![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omlop | Structured version Visualization version GIF version |
Description: An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
omlop | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlol 39196 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
2 | olop 39170 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 OPcops 39128 OLcol 39130 OMLcoml 39131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-ol 39134 df-oml 39135 |
This theorem is referenced by: omllaw2N 39200 omllaw4 39202 cmtcomlemN 39204 cmt2N 39206 cmt3N 39207 cmt4N 39208 cmtbr2N 39209 cmtbr3N 39210 cmtbr4N 39211 lecmtN 39212 omlfh1N 39214 omlfh3N 39215 omlspjN 39217 atlatmstc 39275 |
Copyright terms: Public domain | W3C validator |