Proof of Theorem cmtbr3N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cmtbr2.b | . . . . 5
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | cmtbr2.c | . . . . 5
⊢ 𝐶 = (cm‘𝐾) | 
| 3 | 1, 2 | cmtcomN 39250 | . . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌𝐶𝑋)) | 
| 4 |  | cmtbr2.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 5 |  | cmtbr2.m | . . . . . 6
⊢  ∧ =
(meet‘𝐾) | 
| 6 |  | cmtbr2.o | . . . . . 6
⊢  ⊥ =
(oc‘𝐾) | 
| 7 | 1, 4, 5, 6, 2 | cmtbr2N 39254 | . . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) | 
| 8 | 7 | 3com23 1127 | . . . 4
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌𝐶𝑋 ↔ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) | 
| 9 | 3, 8 | bitrd 279 | . . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) | 
| 10 |  | oveq2 7439 | . . . . . 6
⊢ (𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) → (𝑋 ∧ 𝑌) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) | 
| 11 | 10 | adantl 481 | . . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) → (𝑋 ∧ 𝑌) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) | 
| 12 |  | omlol 39241 | . . . . . . . . 9
⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | 
| 13 | 12 | 3ad2ant1 1134 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OL) | 
| 14 |  | simp2 1138 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | 
| 15 |  | omllat 39243 | . . . . . . . . . 10
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) | 
| 16 | 15 | 3ad2ant1 1134 | . . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | 
| 17 |  | simp3 1139 | . . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | 
| 18 | 1, 4 | latjcl 18484 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ∨ 𝑋) ∈ 𝐵) | 
| 19 | 16, 17, 14, 18 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ 𝑋) ∈ 𝐵) | 
| 20 |  | omlop 39242 | . . . . . . . . . . 11
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) | 
| 21 | 20 | 3ad2ant1 1134 | . . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OP) | 
| 22 | 1, 6 | opoccl 39195 | . . . . . . . . . 10
⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) | 
| 23 | 21, 14, 22 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) | 
| 24 | 1, 4 | latjcl 18484 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) ∈ 𝐵) | 
| 25 | 16, 17, 23, 24 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) ∈ 𝐵) | 
| 26 | 1, 5 | latmassOLD 39230 | . . . . . . . 8
⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ (𝑌 ∨ 𝑋) ∈ 𝐵 ∧ (𝑌 ∨ ( ⊥ ‘𝑋)) ∈ 𝐵)) → ((𝑋 ∧ (𝑌 ∨ 𝑋)) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) | 
| 27 | 13, 14, 19, 25, 26 | syl13anc 1374 | . . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (𝑌 ∨ 𝑋)) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) = (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))))) | 
| 28 | 1, 4 | latjcom 18492 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ∨ 𝑋) = (𝑋 ∨ 𝑌)) | 
| 29 | 16, 17, 14, 28 | syl3anc 1373 | . . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ 𝑋) = (𝑋 ∨ 𝑌)) | 
| 30 | 29 | oveq2d 7447 | . . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑌 ∨ 𝑋)) = (𝑋 ∧ (𝑋 ∨ 𝑌))) | 
| 31 | 1, 4, 5 | latabs2 18521 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑋 ∨ 𝑌)) = 𝑋) | 
| 32 | 15, 31 | syl3an1 1164 | . . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑋 ∨ 𝑌)) = 𝑋) | 
| 33 | 30, 32 | eqtrd 2777 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (𝑌 ∨ 𝑋)) = 𝑋) | 
| 34 | 1, 4 | latjcom 18492 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ⊥ ‘𝑋) ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) = (( ⊥ ‘𝑋) ∨ 𝑌)) | 
| 35 | 16, 17, 23, 34 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ ( ⊥ ‘𝑋)) = (( ⊥ ‘𝑋) ∨ 𝑌)) | 
| 36 | 33, 35 | oveq12d 7449 | . . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (𝑌 ∨ 𝑋)) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) | 
| 37 | 27, 36 | eqtr3d 2779 | . . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) | 
| 38 | 37 | adantr 480 | . . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) → (𝑋 ∧ ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) | 
| 39 | 11, 38 | eqtr2d 2778 | . . . 4
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋)))) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) | 
