Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh1N Structured version   Visualization version   GIF version

Theorem omlfh1N 36554
Description: Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 29401 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b 𝐵 = (Base‘𝐾)
omlfh1.j = (join‘𝐾)
omlfh1.m = (meet‘𝐾)
omlfh1.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlfh1N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))

Proof of Theorem omlfh1N
StepHypRef Expression
1 omllat 36538 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ Lat)
2 omlfh1.b . . . . . 6 𝐵 = (Base‘𝐾)
3 eqid 2798 . . . . . 6 (le‘𝐾) = (le‘𝐾)
4 omlfh1.j . . . . . 6 = (join‘𝐾)
5 omlfh1.m . . . . . 6 = (meet‘𝐾)
62, 3, 4, 5latledi 17691 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
71, 6sylan 583 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
873adant3 1129 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
91adantr 484 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
10 simpr1 1191 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
11 simpr2 1192 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
12 simpr3 1193 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
132, 4latjcl 17653 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
149, 11, 12, 13syl3anc 1368 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
152, 5latmcom 17677 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) = ((𝑌 𝑍) 𝑋))
169, 10, 14, 15syl3anc 1368 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑌 𝑍) 𝑋))
17 omlol 36536 . . . . . . . . 9 (𝐾 ∈ OML → 𝐾 ∈ OL)
1817adantr 484 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OL)
192, 5latmcl 17654 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
209, 10, 11, 19syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
212, 5latmcl 17654 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
229, 10, 12, 21syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
23 eqid 2798 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
242, 4, 5, 23oldmj1 36517 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))))
2518, 20, 22, 24syl3anc 1368 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))))
262, 4, 5, 23oldmm1 36513 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2718, 10, 11, 26syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
282, 4, 5, 23oldmm1 36513 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑍𝐵) → ((oc‘𝐾)‘(𝑋 𝑍)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))
2918, 10, 12, 28syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑋 𝑍)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))
3027, 29oveq12d 7153 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
3125, 30eqtrd 2833 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
3216, 31oveq12d 7153 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
33323adant3 1129 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
34 omlop 36537 . . . . . . . . . . 11 (𝐾 ∈ OML → 𝐾 ∈ OP)
3534adantr 484 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OP)
362, 23opoccl 36490 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
3735, 10, 36syl2anc 587 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
382, 23opoccl 36490 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
3935, 11, 38syl2anc 587 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
402, 4latjcl 17653 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
419, 37, 39, 40syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
422, 23opoccl 36490 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
4335, 12, 42syl2anc 587 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
442, 4latjcl 17653 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
459, 37, 43, 44syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
462, 5latmcl 17654 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)
479, 41, 45, 46syl3anc 1368 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)
482, 5latmassOLD 36525 . . . . . . 7 ((𝐾 ∈ OL ∧ ((𝑌 𝑍) ∈ 𝐵𝑋𝐵 ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
4918, 14, 10, 47, 48syl13anc 1369 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
50493adant3 1129 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
51 omlfh1.c . . . . . . . . . . . . . 14 𝐶 = (cm‘𝐾)
522, 23, 51cmt2N 36546 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋𝐶((oc‘𝐾)‘𝑌)))
53523adant3r3 1181 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋𝐶((oc‘𝐾)‘𝑌)))
54 simpl 486 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OML)
552, 4, 5, 23, 51cmtbr3N 36550 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (𝑋𝐶((oc‘𝐾)‘𝑌) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5654, 10, 39, 55syl3anc 1368 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶((oc‘𝐾)‘𝑌) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5753, 56bitrd 282 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5857biimpa 480 . . . . . . . . . 10 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
5958adantrr 716 . . . . . . . . 9 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
60593impa 1107 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
612, 23, 51cmt2N 36546 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍𝑋𝐶((oc‘𝐾)‘𝑍)))
62613adant3r2 1180 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍𝑋𝐶((oc‘𝐾)‘𝑍)))
632, 4, 5, 23, 51cmtbr3N 36550 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (𝑋𝐶((oc‘𝐾)‘𝑍) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6454, 10, 43, 63syl3anc 1368 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶((oc‘𝐾)‘𝑍) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6562, 64bitrd 282 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍 ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6665biimpa 480 . . . . . . . . . 10 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑍) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
6766adantrl 715 . . . . . . . . 9 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
68673impa 1107 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
6960, 68oveq12d 7153 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
702, 5latmmdiN 36530 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
7118, 10, 41, 45, 70syl13anc 1369 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
72713adant3 1129 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
732, 5latmmdiN 36530 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
7418, 10, 39, 43, 73syl13anc 1369 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
75743adant3 1129 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
7669, 72, 753eqtr4d 2843 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))))
7776oveq2d 7151 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))) = ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
782, 5latmcl 17654 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
799, 39, 43, 78syl3anc 1368 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
802, 5latm12 36526 . . . . . . 7 ((𝐾 ∈ OL ∧ ((𝑌 𝑍) ∈ 𝐵𝑋𝐵 ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
8118, 14, 10, 79, 80syl13anc 1369 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
82813adant3 1129 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
8350, 77, 823eqtrd 2837 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
842, 4, 5, 23oldmj1 36517 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑍𝐵) → ((oc‘𝐾)‘(𝑌 𝑍)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))
8518, 11, 12, 84syl3anc 1368 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑌 𝑍)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))
8685oveq2d 7151 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))))
87 eqid 2798 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
882, 23, 5, 87opnoncon 36504 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = (0.‘𝐾))
8935, 14, 88syl2anc 587 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = (0.‘𝐾))
9086, 89eqtr3d 2835 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = (0.‘𝐾))
9190oveq2d 7151 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 (0.‘𝐾)))
922, 5, 87olm01 36532 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 (0.‘𝐾)) = (0.‘𝐾))
9318, 10, 92syl2anc 587 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (0.‘𝐾)) = (0.‘𝐾))
9491, 93eqtrd 2833 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (0.‘𝐾))
95943adant3 1129 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (0.‘𝐾))
9633, 83, 953eqtrd 2837 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾))
972, 4latjcl 17653 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
989, 20, 22, 97syl3anc 1368 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
992, 5latmcl 17654 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
1009, 10, 14, 99syl3anc 1368 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
1012, 3, 5, 23, 87omllaw3 36541 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
10254, 98, 100, 101syl3anc 1368 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
1031023adant3 1129 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
1048, 96, 103mp2and 698 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍)))
105104eqcomd 2804 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  occoc 16565  joincjn 17546  meetcmee 17547  0.cp0 17639  Latclat 17647  OPcops 36468  cmccmtN 36469  OLcol 36470  OMLcoml 36471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-oposet 36472  df-cmtN 36473  df-ol 36474  df-oml 36475
This theorem is referenced by:  omlfh3N  36555  omlmod1i2N  36556
  Copyright terms: Public domain W3C validator