![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omlop | Structured version Visualization version GIF version |
Description: An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.) |
Ref | Expression |
---|---|
omlop | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlol 39222 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
2 | olop 39196 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 OPcops 39154 OLcol 39156 OMLcoml 39157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-ol 39160 df-oml 39161 |
This theorem is referenced by: omllaw2N 39226 omllaw4 39228 cmtcomlemN 39230 cmt2N 39232 cmt3N 39233 cmt4N 39234 cmtbr2N 39235 cmtbr3N 39236 cmtbr4N 39237 lecmtN 39238 omlfh1N 39240 omlfh3N 39241 omlspjN 39243 atlatmstc 39301 |
Copyright terms: Public domain | W3C validator |