Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtcomlemN Structured version   Visualization version   GIF version

Theorem cmtcomlemN 39420
Description: Lemma for cmtcomN 39421. (cmcmlem 31592 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtcom.b 𝐵 = (Base‘𝐾)
cmtcom.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtcomlemN ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))

Proof of Theorem cmtcomlemN
StepHypRef Expression
1 omllat 39414 . . . . . . . . . . . 12 (𝐾 ∈ OML → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
3 omlop 39413 . . . . . . . . . . . . 13 (𝐾 ∈ OML → 𝐾 ∈ OP)
4 cmtcom.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐾)
5 eqid 2733 . . . . . . . . . . . . . 14 (oc‘𝐾) = (oc‘𝐾)
64, 5opoccl 39366 . . . . . . . . . . . . 13 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
73, 6sylan 580 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
873adant3 1132 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
9 simp3 1138 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
10 eqid 2733 . . . . . . . . . . . 12 (le‘𝐾) = (le‘𝐾)
11 eqid 2733 . . . . . . . . . . . 12 (join‘𝐾) = (join‘𝐾)
124, 10, 11latlej2 18363 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → 𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))
132, 8, 9, 12syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))
144, 11latjcl 18353 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
152, 8, 9, 14syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵)
16 eqid 2733 . . . . . . . . . . . 12 (meet‘𝐾) = (meet‘𝐾)
174, 10, 16latleeqm2 18382 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → (𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ↔ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌))
182, 9, 15, 17syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌(le‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ↔ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌))
1913, 18mpbid 232 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌) = 𝑌)
2019oveq2d 7371 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)𝑌))
21 omlol 39412 . . . . . . . . . 10 (𝐾 ∈ OML → 𝐾 ∈ OL)
22213ad2ant1 1133 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OL)
2333ad2ant1 1133 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
244, 5opoccl 39366 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
2523, 9, 24syl2anc 584 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
264, 11latjcl 18353 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
272, 8, 25, 26syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵)
284, 16latmassOLD 39401 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵𝑌𝐵)) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)))
2922, 27, 15, 9, 28syl13anc 1374 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)(meet‘𝐾)𝑌)))
304, 11, 16, 5oldmm1 39389 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))
3121, 30syl3an1 1163 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌)) = (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))
3231oveq1d 7370 . . . . . . . 8 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)𝑌))
3320, 29, 323eqtr4rd 2779 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌))
3433adantr 480 . . . . . 6 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌))
354, 11, 16, 5oldmj4 39396 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋(meet‘𝐾)𝑌))
3621, 35syl3an1 1163 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))) = (𝑋(meet‘𝐾)𝑌))
374, 11, 16, 5oldmj2 39394 . . . . . . . . . . . . 13 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = (𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))
3821, 37syl3an1 1163 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = (𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))
3936, 38oveq12d 7373 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))) = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌))))
4039eqeq2d 2744 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))) ↔ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
4140biimpar 477 . . . . . . . . 9 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → 𝑋 = (((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))))
4241fveq2d 6835 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘𝑋) = ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))))
434, 11, 16, 5oldmj4 39396 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4422, 27, 15, 43syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4544adantr 480 . . . . . . . 8 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌)))(join‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))) = ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)))
4642, 45eqtr2d 2769 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌)) = ((oc‘𝐾)‘𝑋))
4746oveq1d 7370 . . . . . 6 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((((oc‘𝐾)‘𝑋)(join‘𝐾)((oc‘𝐾)‘𝑌))(meet‘𝐾)(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌))
4834, 47eqtrd 2768 . . . . 5 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌) = (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌))
4948oveq2d 7371 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)))
50 simp1 1136 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OML)
514, 16latmcl 18354 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
521, 51syl3an1 1163 . . . . . . 7 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
5350, 52, 93jca 1128 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝐾 ∈ OML ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑌𝐵))
544, 10, 16latmle2 18379 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌)
551, 54syl3an1 1163 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌)
564, 10, 11, 16, 5omllaw2N 39416 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(le‘𝐾)𝑌 → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌))
5753, 55, 56sylc 65 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌)
5857adantr 480 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘(𝑋(meet‘𝐾)𝑌))(meet‘𝐾)𝑌)) = 𝑌)
594, 16latmcom 18377 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)𝑋))
601, 59syl3an1 1163 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)𝑋))
614, 16latmcom 18377 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))
622, 8, 9, 61syl3anc 1373 . . . . . 6 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌) = (𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))
6360, 62oveq12d 7373 . . . . 5 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)) = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6463adantr 480 . . . 4 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(((oc‘𝐾)‘𝑋)(meet‘𝐾)𝑌)) = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6549, 58, 643eqtr3d 2776 . . 3 (((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))) → 𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋))))
6665ex 412 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌))) → 𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
67 cmtcom.c . . 3 𝐶 = (cm‘𝐾)
684, 11, 16, 5, 67cmtvalN 39383 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 = ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)(𝑋(meet‘𝐾)((oc‘𝐾)‘𝑌)))))
694, 11, 16, 5, 67cmtvalN 39383 . . 3 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑋𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
70693com23 1126 . 2 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐶𝑋𝑌 = ((𝑌(meet‘𝐾)𝑋)(join‘𝐾)(𝑌(meet‘𝐾)((oc‘𝐾)‘𝑋)))))
7166, 68, 703imtr4d 294 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑌𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  occoc 17176  joincjn 18225  meetcmee 18226  Latclat 18345  OPcops 39344  cmccmtN 39345  OLcol 39346  OMLcoml 39347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-proset 18208  df-poset 18227  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-lat 18346  df-oposet 39348  df-cmtN 39349  df-ol 39350  df-oml 39351
This theorem is referenced by:  cmtcomN  39421
  Copyright terms: Public domain W3C validator