| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omlop | Structured version Visualization version GIF version | ||
| Description: An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| omlop | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlol 39287 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 2 | olop 39261 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 OPcops 39219 OLcol 39221 OMLcoml 39222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-ol 39225 df-oml 39226 |
| This theorem is referenced by: omllaw2N 39291 omllaw4 39293 cmtcomlemN 39295 cmt2N 39297 cmt3N 39298 cmt4N 39299 cmtbr2N 39300 cmtbr3N 39301 cmtbr4N 39302 lecmtN 39303 omlfh1N 39305 omlfh3N 39306 omlspjN 39308 atlatmstc 39366 |
| Copyright terms: Public domain | W3C validator |