Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh3N Structured version   Visualization version   GIF version

Theorem omlfh3N 39241
Description: Foulis-Holland Theorem, part 3. Dual of omlfh1N 39240. (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b 𝐵 = (Base‘𝐾)
omlfh1.j = (join‘𝐾)
omlfh1.m = (meet‘𝐾)
omlfh1.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlfh3N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))

Proof of Theorem omlfh3N
StepHypRef Expression
1 omlfh1.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 eqid 2735 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
3 omlfh1.c . . . . . . 7 𝐶 = (cm‘𝐾)
41, 2, 3cmt4N 39234 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌)))
543adant3r3 1183 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌)))
61, 2, 3cmt4N 39234 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)))
763adant3r2 1182 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍 ↔ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)))
85, 7anbi12d 632 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑋𝐶𝑍) ↔ (((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍))))
9 simpl 482 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OML)
10 omlop 39223 . . . . . . . 8 (𝐾 ∈ OML → 𝐾 ∈ OP)
1110adantr 480 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OP)
12 simpr1 1193 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
131, 2opoccl 39176 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
1411, 12, 13syl2anc 584 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
15 simpr2 1194 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
161, 2opoccl 39176 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
1711, 15, 16syl2anc 584 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
18 simpr3 1195 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
191, 2opoccl 39176 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
2011, 18, 19syl2anc 584 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
2114, 17, 203jca 1127 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵))
22 omlfh1.j . . . . . . . 8 = (join‘𝐾)
23 omlfh1.m . . . . . . . 8 = (meet‘𝐾)
241, 22, 23, 3omlfh1N 39240 . . . . . . 7 ((𝐾 ∈ OML ∧ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍))) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
2524fveq2d 6911 . . . . . 6 ((𝐾 ∈ OML ∧ (((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
26253exp 1118 . . . . 5 (𝐾 ∈ OML → ((((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))))
279, 21, 26sylc 65 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑋)𝐶((oc‘𝐾)‘𝑍)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
288, 27sylbid 240 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑋𝐶𝑍) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
29283impia 1116 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
30 omlol 39222 . . . . . 6 (𝐾 ∈ OML → 𝐾 ∈ OL)
3130adantr 480 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OL)
32 omllat 39224 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ Lat)
3332adantr 480 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
341, 22latjcl 18497 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
3533, 17, 20, 34syl3anc 1370 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
361, 22, 23, 2oldmm2 39200 . . . . 5 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
3731, 12, 35, 36syl3anc 1370 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
381, 22, 23, 2oldmj4 39206 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑍𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
3931, 15, 18, 38syl3anc 1370 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = (𝑌 𝑍))
4039oveq2d 7447 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((oc‘𝐾)‘(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 (𝑌 𝑍)))
4137, 40eqtr2d 2776 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
42413adant3 1131 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
431, 23latmcl 18498 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
4433, 14, 17, 43syl3anc 1370 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
451, 23latmcl 18498 . . . . . 6 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
4633, 14, 20, 45syl3anc 1370 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
471, 22, 23, 2oldmj1 39203 . . . . 5 ((𝐾 ∈ OL ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
4831, 44, 46, 47syl3anc 1370 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
491, 22, 23, 2oldmm4 39202 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
5031, 12, 15, 49syl3anc 1370 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 𝑌))
511, 22, 23, 2oldmm4 39202 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑍𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 𝑍))
5231, 12, 18, 51syl3anc 1370 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 𝑍))
5350, 52oveq12d 7449 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 𝑌) (𝑋 𝑍)))
5448, 53eqtr2d 2776 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
55543adant3 1131 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍)) = ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
5629, 42, 553eqtr4d 2785 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  occoc 17306  joincjn 18369  meetcmee 18370  Latclat 18489  OPcops 39154  cmccmtN 39155  OLcol 39156  OMLcoml 39157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-lat 18490  df-oposet 39158  df-cmtN 39159  df-ol 39160  df-oml 39161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator