Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtbr3N Structured version   Visualization version   GIF version

Theorem cmtbr3N 36549
Description: Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 29395 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtbr2.b 𝐵 = (Base‘𝐾)
cmtbr2.j = (join‘𝐾)
cmtbr2.m = (meet‘𝐾)
cmtbr2.o = (oc‘𝐾)
cmtbr2.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtbr3N ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))

Proof of Theorem cmtbr3N
StepHypRef Expression
1 cmtbr2.b . . . . 5 𝐵 = (Base‘𝐾)
2 cmtbr2.c . . . . 5 𝐶 = (cm‘𝐾)
31, 2cmtcomN 36544 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
4 cmtbr2.j . . . . . 6 = (join‘𝐾)
5 cmtbr2.m . . . . . 6 = (meet‘𝐾)
6 cmtbr2.o . . . . . 6 = (oc‘𝐾)
71, 4, 5, 6, 2cmtbr2N 36548 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))))
873com23 1123 . . . 4 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))))
93, 8bitrd 282 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))))
10 oveq2 7147 . . . . . 6 (𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋))) → (𝑋 𝑌) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
1110adantl 485 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))) → (𝑋 𝑌) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
12 omlol 36535 . . . . . . . . 9 (𝐾 ∈ OML → 𝐾 ∈ OL)
13123ad2ant1 1130 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
14 simp2 1134 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
15 omllat 36537 . . . . . . . . . 10 (𝐾 ∈ OML → 𝐾 ∈ Lat)
16153ad2ant1 1130 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
17 simp3 1135 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
181, 4latjcl 17657 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) ∈ 𝐵)
1916, 17, 14, 18syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋) ∈ 𝐵)
20 omlop 36536 . . . . . . . . . . 11 (𝐾 ∈ OML → 𝐾 ∈ OP)
21203ad2ant1 1130 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
221, 6opoccl 36489 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
2321, 14, 22syl2anc 587 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
241, 4latjcl 17657 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑋) ∈ 𝐵) → (𝑌 ( 𝑋)) ∈ 𝐵)
2516, 17, 23, 24syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 ( 𝑋)) ∈ 𝐵)
261, 5latmassOLD 36524 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ (𝑌 𝑋) ∈ 𝐵 ∧ (𝑌 ( 𝑋)) ∈ 𝐵)) → ((𝑋 (𝑌 𝑋)) (𝑌 ( 𝑋))) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
2713, 14, 19, 25, 26syl13anc 1369 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (𝑌 𝑋)) (𝑌 ( 𝑋))) = (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))))
281, 4latjcom 17665 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) = (𝑋 𝑌))
2916, 17, 14, 28syl3anc 1368 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋) = (𝑋 𝑌))
3029oveq2d 7155 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑌 𝑋)) = (𝑋 (𝑋 𝑌)))
311, 4, 5latabs2 17694 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
3215, 31syl3an1 1160 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌)) = 𝑋)
3330, 32eqtrd 2836 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑌 𝑋)) = 𝑋)
341, 4latjcom 17665 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑋) ∈ 𝐵) → (𝑌 ( 𝑋)) = (( 𝑋) 𝑌))
3516, 17, 23, 34syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 ( 𝑋)) = (( 𝑋) 𝑌))
3633, 35oveq12d 7157 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (𝑌 𝑋)) (𝑌 ( 𝑋))) = (𝑋 (( 𝑋) 𝑌)))
3727, 36eqtr3d 2838 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))) = (𝑋 (( 𝑋) 𝑌)))
3837adantr 484 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))) → (𝑋 ((𝑌 𝑋) (𝑌 ( 𝑋)))) = (𝑋 (( 𝑋) 𝑌)))
3911, 38eqtr2d 2837 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋)))) → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌))
4039ex 416 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌 = ((𝑌 𝑋) (𝑌 ( 𝑋))) → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
419, 40sylbid 243 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 → (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
42 simp1 1133 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
431, 6opoccl 36489 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
4421, 17, 43syl2anc 587 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
451, 5latmcl 17658 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
4616, 14, 44, 45syl3anc 1368 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌)) ∈ 𝐵)
4742, 46, 143jca 1125 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ OML ∧ (𝑋 ( 𝑌)) ∈ 𝐵𝑋𝐵))
48 eqid 2801 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
491, 48, 5latmle1 17682 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵) → (𝑋 ( 𝑌))(le‘𝐾)𝑋)
5016, 14, 44, 49syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( 𝑌))(le‘𝐾)𝑋)
511, 48, 4, 5, 6omllaw2N 36539 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋 ( 𝑌)) ∈ 𝐵𝑋𝐵) → ((𝑋 ( 𝑌))(le‘𝐾)𝑋 → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = 𝑋))
5247, 50, 51sylc 65 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = 𝑋)
531, 6opoccl 36489 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ (𝑋 ( 𝑌)) ∈ 𝐵) → ( ‘(𝑋 ( 𝑌))) ∈ 𝐵)
5421, 46, 53syl2anc 587 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) ∈ 𝐵)
551, 5latmcl 17658 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ( ‘(𝑋 ( 𝑌))) ∈ 𝐵𝑋𝐵) → (( ‘(𝑋 ( 𝑌))) 𝑋) ∈ 𝐵)
5616, 54, 14, 55syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (( ‘(𝑋 ( 𝑌))) 𝑋) ∈ 𝐵)
571, 4latjcom 17665 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋 ( 𝑌)) ∈ 𝐵 ∧ (( ‘(𝑋 ( 𝑌))) 𝑋) ∈ 𝐵) → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
5816, 46, 56, 57syl3anc 1368 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 ( 𝑌)) (( ‘(𝑋 ( 𝑌))) 𝑋)) = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
5952, 58eqtr3d 2838 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑋 = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
6059adantr 484 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)) → 𝑋 = ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))))
611, 4, 5, 6oldmm3N 36514 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))
6212, 61syl3an1 1160 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ( ‘(𝑋 ( 𝑌))) = (( 𝑋) 𝑌))
6362oveq2d 7155 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( ‘(𝑋 ( 𝑌)))) = (𝑋 (( 𝑋) 𝑌)))
641, 5latmcom 17681 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( ‘(𝑋 ( 𝑌))) ∈ 𝐵) → (𝑋 ( ‘(𝑋 ( 𝑌)))) = (( ‘(𝑋 ( 𝑌))) 𝑋))
6516, 14, 54, 64syl3anc 1368 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 ( ‘(𝑋 ( 𝑌)))) = (( ‘(𝑋 ( 𝑌))) 𝑋))
6663, 65eqtr3d 2838 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (( 𝑋) 𝑌)) = (( ‘(𝑋 ( 𝑌))) 𝑋))
6766eqeq1d 2803 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) ↔ (( ‘(𝑋 ( 𝑌))) 𝑋) = (𝑋 𝑌)))
68 oveq1 7146 . . . . . . 7 ((( ‘(𝑋 ( 𝑌))) 𝑋) = (𝑋 𝑌) → ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))) = ((𝑋 𝑌) (𝑋 ( 𝑌))))
6967, 68syl6bi 256 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))) = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
7069imp 410 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)) → ((( ‘(𝑋 ( 𝑌))) 𝑋) (𝑋 ( 𝑌))) = ((𝑋 𝑌) (𝑋 ( 𝑌))))
7160, 70eqtrd 2836 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)) → 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌))))
7271ex 416 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → 𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
731, 4, 5, 6, 2cmtvalN 36506 . . 3 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋 𝑌) (𝑋 ( 𝑌)))))
7472, 73sylibrd 262 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌) → 𝑋𝐶𝑌))
7541, 74impbid 215 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋 (( 𝑋) 𝑌)) = (𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112   class class class wbr 5033  cfv 6328  (class class class)co 7139  Basecbs 16479  lecple 16568  occoc 16569  joincjn 17550  meetcmee 17551  Latclat 17651  OPcops 36467  cmccmtN 36468  OLcol 36469  OMLcoml 36470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-proset 17534  df-poset 17552  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-lat 17652  df-oposet 36471  df-cmtN 36472  df-ol 36473  df-oml 36474
This theorem is referenced by:  cmtbr4N  36550  omlfh1N  36553
  Copyright terms: Public domain W3C validator