Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlop Structured version   Visualization version   GIF version

Theorem omlop 39223
Description: An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.)
Assertion
Ref Expression
omlop (𝐾 ∈ OML → 𝐾 ∈ OP)

Proof of Theorem omlop
StepHypRef Expression
1 omlol 39222 . 2 (𝐾 ∈ OML → 𝐾 ∈ OL)
2 olop 39196 . 2 (𝐾 ∈ OL → 𝐾 ∈ OP)
31, 2syl 17 1 (𝐾 ∈ OML → 𝐾 ∈ OP)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  OPcops 39154  OLcol 39156  OMLcoml 39157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-ol 39160  df-oml 39161
This theorem is referenced by:  omllaw2N  39226  omllaw4  39228  cmtcomlemN  39230  cmt2N  39232  cmt3N  39233  cmt4N  39234  cmtbr2N  39235  cmtbr3N  39236  cmtbr4N  39237  lecmtN  39238  omlfh1N  39240  omlfh3N  39241  omlspjN  39243  atlatmstc  39301
  Copyright terms: Public domain W3C validator