Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtcomlemN Structured version   Visualization version   GIF version

Theorem cmtcomlemN 36378
Description: Lemma for cmtcomN 36379. (cmcmlem 29362 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtcom.b 𝐵 = (Base‘𝐾)
cmtcom.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtcomlemN ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))

Proof of Theorem cmtcomlemN
StepHypRef Expression
1 omllat 36372 . . . . . . . . . . . 12 (𝐾 ∈ OML → 𝐾 ∈ Lat)
213ad2ant1 1129 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
3 omlop 36371 . . . . . . . . . . . . 13 (𝐾 ∈ OML → 𝐾 ∈ OP)
4 cmtcom.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐾)
5 eqid 2821 . . . . . . . . . . . . . 14 (oc‘𝐾) = (oc‘𝐾)
64, 5opoccl 36324 . . . . . . . . . . . . 13 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
73, 6sylan 582 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
873adant3 1128 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
9 simp3 1134 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
10 eqid 2821 . . . . . . . . . . . 12 (le‘𝐾) = (le‘𝐾)
11 eqid 2821 . . . . . . . . . . . 12 (join‘𝐾) = (join‘𝐾)
124, 10, 11latlej2 17665 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → 𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))
132, 8, 9, 12syl3anc 1367 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))
144, 11latjcl 17655 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
152, 8, 9, 14syl3anc 1367 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
16 eqid 2821 . . . . . . . . . . . 12 (meet‘𝐾) = (meet‘𝐾)
174, 10, 16latleeqm2 17684 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → (𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ↔ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌))
182, 9, 15, 17syl3anc 1367 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ↔ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌))
1913, 18mpbid 234 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌)
2019oveq2d 7166 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)𝑌))
21 omlol 36370 . . . . . . . . . 10 (𝐾 ∈ OML → 𝐾 ∈ OL)
22213ad2ant1 1129 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
2333ad2ant1 1129 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
244, 5opoccl 36324 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
2523, 9, 24syl2anc 586 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
264, 11latjcl 17655 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
272, 8, 25, 26syl3anc 1367 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
284, 16latmassOLD 36359 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵𝑌𝐵)) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)))
2922, 27, 15, 9, 28syl13anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)))
304, 11, 16, 5oldmm1 36347 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))
3121, 30syl3an1 1159 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))
3231oveq1d 7165 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)𝑌))
3320, 29, 323eqtr4rd 2867 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌))
3433adantr 483 . . . . . 6 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌))
354, 11, 16, 5oldmj4 36354 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋(meet‘𝐾)𝑌))
3621, 35syl3an1 1159 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋(meet‘𝐾)𝑌))
374, 11, 16, 5oldmj2 36352 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = (𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))
3821, 37syl3an1 1159 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = (𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))
3936, 38oveq12d 7168 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))) = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌))))
4039eqeq2d 2832 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))) ↔ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
4140biimpar 480 . . . . . . . . 9 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → 𝑋 = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))))
4241fveq2d 6668 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘𝑋) = ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))))
434, 11, 16, 5oldmj4 36354 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4422, 27, 15, 43syl3anc 1367 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4544adantr 483 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4642, 45eqtr2d 2857 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = ((oc‘𝐾)‘𝑋))
4746oveq1d 7165 . . . . . 6 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌))
4834, 47eqtrd 2856 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌))
4948oveq2d 7166 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)))
50 simp1 1132 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
514, 16latmcl 17656 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
521, 51syl3an1 1159 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
5350, 52, 93jca 1124 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ OML ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑌𝐵))
544, 10, 16latmle2 17681 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌)
551, 54syl3an1 1159 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌)
564, 10, 11, 16, 5omllaw2N 36374 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌 → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌))
5753, 55, 56sylc 65 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌)
5857adantr 483 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌)
594, 16latmcom 17679 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)𝑋))
601, 59syl3an1 1159 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)𝑋))
614, 16latmcom 17679 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))
622, 8, 9, 61syl3anc 1367 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))
6360, 62oveq12d 7168 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)) = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6463adantr 483 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)) = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6549, 58, 643eqtr3d 2864 . . 3 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → 𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6665ex 415 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌))) → 𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
67 cmtcom.c . . 3 𝐶 = (cm‘𝐾)
684, 11, 16, 5, 67cmtvalN 36341 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
694, 11, 16, 5, 67cmtvalN 36341 . . 3 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
70693com23 1122 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
7166, 68, 703imtr4d 296 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5058  cfv 6349  (class class class)co 7150  Basecbs 16477  lecple 16566  occoc 16567  joincjn 17548  meetcmee 17549  Latclat 17649  OPcops 36302  cmccmtN 36303  OLcol 36304  OMLcoml 36305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17532  df-poset 17550  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-lat 17650  df-oposet 36306  df-cmtN 36307  df-ol 36308  df-oml 36309
This theorem is referenced by:  cmtcomN  36379
  Copyright terms: Public domain W3C validator