( 𝑌))))))
4128, 40bitrd 279 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((( ‘(( 𝑋) 𝑌)) 𝑌) = 𝑋 ↔ ( 𝑋) = (( 𝑌)(join‘𝐾)(( 𝑋) ( ‘( 𝑌))))))
4216, 18, 413imtr4d 294 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (( ‘(( 𝑋) 𝑌)) 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  occoc 17319  joincjn 18381  meetcmee 18382  Latclat 18501  OPcops 39128  OLcol 39130  OMLcoml 39131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-lat 18502  df-oposet 39132  df-ol 39134  df-oml 39135
This theorem is referenced by:  poml4N  39910  dihoml4c  41333
  Copyright terms: Public domain W3C validator