| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omlop | Structured version Visualization version GIF version | ||
| Description: An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| omlop | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlol 39219 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 2 | olop 39193 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 OPcops 39151 OLcol 39153 OMLcoml 39154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-ol 39157 df-oml 39158 |
| This theorem is referenced by: omllaw2N 39223 omllaw4 39225 cmtcomlemN 39227 cmt2N 39229 cmt3N 39230 cmt4N 39231 cmtbr2N 39232 cmtbr3N 39233 cmtbr4N 39234 lecmtN 39235 omlfh1N 39237 omlfh3N 39238 omlspjN 39240 atlatmstc 39298 |
| Copyright terms: Public domain | W3C validator |