| 40 | 39 | ex 412 | . . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 = ((𝑌 ∨ 𝑋) ∧ (𝑌 ∨ ( ⊥ ‘𝑋))) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) | 
| 41 | 9, 40 | sylbid 240 | . 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) | 
| 42 |  | simp1 1137 | . . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ OML) | 
| 43 | 1, 6 | opoccl 39195 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) | 
| 44 | 21, 17, 43 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) | 
| 45 | 1, 5 | latmcl 18485 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) | 
| 46 | 16, 14, 44, 45 | syl3anc 1373 | . . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) | 
| 47 | 42, 46, 14 | 3jca 1129 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐾 ∈ OML ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) | 
| 48 |  | eqid 2737 | . . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 49 | 1, 48, 5 | latmle1 18509 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌))(le‘𝐾)𝑋) | 
| 50 | 16, 14, 44, 49 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑌))(le‘𝐾)𝑋) | 
| 51 | 1, 48, 4, 5, 6 | omllaw2N 39245 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌))(le‘𝐾)𝑋 → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = 𝑋)) | 
| 52 | 47, 50, 51 | sylc 65 | . . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = 𝑋) | 
| 53 | 1, 6 | opoccl 39195 | . . . . . . . . . 10
⊢ ((𝐾 ∈ OP ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∈ 𝐵) | 
| 54 | 21, 46, 53 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∈ 𝐵) | 
| 55 | 1, 5 | latmcl 18485 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘(𝑋 ∧ ( ⊥
‘𝑌))) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∈ 𝐵) | 
| 56 | 16, 54, 14, 55 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∈ 𝐵) | 
| 57 | 1, 4 | latjcom 18492 | . . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ ( ⊥ ‘𝑌)) ∈ 𝐵 ∧ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) | 
| 58 | 16, 46, 56, 57 | syl3anc 1373 | . . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ ( ⊥ ‘𝑌)) ∨ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) | 
| 59 | 52, 58 | eqtr3d 2779 | . . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) | 
| 60 | 59 | adantr 480 | . . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) → 𝑋 = ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) | 
| 61 | 1, 4, 5, 6 | oldmm3N 39220 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∨ 𝑌)) | 
| 62 | 12, 61 | syl3an1 1164 | . . . . . . . . . 10
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) = (( ⊥ ‘𝑋) ∨ 𝑌)) | 
| 63 | 62 | oveq2d 7447 | . . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌)))) = (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌))) | 
| 64 | 1, 5 | latmcom 18508 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) | 
| 65 | 16, 14, 54, 64 | syl3anc 1373 | . . . . . . . . 9
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌)))) = (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) | 
| 66 | 63, 65 | eqtr3d 2779 | . . . . . . . 8
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋)) | 
| 67 | 66 | eqeq1d 2739 | . . . . . . 7
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) ↔ (( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) = (𝑋 ∧ 𝑌))) | 
| 68 |  | oveq1 7438 | . . . . . . 7
⊢ ((( ⊥
‘(𝑋 ∧ ( ⊥
‘𝑌))) ∧ 𝑋) = (𝑋 ∧ 𝑌) → ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) | 
| 69 | 67, 68 | biimtrdi 253 | . . . . . 6
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) | 
| 70 | 69 | imp 406 | . . . . 5
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) → ((( ⊥ ‘(𝑋 ∧ ( ⊥ ‘𝑌))) ∧ 𝑋) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))) = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) | 
| 71 | 60, 70 | eqtrd 2777 | . . . 4
⊢ (((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌)) → 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌)))) | 
| 72 | 71 | ex 412 | . . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) | 
| 73 | 1, 4, 5, 6, 2 | cmtvalN 39212 | . . 3
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ 𝑋 = ((𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ( ⊥ ‘𝑌))))) | 
| 74 | 72, 73 | sylibrd 259 | . 2
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌) → 𝑋𝐶𝑌)) | 
| 75 | 41, 74 | impbid 212 | 1
⊢ ((𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 ∧ (( ⊥ ‘𝑋) ∨ 𝑌)) = (𝑋 ∧ 𝑌))) |