| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omlop | Structured version Visualization version GIF version | ||
| Description: An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| omlop | ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlol 39206 | . 2 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) | |
| 2 | olop 39180 | . 2 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 OPcops 39138 OLcol 39140 OMLcoml 39141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-ol 39144 df-oml 39145 |
| This theorem is referenced by: omllaw2N 39210 omllaw4 39212 cmtcomlemN 39214 cmt2N 39216 cmt3N 39217 cmt4N 39218 cmtbr2N 39219 cmtbr3N 39220 cmtbr4N 39221 lecmtN 39222 omlfh1N 39224 omlfh3N 39225 omlspjN 39227 atlatmstc 39285 |
| Copyright terms: Public domain | W3C validator |