Proof of Theorem cmtbr3N
| Step | Hyp | Ref
| Expression |
| 1 | | cmtbr2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | cmtbr2.c |
. . . . 5
⊢ 𝐶 = (cm‘𝐾) |
| 3 | 1, 2 | cmtcomN 39272 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) |
| 4 | | cmtbr2.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 5 | | cmtbr2.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 6 | | cmtbr2.o |
. . . . . 6
⊢ ⊥ =
(oc‘𝐾) |
| 7 | 1, 4, 5, 6, 2 | cmtbr2N 39276 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
| 8 | 7 | 3com23 1126 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
| 9 | 3, 8 | bitrd 279 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
| 10 | | oveq2 7418 |
. . . . . 6
⊢ (𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) → (𝑋 ∧ 𝑌) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
| 11 | 10 | adantl 481 |
. . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) → (𝑋 ∧ 𝑌) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
| 12 | | omlol 39263 |
. . . . . . . . 9
⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
| 13 | 12 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OL) |
| 14 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 15 | | omllat 39265 |
. . . . . . . . . 10
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
| 16 | 15 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 17 | | simp3 1138 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 18 | 1, 4 | latjcl 18454 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ∨ 𝑋) ∈ 𝐵) |
| 19 | 16, 17, 14, 18 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ 𝑋) ∈ 𝐵) |
| 20 | | omlop 39264 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| 21 | 20 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
| 22 | 1, 6 | opoccl 39217 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 23 | 21, 14, 22 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
| 24 | 1, 4 | latjcl 18454 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) ∈ 𝐵) |
| 25 | 16, 17, 23, 24 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) ∈ 𝐵) |
| 26 | 1, 5 | latmassOLD 39252 |
. . . . . . . 8
⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ (𝑌 ∨ 𝑋) ∈ 𝐵 ∧ (𝑌 ∨ ( ⊥ ‘𝑋)) ∈ 𝐵)) → ((𝑋 ∧ (𝑌 ∨ 𝑋)) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
| 27 | 13, 14, 19, 25, 26 | syl13anc 1374 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (𝑌 ∨ 𝑋)) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
| 28 | 1, 4 | latjcom 18462 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ∨ 𝑋) = (𝑋 ∨ 𝑌)) |
| 29 | 16, 17, 14, 28 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ 𝑋) = (𝑋 ∨ 𝑌)) |
| 30 | 29 | oveq2d 7426 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑌 ∨ 𝑋)) = (𝑋 ∧ (𝑋 ∨ 𝑌))) |
| 31 | 1, 4, 5 | latabs2 18491 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑋 ∨ 𝑌)) = 𝑋) |
| 32 | 15, 31 | syl3an1 1163 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑋 ∨ 𝑌)) = 𝑋) |
| 33 | 30, 32 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑌 ∨ 𝑋)) = 𝑋) |
| 34 | 1, 4 | latjcom 18462 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) = (( ⊥ ‘𝑋) ∨ 𝑌)) |
| 35 | 16, 17, 23, 34 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) = (( ⊥ ‘𝑋) ∨ 𝑌)) |
| 36 | 33, 35 | oveq12d 7428 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (𝑌 ∨ 𝑋)) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) |
| 37 | 27, 36 | eqtr3d 2773 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) |
| 38 | 37 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) → (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) |
| 39 | 11, 38 | eqtr2d 2772 |
. . . 4
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) |
| 40 | 39 | ex 412 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
| 41 | 9, 40 | sylbid 240 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
| 42 | | simp1 1136 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OML) |
| 43 | 1, 6 | opoccl 39217 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 44 | 21, 17, 43 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 45 | 1, 5 | latmcl 18455 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
| 46 | 16, 14, 44, 45 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
| 47 | 42, 46, 14 | 3jca 1128 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐾 ∈ OML ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
| 48 | | eqid 2736 |
. . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) |
| 49 | 1, 48, 5 | latmle1 18479 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌))(le‘𝐾)𝑋) |
| 50 | 16, 14, 44, 49 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌))(le‘𝐾)𝑋) |
| 51 | 1, 48, 4, 5, 6 | omllaw2N 39267 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌))(le‘𝐾)𝑋 → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = 𝑋)) |
| 52 | 47, 50, 51 | sylc 65 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = 𝑋) |
| 53 | 1, 6 | opoccl 39217 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OP ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∈ 𝐵) |
| 54 | 21, 46, 53 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∈ 𝐵) |
| 55 | 1, 5 | latmcl 18455 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘(𝑋 ∧ ( ⊥
‘𝑌))) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∈ 𝐵) |
| 56 | 16, 54, 14, 55 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∈ 𝐵) |
| 57 | 1, 4 | latjcom 18462 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵 ∧ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
| 58 | 16, 46, 56, 57 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
| 59 | 52, 58 | eqtr3d 2773 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
| 60 | 59 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) → 𝑋 = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
| 61 | 1, 4, 5, 6 | oldmm3N 39242 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∨ 𝑌)) |
| 62 | 12, 61 | syl3an1 1163 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∨ 𝑌)) |
| 63 | 62 | oveq2d 7426 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌)))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) |
| 64 | 1, 5 | latmcom 18478 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) |
| 65 | 16, 14, 54, 64 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) |
| 66 | 63, 65 | eqtr3d 2773 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) |
| 67 | 66 | eqeq1d 2738 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) ↔ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) = (𝑋 ∧ 𝑌))) |
| 68 | | oveq1 7417 |
. . . . . . 7
⊢ ((( ⊥
‘(𝑋 ∧ ( ⊥
‘𝑌))) ∧ 𝑋) = (𝑋 ∧ 𝑌) → ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
| 69 | 67, 68 | biimtrdi 253 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |
| 70 | 69 | imp 406 |
. . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) → ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
| 71 | 60, 70 | eqtrd 2771 |
. . . 4
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) → 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
| 72 | 71 | ex 412 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |
| 73 | 1, 4, 5, 6, 2 | cmtvalN 39234 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |
| 74 | 72, 73 | sylibrd 259 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → 𝑋𝐶𝑌)) |
| 75 | 41, 74 | impbid 212 |
1
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |