Proof of Theorem omlspjN
| Step | Hyp | Ref
| Expression |
| 1 | | omllat 39244 |
. . . . . 6
⊢ (𝐾 ∈ OML → 𝐾 ∈ Lat) |
| 2 | 1 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐾 ∈ Lat) |
| 3 | | omlop 39243 |
. . . . . . 7
⊢ (𝐾 ∈ OML → 𝐾 ∈ OP) |
| 4 | 3 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐾 ∈ OP) |
| 5 | | simp2r 1200 |
. . . . . 6
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝐵) |
| 6 | | omlspj.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
| 7 | | omlspj.o |
. . . . . . 7
⊢ ⊥ =
(oc‘𝐾) |
| 8 | 6, 7 | opoccl 39196 |
. . . . . 6
⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 9 | 4, 5, 8 | syl2anc 584 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ( ⊥ ‘𝑌) ∈ 𝐵) |
| 10 | | omlspj.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
| 11 | 6, 10 | latmcom 18509 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ( ⊥
‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) ∧ 𝑌) = (𝑌 ∧ ( ⊥ ‘𝑌))) |
| 12 | 2, 9, 5, 11 | syl3anc 1372 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (( ⊥ ‘𝑌) ∧ 𝑌) = (𝑌 ∧ ( ⊥ ‘𝑌))) |
| 13 | | eqid 2736 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 14 | 6, 7, 10, 13 | opnoncon 39210 |
. . . . 5
⊢ ((𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵) → (𝑌 ∧ ( ⊥ ‘𝑌)) = (0.‘𝐾)) |
| 15 | 4, 5, 14 | syl2anc 584 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑌 ∧ ( ⊥ ‘𝑌)) = (0.‘𝐾)) |
| 16 | 12, 15 | eqtrd 2776 |
. . 3
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (( ⊥ ‘𝑌) ∧ 𝑌) = (0.‘𝐾)) |
| 17 | 16 | oveq2d 7448 |
. 2
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (( ⊥ ‘𝑌) ∧ 𝑌)) = (𝑋 ∨ (0.‘𝐾))) |
| 18 | | simp1 1136 |
. . 3
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐾 ∈ OML) |
| 19 | | simp2l 1199 |
. . 3
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝐵) |
| 20 | | simp3 1138 |
. . 3
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ≤ 𝑌) |
| 21 | | eqid 2736 |
. . . . . 6
⊢
(cm‘𝐾) =
(cm‘𝐾) |
| 22 | 6, 21 | cmtidN 39259 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵) → 𝑌(cm‘𝐾)𝑌) |
| 23 | 18, 5, 22 | syl2anc 584 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌(cm‘𝐾)𝑌) |
| 24 | 6, 7, 21 | cmt3N 39253 |
. . . . 5
⊢ ((𝐾 ∈ OML ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌(cm‘𝐾)𝑌 ↔ ( ⊥ ‘𝑌)(cm‘𝐾)𝑌)) |
| 25 | 18, 5, 5, 24 | syl3anc 1372 |
. . . 4
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑌(cm‘𝐾)𝑌 ↔ ( ⊥ ‘𝑌)(cm‘𝐾)𝑌)) |
| 26 | 23, 25 | mpbid 232 |
. . 3
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ( ⊥ ‘𝑌)(cm‘𝐾)𝑌) |
| 27 | | omlspj.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 28 | | omlspj.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 29 | 6, 27, 28, 10, 21 | omlmod1i2N 39262 |
. . 3
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ ( ⊥ ‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ ( ⊥ ‘𝑌)(cm‘𝐾)𝑌)) → (𝑋 ∨ (( ⊥ ‘𝑌) ∧ 𝑌)) = ((𝑋 ∨ ( ⊥ ‘𝑌)) ∧ 𝑌)) |
| 30 | 18, 19, 9, 5, 20, 26, 29 | syl132anc 1389 |
. 2
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (( ⊥ ‘𝑌) ∧ 𝑌)) = ((𝑋 ∨ ( ⊥ ‘𝑌)) ∧ 𝑌)) |
| 31 | | omlol 39242 |
. . . 4
⊢ (𝐾 ∈ OML → 𝐾 ∈ OL) |
| 32 | 31 | 3ad2ant1 1133 |
. . 3
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐾 ∈ OL) |
| 33 | 6, 28, 13 | olj01 39227 |
. . 3
⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ (0.‘𝐾)) = 𝑋) |
| 34 | 32, 19, 33 | syl2anc 584 |
. 2
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (0.‘𝐾)) = 𝑋) |
| 35 | 17, 30, 34 | 3eqtr3d 2784 |
1
⊢ ((𝐾 ∈ OML ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑋 ∨ ( ⊥ ‘𝑌)) ∧ 𝑌) = 𝑋) |