Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr3N Structured version   Visualization version   GIF version

Theorem cmtbr3N 36954
Description: Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 29643 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr2.b 𝐵 = (Base‘𝐾)
cmtbr2.j = (join‘𝐾)
cmtbr2.m = (meet‘𝐾)
cmtbr2.o = (oc‘𝐾)
cmtbr2.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtbr3N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))

Proof of Theorem cmtbr3N
StepHypRef Expression
1 cmtbr2.b . . . . 5 𝐵 = (Base‘𝐾)
2 cmtbr2.c . . . . 5 𝐶 = (cm‘𝐾)
31, 2cmtcomN 36949 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
4 cmtbr2.j . . . . . 6 = (join‘𝐾)
5 cmtbr2.m . . . . . 6 = (meet‘𝐾)
6 cmtbr2.o . . . . . 6 = (oc‘𝐾)
71, 4, 5, 6, 2cmtbr2N 36953 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))))
873com23 1128 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))))
93, 8bitrd 282 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))))
10 oveq2 7199 . . . . . 6 (𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋))) → (𝑋 𝑌) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
1110adantl 485 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))) → (𝑋 𝑌) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
12 omlol 36940 . . . . . . . . 9 (𝐾 ∈ OML → 𝐾 ∈ OL)
13123ad2ant1 1135 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
14 simp2 1139 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
15 omllat 36942 . . . . . . . . . 10 (𝐾 ∈ OML → 𝐾 ∈ Lat)
16153ad2ant1 1135 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
17 simp3 1140 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
181, 4latjcl 17899 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) ∈ 𝐵)
1916, 17, 14, 18syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋) ∈ 𝐵)
20 omlop 36941 . . . . . . . . . . 11 (𝐾 ∈ OML → 𝐾 ∈ OP)
21203ad2ant1 1135 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
221, 6opoccl 36894 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
2321, 14, 22syl2anc 587 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
241, 4latjcl 17899 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑋) ∈ 𝐵) → (𝑌 ( 𝑋)) ∈ 𝐵)
2516, 17, 23, 24syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 ( 𝑋)) ∈ 𝐵)
261, 5latmassOLD 36929 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ (𝑌 𝑋) ∈ 𝐵 ∧ (𝑌 ( 𝑋)) ∈ 𝐵)) → ((𝑋 (𝑌 𝑋)) (𝑌 ( 𝑋))) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
2713, 14, 19, 25, 26syl13anc 1374 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (𝑌 𝑋)) (𝑌 ( 𝑋))) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
281, 4latjcom 17907 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) = (𝑋 𝑌))
2916, 17, 14, 28syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋) = (𝑋 𝑌))
3029oveq2d 7207 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑌 𝑋)) = (𝑋 (𝑋 𝑌)))
311, 4, 5latabs2 17936 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
3215, 31syl3an1 1165 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
3330, 32eqtrd 2771 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑌 𝑋)) = 𝑋)
341, 4latjcom 17907 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑋) ∈ 𝐵) → (𝑌 ( 𝑋)) = (( 𝑋) 𝑌))
3516, 17, 23, 34syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 ( 𝑋)) = (( 𝑋) 𝑌))
3633, 35oveq12d 7209 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (𝑌 𝑋)) (𝑌 ( 𝑋))) = (𝑋 (( 𝑋) 𝑌)))
3727, 36eqtr3d 2773 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))) = (𝑋 (( 𝑋) 𝑌)))
3837adantr 484 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))) → (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))) = (𝑋 (( 𝑋) 𝑌)))
3911, 38eqtr2d 2772 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))) → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌))
4039ex 416 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋))) → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
419, 40sylbid 243 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
42 simp1 1138 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
431, 6opoccl 36894 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
4421, 17, 43syl2anc 587 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
451, 5latmcl 17900 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
4616, 14, 44, 45syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
4742, 46, 143jca 1130 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ OML ∧ (𝑋 ( 𝑌)) ∈ 𝐵𝑋𝐵))
48 eqid 2736 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
491, 48, 5latmle1 17924 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌))(le‘𝐾)𝑋)
5016, 14, 44, 49syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌))(le‘𝐾)𝑋)
511, 48, 4, 5, 6omllaw2N 36944 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋 ( 𝑌)) ∈ 𝐵𝑋𝐵) → ((𝑋 ( 𝑌))(le‘𝐾)𝑋 → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = 𝑋))
5247, 50, 51sylc 65 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = 𝑋)
531, 6opoccl 36894 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ (𝑋 ( 𝑌)) ∈ 𝐵) → ( ‘(𝑋 ( 𝑌))) ∈ 𝐵)
5421, 46, 53syl2anc 587 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) ∈ 𝐵)
551, 5latmcl 17900 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ( ‘(𝑋 ( 𝑌))) ∈ 𝐵𝑋𝐵) → (( ‘(𝑋 ( 𝑌))) 𝑋) ∈ 𝐵)
5616, 54, 14, 55syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( ‘(𝑋 ( 𝑌))) 𝑋) ∈ 𝐵)
571, 4latjcom 17907 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋 ( 𝑌)) ∈ 𝐵 ∧ (( ‘(𝑋 ( 𝑌))) 𝑋) ∈ 𝐵) → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
5816, 46, 56, 57syl3anc 1373 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
5952, 58eqtr3d 2773 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋 = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
6059adantr 484 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)) → 𝑋 = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
611, 4, 5, 6oldmm3N 36919 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))
6212, 61syl3an1 1165 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))
6362oveq2d 7207 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( ‘(𝑋 ( 𝑌)))) = (𝑋 (( 𝑋) 𝑌)))
641, 5latmcom 17923 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( ‘(𝑋 ( 𝑌))) ∈ 𝐵) → (𝑋 ( ‘(𝑋 ( 𝑌)))) = (( ‘(𝑋 ( 𝑌))) 𝑋))
6516, 14, 54, 64syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( ‘(𝑋 ( 𝑌)))) = (( ‘(𝑋 ( 𝑌))) 𝑋))
6663, 65eqtr3d 2773 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) = (( ‘(𝑋 ( 𝑌))) 𝑋))
6766eqeq1d 2738 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) ↔ (( ‘(𝑋 ( 𝑌))) 𝑋) = (𝑋 𝑌)))
68 oveq1 7198 . . . . . . 7 ((( ‘(𝑋 ( 𝑌))) 𝑋) = (𝑋 𝑌) → ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))) = ((𝑋 𝑌) (𝑋 ( 𝑌))))
6967, 68syl6bi 256 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))) = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
7069imp 410 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)) → ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))) = ((𝑋 𝑌) (𝑋 ( 𝑌))))
7160, 70eqtrd 2771 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)) → 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌))))
7271ex 416 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
731, 4, 5, 6, 2cmtvalN 36911 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
7472, 73sylibrd 262 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → 𝑋𝐶𝑌))
7541, 74impbid 215 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112   class class class wbr 5039  cfv 6358  (class class class)co 7191  Basecbs 16666  lecple 16756  occoc 16757  joincjn 17772  meetcmee 17773  Latclat 17891  OPcops 36872  cmccmtN 36873  OLcol 36874  OMLcoml 36875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-proset 17756  df-poset 17774  df-lub 17806  df-glb 17807  df-join 17808  df-meet 17809  df-lat 17892  df-oposet 36876  df-cmtN 36877  df-ol 36878  df-oml 36879
This theorem is referenced by:  cmtbr4N  36955  omlfh1N  36958
  Copyright terms: Public domain W3C validator