| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omlop | Structured version Visualization version GIF version | ||
| Description: An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| omlop | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlol 39263 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 2 | olop 39237 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 OPcops 39195 OLcol 39197 OMLcoml 39198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-ol 39201 df-oml 39202 |
| This theorem is referenced by: omllaw2N 39267 omllaw4 39269 cmtcomlemN 39271 cmt2N 39273 cmt3N 39274 cmt4N 39275 cmtbr2N 39276 cmtbr3N 39277 cmtbr4N 39278 lecmtN 39279 omlfh1N 39281 omlfh3N 39282 omlspjN 39284 atlatmstc 39342 |
| Copyright terms: Public domain | W3C validator |