Proof of Theorem cmtbr3N
Step | Hyp | Ref
| Expression |
1 | | cmtbr2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
2 | | cmtbr2.c |
. . . . 5
⊢ 𝐶 = (cm‘𝐾) |
3 | 1, 2 | cmtcomN 37190 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) |
4 | | cmtbr2.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
5 | | cmtbr2.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
6 | | cmtbr2.o |
. . . . . 6
⊢ ⊥ =
(oc‘𝐾) |
7 | 1, 4, 5, 6, 2 | cmtbr2N 37194 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
8 | 7 | 3com23 1124 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
9 | 3, 8 | bitrd 278 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
10 | | oveq2 7263 |
. . . . . 6
⊢ (𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) → (𝑋 ∧ 𝑌) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
11 | 10 | adantl 481 |
. . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) → (𝑋 ∧ 𝑌) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
12 | | omlol 37181 |
. . . . . . . . 9
⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
13 | 12 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OL) |
14 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
15 | | omllat 37183 |
. . . . . . . . . 10
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
16 | 15 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) |
17 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
18 | 1, 4 | latjcl 18072 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ∨ 𝑋) ∈ 𝐵) |
19 | 16, 17, 14, 18 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ 𝑋) ∈ 𝐵) |
20 | | omlop 37182 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
21 | 20 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) |
22 | 1, 6 | opoccl 37135 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
23 | 21, 14, 22 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
24 | 1, 4 | latjcl 18072 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) ∈ 𝐵) |
25 | 16, 17, 23, 24 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) ∈ 𝐵) |
26 | 1, 5 | latmassOLD 37170 |
. . . . . . . 8
⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ (𝑌 ∨ 𝑋) ∈ 𝐵 ∧ (𝑌 ∨ ( ⊥ ‘𝑋)) ∈ 𝐵)) → ((𝑋 ∧ (𝑌 ∨ 𝑋)) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
27 | 13, 14, 19, 25, 26 | syl13anc 1370 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (𝑌 ∨ 𝑋)) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) |
28 | 1, 4 | latjcom 18080 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ∨ 𝑋) = (𝑋 ∨ 𝑌)) |
29 | 16, 17, 14, 28 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ 𝑋) = (𝑋 ∨ 𝑌)) |
30 | 29 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑌 ∨ 𝑋)) = (𝑋 ∧ (𝑋 ∨ 𝑌))) |
31 | 1, 4, 5 | latabs2 18109 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑋 ∨ 𝑌)) = 𝑋) |
32 | 15, 31 | syl3an1 1161 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑋 ∨ 𝑌)) = 𝑋) |
33 | 30, 32 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑌 ∨ 𝑋)) = 𝑋) |
34 | 1, 4 | latjcom 18080 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) = (( ⊥ ‘𝑋) ∨ 𝑌)) |
35 | 16, 17, 23, 34 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) = (( ⊥ ‘𝑋) ∨ 𝑌)) |
36 | 33, 35 | oveq12d 7273 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (𝑌 ∨ 𝑋)) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) |
37 | 27, 36 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) |
38 | 37 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) → (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) |
39 | 11, 38 | eqtr2d 2779 |
. . . 4
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) |
40 | 39 | ex 412 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
41 | 9, 40 | sylbid 239 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |
42 | | simp1 1134 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OML) |
43 | 1, 6 | opoccl 37135 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
44 | 21, 17, 43 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
45 | 1, 5 | latmcl 18073 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
46 | 16, 14, 44, 45 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) |
47 | 42, 46, 14 | 3jca 1126 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐾 ∈ OML ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
48 | | eqid 2738 |
. . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) |
49 | 1, 48, 5 | latmle1 18097 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌))(le‘𝐾)𝑋) |
50 | 16, 14, 44, 49 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌))(le‘𝐾)𝑋) |
51 | 1, 48, 4, 5, 6 | omllaw2N 37185 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌))(le‘𝐾)𝑋 → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = 𝑋)) |
52 | 47, 50, 51 | sylc 65 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = 𝑋) |
53 | 1, 6 | opoccl 37135 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OP ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∈ 𝐵) |
54 | 21, 46, 53 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∈ 𝐵) |
55 | 1, 5 | latmcl 18073 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘(𝑋 ∧ ( ⊥
‘𝑌))) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∈ 𝐵) |
56 | 16, 54, 14, 55 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∈ 𝐵) |
57 | 1, 4 | latjcom 18080 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵 ∧ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
58 | 16, 46, 56, 57 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
59 | 52, 58 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
60 | 59 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) → 𝑋 = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
61 | 1, 4, 5, 6 | oldmm3N 37160 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∨ 𝑌)) |
62 | 12, 61 | syl3an1 1161 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∨ 𝑌)) |
63 | 62 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌)))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) |
64 | 1, 5 | latmcom 18096 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) |
65 | 16, 14, 54, 64 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) |
66 | 63, 65 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) |
67 | 66 | eqeq1d 2740 |
. . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) ↔ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) = (𝑋 ∧ 𝑌))) |
68 | | oveq1 7262 |
. . . . . . 7
⊢ ((( ⊥
‘(𝑋 ∧ ( ⊥
‘𝑌))) ∧ 𝑋) = (𝑋 ∧ 𝑌) → ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
69 | 67, 68 | syl6bi 252 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |
70 | 69 | imp 406 |
. . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) → ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
71 | 60, 70 | eqtrd 2778 |
. . . 4
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) → 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) |
72 | 71 | ex 412 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |
73 | 1, 4, 5, 6, 2 | cmtvalN 37152 |
. . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) |
74 | 72, 73 | sylibrd 258 |
. 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → 𝑋𝐶𝑌)) |
75 | 41, 74 | impbid 211 |
1
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |