Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh1N Structured version   Visualization version   GIF version

Theorem omlfh1N 39244
Description: Foulis-Holland Theorem, part 1. If any 2 pairs in a triple of orthomodular lattice elements commute, the triple is distributive. Part of Theorem 5 in [Kalmbach] p. 25. (fh1 31597 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b 𝐵 = (Base‘𝐾)
omlfh1.j = (join‘𝐾)
omlfh1.m = (meet‘𝐾)
omlfh1.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
omlfh1N ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))

Proof of Theorem omlfh1N
StepHypRef Expression
1 omllat 39228 . . . . 5 (𝐾 ∈ OML → 𝐾 ∈ Lat)
2 omlfh1.b . . . . . 6 𝐵 = (Base‘𝐾)
3 eqid 2729 . . . . . 6 (le‘𝐾) = (le‘𝐾)
4 omlfh1.j . . . . . 6 = (join‘𝐾)
5 omlfh1.m . . . . . 6 = (meet‘𝐾)
62, 3, 4, 5latledi 18418 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
71, 6sylan 580 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
873adant3 1132 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)))
91adantr 480 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
10 simpr1 1195 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
11 simpr2 1196 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
12 simpr3 1197 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
132, 4latjcl 18380 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
149, 11, 12, 13syl3anc 1373 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
152, 5latmcom 18404 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) = ((𝑌 𝑍) 𝑋))
169, 10, 14, 15syl3anc 1373 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑌 𝑍) 𝑋))
17 omlol 39226 . . . . . . . . 9 (𝐾 ∈ OML → 𝐾 ∈ OL)
1817adantr 480 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OL)
192, 5latmcl 18381 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
209, 10, 11, 19syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌) ∈ 𝐵)
212, 5latmcl 18381 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
229, 10, 12, 21syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
23 eqid 2729 . . . . . . . . 9 (oc‘𝐾) = (oc‘𝐾)
242, 4, 5, 23oldmj1 39207 . . . . . . . 8 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))))
2518, 20, 22, 24syl3anc 1373 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))))
262, 4, 5, 23oldmm1 39203 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2718, 10, 11, 26syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
282, 4, 5, 23oldmm1 39203 . . . . . . . . 9 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑍𝐵) → ((oc‘𝐾)‘(𝑋 𝑍)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))
2918, 10, 12, 28syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑋 𝑍)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))
3027, 29oveq12d 7387 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘(𝑋 𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
3125, 30eqtrd 2764 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))
3216, 31oveq12d 7387 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
33323adant3 1132 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
34 omlop 39227 . . . . . . . . . . 11 (𝐾 ∈ OML → 𝐾 ∈ OP)
3534adantr 480 . . . . . . . . . 10 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OP)
362, 23opoccl 39180 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
3735, 10, 36syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
382, 23opoccl 39180 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
3935, 11, 38syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
402, 4latjcl 18380 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
419, 37, 39, 40syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵)
422, 23opoccl 39180 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
4335, 12, 42syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
442, 4latjcl 18380 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
459, 37, 43, 44syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
462, 5latmcl 18381 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)
479, 41, 45, 46syl3anc 1373 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)
482, 5latmassOLD 39215 . . . . . . 7 ((𝐾 ∈ OL ∧ ((𝑌 𝑍) ∈ 𝐵𝑋𝐵 ∧ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) ∈ 𝐵)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
4918, 14, 10, 47, 48syl13anc 1374 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
50493adant3 1132 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))))
51 omlfh1.c . . . . . . . . . . . . . 14 𝐶 = (cm‘𝐾)
522, 23, 51cmt2N 39236 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋𝐶((oc‘𝐾)‘𝑌)))
53523adant3r3 1185 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋𝐶((oc‘𝐾)‘𝑌)))
54 simpl 482 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ OML)
552, 4, 5, 23, 51cmtbr3N 39240 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (𝑋𝐶((oc‘𝐾)‘𝑌) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5654, 10, 39, 55syl3anc 1373 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶((oc‘𝐾)‘𝑌) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5753, 56bitrd 279 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌))))
5857biimpa 476 . . . . . . . . . 10 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑌) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
5958adantrr 717 . . . . . . . . 9 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
60593impa 1109 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) = (𝑋 ((oc‘𝐾)‘𝑌)))
612, 23, 51cmt2N 39236 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍𝑋𝐶((oc‘𝐾)‘𝑍)))
62613adant3r2 1184 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍𝑋𝐶((oc‘𝐾)‘𝑍)))
632, 4, 5, 23, 51cmtbr3N 39240 . . . . . . . . . . . . 13 ((𝐾 ∈ OML ∧ 𝑋𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (𝑋𝐶((oc‘𝐾)‘𝑍) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6454, 10, 43, 63syl3anc 1373 . . . . . . . . . . . 12 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶((oc‘𝐾)‘𝑍) ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6562, 64bitrd 279 . . . . . . . . . . 11 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍 ↔ (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍))))
6665biimpa 476 . . . . . . . . . 10 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑋𝐶𝑍) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
6766adantrl 716 . . . . . . . . 9 (((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
68673impa 1109 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))) = (𝑋 ((oc‘𝐾)‘𝑍)))
6960, 68oveq12d 7387 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
702, 5latmmdiN 39220 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
7118, 10, 41, 45, 70syl13anc 1374 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
72713adant3 1132 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = ((𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))) (𝑋 (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))))
732, 5latmmdiN 39220 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑋𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
7418, 10, 39, 43, 73syl13anc 1374 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
75743adant3 1132 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = ((𝑋 ((oc‘𝐾)‘𝑌)) (𝑋 ((oc‘𝐾)‘𝑍))))
7669, 72, 753eqtr4d 2774 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))))
7776oveq2d 7385 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑌 𝑍) (𝑋 ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍))))) = ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
782, 5latmcl 18381 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
799, 39, 43, 78syl3anc 1373 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)
802, 5latm12 39216 . . . . . . 7 ((𝐾 ∈ OL ∧ ((𝑌 𝑍) ∈ 𝐵𝑋𝐵 ∧ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)) ∈ 𝐵)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
8118, 14, 10, 79, 80syl13anc 1374 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
82813adant3 1132 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑌 𝑍) (𝑋 (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
8350, 77, 823eqtrd 2768 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (((𝑌 𝑍) 𝑋) ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑍)))) = (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))))
842, 4, 5, 23oldmj1 39207 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑍𝐵) → ((oc‘𝐾)‘(𝑌 𝑍)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))
8518, 11, 12, 84syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((oc‘𝐾)‘(𝑌 𝑍)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))
8685oveq2d 7385 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))))
87 eqid 2729 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
882, 23, 5, 87opnoncon 39194 . . . . . . . . 9 ((𝐾 ∈ OP ∧ (𝑌 𝑍) ∈ 𝐵) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = (0.‘𝐾))
8935, 14, 88syl2anc 584 . . . . . . . 8 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) ((oc‘𝐾)‘(𝑌 𝑍))) = (0.‘𝐾))
9086, 89eqtr3d 2766 . . . . . . 7 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍))) = (0.‘𝐾))
9190oveq2d 7385 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (𝑋 (0.‘𝐾)))
922, 5, 87olm01 39222 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 (0.‘𝐾)) = (0.‘𝐾))
9318, 10, 92syl2anc 584 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (0.‘𝐾)) = (0.‘𝐾))
9491, 93eqtrd 2764 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (0.‘𝐾))
95943adant3 1132 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 ((𝑌 𝑍) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑍)))) = (0.‘𝐾))
9633, 83, 953eqtrd 2768 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾))
972, 4latjcl 18380 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
989, 20, 22, 97syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵)
992, 5latmcl 18381 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
1009, 10, 14, 99syl3anc 1373 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) ∈ 𝐵)
1012, 3, 5, 23, 87omllaw3 39231 . . . . 5 ((𝐾 ∈ OML ∧ ((𝑋 𝑌) (𝑋 𝑍)) ∈ 𝐵 ∧ (𝑋 (𝑌 𝑍)) ∈ 𝐵) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
10254, 98, 100, 101syl3anc 1373 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
1031023adant3 1132 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((((𝑋 𝑌) (𝑋 𝑍))(le‘𝐾)(𝑋 (𝑌 𝑍)) ∧ ((𝑋 (𝑌 𝑍)) ((oc‘𝐾)‘((𝑋 𝑌) (𝑋 𝑍)))) = (0.‘𝐾)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍))))
1048, 96, 103mp2and 699 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → ((𝑋 𝑌) (𝑋 𝑍)) = (𝑋 (𝑌 𝑍)))
105104eqcomd 2735 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑌𝑋𝐶𝑍)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  occoc 17204  joincjn 18252  meetcmee 18253  0.cp0 18362  Latclat 18372  OPcops 39158  cmccmtN 39159  OLcol 39160  OMLcoml 39161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-oposet 39162  df-cmtN 39163  df-ol 39164  df-oml 39165
This theorem is referenced by:  omlfh3N  39245  omlmod1i2N  39246
  Copyright terms: Public domain W3C validator