Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtcomlemN Structured version   Visualization version   GIF version

Theorem cmtcomlemN 39246
Description: Lemma for cmtcomN 39247. (cmcmlem 31554 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtcom.b 𝐵 = (Base‘𝐾)
cmtcom.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtcomlemN ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))

Proof of Theorem cmtcomlemN
StepHypRef Expression
1 omllat 39240 . . . . . . . . . . . 12 (𝐾 ∈ OML → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
3 omlop 39239 . . . . . . . . . . . . 13 (𝐾 ∈ OML → 𝐾 ∈ OP)
4 cmtcom.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐾)
5 eqid 2729 . . . . . . . . . . . . . 14 (oc‘𝐾) = (oc‘𝐾)
64, 5opoccl 39192 . . . . . . . . . . . . 13 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
73, 6sylan 580 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
873adant3 1132 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
9 simp3 1138 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
10 eqid 2729 . . . . . . . . . . . 12 (le‘𝐾) = (le‘𝐾)
11 eqid 2729 . . . . . . . . . . . 12 (join‘𝐾) = (join‘𝐾)
124, 10, 11latlej2 18374 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → 𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))
132, 8, 9, 12syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))
144, 11latjcl 18364 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
152, 8, 9, 14syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
16 eqid 2729 . . . . . . . . . . . 12 (meet‘𝐾) = (meet‘𝐾)
174, 10, 16latleeqm2 18393 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → (𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ↔ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌))
182, 9, 15, 17syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ↔ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌))
1913, 18mpbid 232 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌)
2019oveq2d 7369 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)𝑌))
21 omlol 39238 . . . . . . . . . 10 (𝐾 ∈ OML → 𝐾 ∈ OL)
22213ad2ant1 1133 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
2333ad2ant1 1133 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
244, 5opoccl 39192 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
2523, 9, 24syl2anc 584 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
264, 11latjcl 18364 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
272, 8, 25, 26syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
284, 16latmassOLD 39227 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵𝑌𝐵)) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)))
2922, 27, 15, 9, 28syl13anc 1374 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)))
304, 11, 16, 5oldmm1 39215 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))
3121, 30syl3an1 1163 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))
3231oveq1d 7368 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)𝑌))
3320, 29, 323eqtr4rd 2775 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌))
3433adantr 480 . . . . . 6 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌))
354, 11, 16, 5oldmj4 39222 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋(meet‘𝐾)𝑌))
3621, 35syl3an1 1163 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋(meet‘𝐾)𝑌))
374, 11, 16, 5oldmj2 39220 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = (𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))
3821, 37syl3an1 1163 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = (𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))
3936, 38oveq12d 7371 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))) = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌))))
4039eqeq2d 2740 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))) ↔ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
4140biimpar 477 . . . . . . . . 9 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → 𝑋 = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))))
4241fveq2d 6830 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘𝑋) = ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))))
434, 11, 16, 5oldmj4 39222 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4422, 27, 15, 43syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4544adantr 480 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4642, 45eqtr2d 2765 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = ((oc‘𝐾)‘𝑋))
4746oveq1d 7368 . . . . . 6 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌))
4834, 47eqtrd 2764 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌))
4948oveq2d 7369 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)))
50 simp1 1136 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
514, 16latmcl 18365 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
521, 51syl3an1 1163 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
5350, 52, 93jca 1128 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ OML ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑌𝐵))
544, 10, 16latmle2 18390 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌)
551, 54syl3an1 1163 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌)
564, 10, 11, 16, 5omllaw2N 39242 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌 → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌))
5753, 55, 56sylc 65 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌)
5857adantr 480 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌)
594, 16latmcom 18388 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)𝑋))
601, 59syl3an1 1163 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)𝑋))
614, 16latmcom 18388 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))
622, 8, 9, 61syl3anc 1373 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))
6360, 62oveq12d 7371 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)) = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6463adantr 480 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)) = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6549, 58, 643eqtr3d 2772 . . 3 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → 𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6665ex 412 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌))) → 𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
67 cmtcom.c . . 3 𝐶 = (cm‘𝐾)
684, 11, 16, 5, 67cmtvalN 39209 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
694, 11, 16, 5, 67cmtvalN 39209 . . 3 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
70693com23 1126 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
7166, 68, 703imtr4d 294 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17139  lecple 17187  occoc 17188  joincjn 18236  meetcmee 18237  Latclat 18356  OPcops 39170  cmccmtN 39171  OLcol 39172  OMLcoml 39173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18219  df-poset 18238  df-lub 18269  df-glb 18270  df-join 18271  df-meet 18272  df-lat 18357  df-oposet 39174  df-cmtN 39175  df-ol 39176  df-oml 39177
This theorem is referenced by:  cmtcomN  39247
  Copyright terms: Public domain W3C validator