Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtcomlemN Structured version   Visualization version   GIF version

Theorem cmtcomlemN 38714
Description: Lemma for cmtcomN 38715. (cmcmlem 31394 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtcom.b 𝐵 = (Base‘𝐾)
cmtcom.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtcomlemN ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))

Proof of Theorem cmtcomlemN
StepHypRef Expression
1 omllat 38708 . . . . . . . . . . . 12 (𝐾 ∈ OML → 𝐾 ∈ Lat)
213ad2ant1 1131 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
3 omlop 38707 . . . . . . . . . . . . 13 (𝐾 ∈ OML → 𝐾 ∈ OP)
4 cmtcom.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐾)
5 eqid 2728 . . . . . . . . . . . . . 14 (oc‘𝐾) = (oc‘𝐾)
64, 5opoccl 38660 . . . . . . . . . . . . 13 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
73, 6sylan 579 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
873adant3 1130 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
9 simp3 1136 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
10 eqid 2728 . . . . . . . . . . . 12 (le‘𝐾) = (le‘𝐾)
11 eqid 2728 . . . . . . . . . . . 12 (join‘𝐾) = (join‘𝐾)
124, 10, 11latlej2 18434 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → 𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))
132, 8, 9, 12syl3anc 1369 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))
144, 11latjcl 18424 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
152, 8, 9, 14syl3anc 1369 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
16 eqid 2728 . . . . . . . . . . . 12 (meet‘𝐾) = (meet‘𝐾)
174, 10, 16latleeqm2 18453 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → (𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ↔ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌))
182, 9, 15, 17syl3anc 1369 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ↔ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌))
1913, 18mpbid 231 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌)
2019oveq2d 7430 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)𝑌))
21 omlol 38706 . . . . . . . . . 10 (𝐾 ∈ OML → 𝐾 ∈ OL)
22213ad2ant1 1131 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
2333ad2ant1 1131 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
244, 5opoccl 38660 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
2523, 9, 24syl2anc 583 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
264, 11latjcl 18424 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
272, 8, 25, 26syl3anc 1369 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
284, 16latmassOLD 38695 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵𝑌𝐵)) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)))
2922, 27, 15, 9, 28syl13anc 1370 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)))
304, 11, 16, 5oldmm1 38683 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))
3121, 30syl3an1 1161 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))
3231oveq1d 7429 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)𝑌))
3320, 29, 323eqtr4rd 2779 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌))
3433adantr 480 . . . . . 6 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌))
354, 11, 16, 5oldmj4 38690 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋(meet‘𝐾)𝑌))
3621, 35syl3an1 1161 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋(meet‘𝐾)𝑌))
374, 11, 16, 5oldmj2 38688 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = (𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))
3821, 37syl3an1 1161 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = (𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))
3936, 38oveq12d 7432 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))) = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌))))
4039eqeq2d 2739 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))) ↔ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
4140biimpar 477 . . . . . . . . 9 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → 𝑋 = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))))
4241fveq2d 6895 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘𝑋) = ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))))
434, 11, 16, 5oldmj4 38690 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4422, 27, 15, 43syl3anc 1369 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4544adantr 480 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4642, 45eqtr2d 2769 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = ((oc‘𝐾)‘𝑋))
4746oveq1d 7429 . . . . . 6 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌))
4834, 47eqtrd 2768 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌))
4948oveq2d 7430 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)))
50 simp1 1134 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
514, 16latmcl 18425 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
521, 51syl3an1 1161 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
5350, 52, 93jca 1126 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ OML ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑌𝐵))
544, 10, 16latmle2 18450 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌)
551, 54syl3an1 1161 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌)
564, 10, 11, 16, 5omllaw2N 38710 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌 → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌))
5753, 55, 56sylc 65 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌)
5857adantr 480 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌)
594, 16latmcom 18448 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)𝑋))
601, 59syl3an1 1161 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)𝑋))
614, 16latmcom 18448 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))
622, 8, 9, 61syl3anc 1369 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))
6360, 62oveq12d 7432 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)) = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6463adantr 480 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)) = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6549, 58, 643eqtr3d 2776 . . 3 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → 𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6665ex 412 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌))) → 𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
67 cmtcom.c . . 3 𝐶 = (cm‘𝐾)
684, 11, 16, 5, 67cmtvalN 38677 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
694, 11, 16, 5, 67cmtvalN 38677 . . 3 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
70693com23 1124 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
7166, 68, 703imtr4d 294 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542  (class class class)co 7414  Basecbs 17173  lecple 17233  occoc 17234  joincjn 18296  meetcmee 18297  Latclat 18416  OPcops 38638  cmccmtN 38639  OLcol 38640  OMLcoml 38641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-proset 18280  df-poset 18298  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-lat 18417  df-oposet 38642  df-cmtN 38643  df-ol 38644  df-oml 38645
This theorem is referenced by:  cmtcomN  38715
  Copyright terms: Public domain W3C validator