Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh3N Structured version   Visualization version   GIF version

Theorem omlfh3N 37200
Description: Foulis-Holland Theorem, part 3. Dual of omlfh1N 37199. (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b 𝐵 = (Base‘𝐾)
omlfh1.j = (join‘𝐾)
omlfh1.m = (meet‘𝐾)
omlfh1.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlfh3N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))

Proof of Theorem omlfh3N
StepHypRef Expression
1 omlfh1.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 eqid 2738 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
3 omlfh1.c . . . . . . 7 𝐶 = (cm‘𝐾)
41, 2, 3cmt4N 37193 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌)))
543adant3r3 1182 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌)))
61, 2, 3cmt4N 37193 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)))
763adant3r2 1181 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)))
85, 7anbi12d 630 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑋𝐶𝑍) ↔ (((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍))))
9 simpl 482 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OML)
10 omlop 37182 . . . . . . . 8 (𝐾 ∈ OML → 𝐾 ∈ OP)
1110adantr 480 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OP)
12 simpr1 1192 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
131, 2opoccl 37135 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
1411, 12, 13syl2anc 583 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
15 simpr2 1193 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
161, 2opoccl 37135 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
1711, 15, 16syl2anc 583 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
18 simpr3 1194 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
191, 2opoccl 37135 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
2011, 18, 19syl2anc 583 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
2114, 17, 203jca 1126 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵))
22 omlfh1.j . . . . . . . 8 = (join‘𝐾)
23 omlfh1.m . . . . . . . 8 = (meet‘𝐾)
241, 22, 23, 3omlfh1N 37199 . . . . . . 7 ((𝐾 ∈ OML ∧ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍))) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
2524fveq2d 6760 . . . . . 6 ((𝐾 ∈ OML ∧ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
26253exp 1117 . . . . 5 (𝐾 ∈ OML → ((((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))))
279, 21, 26sylc 65 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
288, 27sylbid 239 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑋𝐶𝑍) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
29283impia 1115 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
30 omlol 37181 . . . . . 6 (𝐾 ∈ OML → 𝐾 ∈ OL)
3130adantr 480 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OL)
32 omllat 37183 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ Lat)
3332adantr 480 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
341, 22latjcl 18072 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
3533, 17, 20, 34syl3anc 1369 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
361, 22, 23, 2oldmm2 37159 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
3731, 12, 35, 36syl3anc 1369 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
381, 22, 23, 2oldmj4 37165 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑍𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
3931, 15, 18, 38syl3anc 1369 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
4039oveq2d 7271 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 (𝑌 𝑍)))
4137, 40eqtr2d 2779 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
42413adant3 1130 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
431, 23latmcl 18073 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
4433, 14, 17, 43syl3anc 1369 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
451, 23latmcl 18073 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
4633, 14, 20, 45syl3anc 1369 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
471, 22, 23, 2oldmj1 37162 . . . . 5 ((𝐾 ∈ OL ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
4831, 44, 46, 47syl3anc 1369 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
491, 22, 23, 2oldmm4 37161 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
5031, 12, 15, 49syl3anc 1369 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
511, 22, 23, 2oldmm4 37161 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑍𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 𝑍))
5231, 12, 18, 51syl3anc 1369 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 𝑍))
5350, 52oveq12d 7273 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 𝑌) (𝑋 𝑍)))
5448, 53eqtr2d 2779 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
55543adant3 1130 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍)) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
5629, 42, 553eqtr4d 2788 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  occoc 16896  joincjn 17944  meetcmee 17945  Latclat 18064  OPcops 37113  cmccmtN 37114  OLcol 37115  OMLcoml 37116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-oposet 37117  df-cmtN 37118  df-ol 37119  df-oml 37120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator