Proof of Theorem omllaw4
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OML) |
2 | | omlop 37255 |
. . . . 5
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
3 | 2 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
4 | | simp3 1137 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
5 | | omllaw4.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
6 | | omllaw4.o |
. . . . 5
⊢ ⊥ =
(oc‘𝐾) |
7 | 5, 6 | opoccl 37208 |
. . . 4
⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
8 | 3, 4, 7 | syl2anc 584 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
9 | | simp2 1136 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
10 | 5, 6 | opoccl 37208 |
. . . 4
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
11 | 3, 9, 10 | syl2anc 584 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
12 | | omllaw4.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
13 | | eqid 2738 |
. . . 4
⊢
(join‘𝐾) =
(join‘𝐾) |
14 | | omllaw4.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
15 | 5, 12, 13, 14, 6 | omllaw 37257 |
. . 3
⊢ ((𝐾 ∈ OML ∧ ( ⊥
‘𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘𝑋) = (( ⊥ ‘𝑌)(join‘𝐾)(( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))))) |
16 | 1, 8, 11, 15 | syl3anc 1370 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋) → ( ⊥ ‘𝑋) = (( ⊥ ‘𝑌)(join‘𝐾)(( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))))) |
17 | 5, 12, 6 | oplecon3b 37214 |
. . 3
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
18 | 2, 17 | syl3an1 1162 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ( ⊥ ‘𝑌) ≤ ( ⊥ ‘𝑋))) |
19 | | omllat 37256 |
. . . . . 6
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
20 | 19 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
21 | 5, 14 | latmcl 18158 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ 𝑌) ∈ 𝐵) |
22 | 20, 11, 4, 21 | syl3anc 1370 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ 𝑌) ∈ 𝐵) |
23 | 5, 6 | opoccl 37208 |
. . . . . 6
⊢ ((𝐾 ∈ OP ∧ (( ⊥
‘𝑋) ∧ 𝑌) ∈ 𝐵) → ( ⊥ ‘(( ⊥
‘𝑋) ∧ 𝑌)) ∈ 𝐵) |
24 | 3, 22, 23 | syl2anc 584 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥
‘𝑋) ∧ 𝑌)) ∈ 𝐵) |
25 | 5, 14 | latmcl 18158 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘(( ⊥
‘𝑋) ∧ 𝑌)) ∧ 𝑌) ∈ 𝐵) |
26 | 20, 24, 4, 25 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘(( ⊥
‘𝑋) ∧ 𝑌)) ∧ 𝑌) ∈ 𝐵) |
27 | 5, 6 | opcon3b 37210 |
. . . 4
⊢ ((𝐾 ∈ OP ∧ (( ⊥
‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘(( ⊥
‘𝑋) ∧ 𝑌)) ∧ 𝑌) = 𝑋 ↔ ( ⊥ ‘𝑋) = ( ⊥ ‘(( ⊥
‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∧ 𝑌)))) |
28 | 3, 26, 9, 27 | syl3anc 1370 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((( ⊥ ‘(( ⊥
‘𝑋) ∧ 𝑌)) ∧ 𝑌) = 𝑋 ↔ ( ⊥ ‘𝑋) = ( ⊥ ‘(( ⊥
‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∧ 𝑌)))) |
29 | 5, 13 | latjcom 18165 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (( ⊥
‘𝑋) ∧ 𝑌) ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → ((( ⊥ ‘𝑋) ∧ 𝑌)(join‘𝐾)( ⊥ ‘𝑌)) = (( ⊥ ‘𝑌)(join‘𝐾)(( ⊥ ‘𝑋) ∧ 𝑌))) |
30 | 20, 22, 8, 29 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∧ 𝑌)(join‘𝐾)( ⊥ ‘𝑌)) = (( ⊥ ‘𝑌)(join‘𝐾)(( ⊥ ‘𝑋) ∧ 𝑌))) |
31 | | omlol 37254 |
. . . . . . 7
⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
32 | 31 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OL) |
33 | 5, 13, 14, 6 | oldmm2 37232 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ (( ⊥
‘𝑋) ∧ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥
‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∧ 𝑌)) = ((( ⊥ ‘𝑋) ∧ 𝑌)(join‘𝐾)( ⊥ ‘𝑌))) |
34 | 32, 22, 4, 33 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥
‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∧ 𝑌)) = ((( ⊥ ‘𝑋) ∧ 𝑌)(join‘𝐾)( ⊥ ‘𝑌))) |
35 | 5, 6 | opococ 37209 |
. . . . . . . 8
⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑌)) = 𝑌) |
36 | 3, 4, 35 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥
‘𝑌)) = 𝑌) |
37 | 36 | oveq2d 7291 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌))) = (( ⊥
‘𝑋) ∧ 𝑌)) |
38 | 37 | oveq2d 7291 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌)(join‘𝐾)(( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))) = (( ⊥
‘𝑌)(join‘𝐾)(( ⊥ ‘𝑋) ∧ 𝑌))) |
39 | 30, 34, 38 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(( ⊥
‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∧ 𝑌)) = (( ⊥ ‘𝑌)(join‘𝐾)(( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌))))) |
40 | 39 | eqeq2d 2749 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) = ( ⊥ ‘(( ⊥
‘(( ⊥ ‘𝑋) ∧ 𝑌)) ∧ 𝑌)) ↔ ( ⊥ ‘𝑋) = (( ⊥ ‘𝑌)(join‘𝐾)(( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))))) |
41 | 28, 40 | bitrd 278 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((( ⊥ ‘(( ⊥
‘𝑋) ∧ 𝑌)) ∧ 𝑌) = 𝑋 ↔ ( ⊥ ‘𝑋) = (( ⊥ ‘𝑌)(join‘𝐾)(( ⊥ ‘𝑋) ∧ ( ⊥ ‘( ⊥
‘𝑌)))))) |
42 | 16, 18, 41 | 3imtr4d 294 |
1
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (( ⊥ ‘(( ⊥
‘𝑋) ∧ 𝑌)) ∧ 𝑌) = 𝑋)) |