Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlspjN Structured version   Visualization version   GIF version

Theorem omlspjN 37723
Description: Contraction of a Sasaki projection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlspj.b 𝐵 = (Base‘𝐾)
omlspj.l = (le‘𝐾)
omlspj.j = (join‘𝐾)
omlspj.m = (meet‘𝐾)
omlspj.o = (oc‘𝐾)
Assertion
Ref Expression
omlspjN ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑋 ( 𝑌)) 𝑌) = 𝑋)

Proof of Theorem omlspjN
StepHypRef Expression
1 omllat 37704 . . . . . 6 (𝐾 ∈ OML → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ Lat)
3 omlop 37703 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ OP)
433ad2ant1 1133 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ OP)
5 simp2r 1200 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌𝐵)
6 omlspj.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 omlspj.o . . . . . . 7 = (oc‘𝐾)
86, 7opoccl 37656 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
94, 5, 8syl2anc 584 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ( 𝑌) ∈ 𝐵)
10 omlspj.m . . . . . 6 = (meet‘𝐾)
116, 10latmcom 18352 . . . . 5 ((𝐾 ∈ Lat ∧ ( 𝑌) ∈ 𝐵𝑌𝐵) → (( 𝑌) 𝑌) = (𝑌 ( 𝑌)))
122, 9, 5, 11syl3anc 1371 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (( 𝑌) 𝑌) = (𝑌 ( 𝑌)))
13 eqid 2736 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
146, 7, 10, 13opnoncon 37670 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → (𝑌 ( 𝑌)) = (0.‘𝐾))
154, 5, 14syl2anc 584 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑌 ( 𝑌)) = (0.‘𝐾))
1612, 15eqtrd 2776 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (( 𝑌) 𝑌) = (0.‘𝐾))
1716oveq2d 7373 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (( 𝑌) 𝑌)) = (𝑋 (0.‘𝐾)))
18 simp1 1136 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ OML)
19 simp2l 1199 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑋𝐵)
20 simp3 1138 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑋 𝑌)
21 eqid 2736 . . . . . 6 (cm‘𝐾) = (cm‘𝐾)
226, 21cmtidN 37719 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵) → 𝑌(cm‘𝐾)𝑌)
2318, 5, 22syl2anc 584 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌(cm‘𝐾)𝑌)
246, 7, 21cmt3N 37713 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑌𝐵) → (𝑌(cm‘𝐾)𝑌 ↔ ( 𝑌)(cm‘𝐾)𝑌))
2518, 5, 5, 24syl3anc 1371 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑌(cm‘𝐾)𝑌 ↔ ( 𝑌)(cm‘𝐾)𝑌))
2623, 25mpbid 231 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ( 𝑌)(cm‘𝐾)𝑌)
27 omlspj.l . . . 4 = (le‘𝐾)
28 omlspj.j . . . 4 = (join‘𝐾)
296, 27, 28, 10, 21omlmod1i2N 37722 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ ( 𝑌)(cm‘𝐾)𝑌)) → (𝑋 (( 𝑌) 𝑌)) = ((𝑋 ( 𝑌)) 𝑌))
3018, 19, 9, 5, 20, 26, 29syl132anc 1388 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (( 𝑌) 𝑌)) = ((𝑋 ( 𝑌)) 𝑌))
31 omlol 37702 . . . 4 (𝐾 ∈ OML → 𝐾 ∈ OL)
32313ad2ant1 1133 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ OL)
336, 28, 13olj01 37687 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 (0.‘𝐾)) = 𝑋)
3432, 19, 33syl2anc 584 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (0.‘𝐾)) = 𝑋)
3517, 30, 343eqtr3d 2784 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑋 ( 𝑌)) 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  occoc 17141  joincjn 18200  meetcmee 18201  0.cp0 18312  Latclat 18320  OPcops 37634  cmccmtN 37635  OLcol 37636  OMLcoml 37637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-oposet 37638  df-cmtN 37639  df-ol 37640  df-oml 37641
This theorem is referenced by:  doca2N  39589  djajN  39600
  Copyright terms: Public domain W3C validator