Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlspjN Structured version   Visualization version   GIF version

Theorem omlspjN 38959
Description: Contraction of a Sasaki projection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlspj.b 𝐵 = (Base‘𝐾)
omlspj.l = (le‘𝐾)
omlspj.j = (join‘𝐾)
omlspj.m = (meet‘𝐾)
omlspj.o = (oc‘𝐾)
Assertion
Ref Expression
omlspjN ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑋 ( 𝑌)) 𝑌) = 𝑋)

Proof of Theorem omlspjN
StepHypRef Expression
1 omllat 38940 . . . . . 6 (𝐾 ∈ OML → 𝐾 ∈ Lat)
213ad2ant1 1130 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ Lat)
3 omlop 38939 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ OP)
433ad2ant1 1130 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ OP)
5 simp2r 1197 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌𝐵)
6 omlspj.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 omlspj.o . . . . . . 7 = (oc‘𝐾)
86, 7opoccl 38892 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
94, 5, 8syl2anc 582 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ( 𝑌) ∈ 𝐵)
10 omlspj.m . . . . . 6 = (meet‘𝐾)
116, 10latmcom 18488 . . . . 5 ((𝐾 ∈ Lat ∧ ( 𝑌) ∈ 𝐵𝑌𝐵) → (( 𝑌) 𝑌) = (𝑌 ( 𝑌)))
122, 9, 5, 11syl3anc 1368 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (( 𝑌) 𝑌) = (𝑌 ( 𝑌)))
13 eqid 2726 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
146, 7, 10, 13opnoncon 38906 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → (𝑌 ( 𝑌)) = (0.‘𝐾))
154, 5, 14syl2anc 582 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑌 ( 𝑌)) = (0.‘𝐾))
1612, 15eqtrd 2766 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (( 𝑌) 𝑌) = (0.‘𝐾))
1716oveq2d 7440 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (( 𝑌) 𝑌)) = (𝑋 (0.‘𝐾)))
18 simp1 1133 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ OML)
19 simp2l 1196 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑋𝐵)
20 simp3 1135 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑋 𝑌)
21 eqid 2726 . . . . . 6 (cm‘𝐾) = (cm‘𝐾)
226, 21cmtidN 38955 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵) → 𝑌(cm‘𝐾)𝑌)
2318, 5, 22syl2anc 582 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌(cm‘𝐾)𝑌)
246, 7, 21cmt3N 38949 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑌𝐵) → (𝑌(cm‘𝐾)𝑌 ↔ ( 𝑌)(cm‘𝐾)𝑌))
2518, 5, 5, 24syl3anc 1368 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑌(cm‘𝐾)𝑌 ↔ ( 𝑌)(cm‘𝐾)𝑌))
2623, 25mpbid 231 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ( 𝑌)(cm‘𝐾)𝑌)
27 omlspj.l . . . 4 = (le‘𝐾)
28 omlspj.j . . . 4 = (join‘𝐾)
296, 27, 28, 10, 21omlmod1i2N 38958 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ ( 𝑌)(cm‘𝐾)𝑌)) → (𝑋 (( 𝑌) 𝑌)) = ((𝑋 ( 𝑌)) 𝑌))
3018, 19, 9, 5, 20, 26, 29syl132anc 1385 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (( 𝑌) 𝑌)) = ((𝑋 ( 𝑌)) 𝑌))
31 omlol 38938 . . . 4 (𝐾 ∈ OML → 𝐾 ∈ OL)
32313ad2ant1 1130 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ OL)
336, 28, 13olj01 38923 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 (0.‘𝐾)) = 𝑋)
3432, 19, 33syl2anc 582 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (0.‘𝐾)) = 𝑋)
3517, 30, 343eqtr3d 2774 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑋 ( 𝑌)) 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5153  cfv 6554  (class class class)co 7424  Basecbs 17213  lecple 17273  occoc 17274  joincjn 18336  meetcmee 18337  0.cp0 18448  Latclat 18456  OPcops 38870  cmccmtN 38871  OLcol 38872  OMLcoml 38873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-proset 18320  df-poset 18338  df-lub 18371  df-glb 18372  df-join 18373  df-meet 18374  df-p0 18450  df-lat 18457  df-oposet 38874  df-cmtN 38875  df-ol 38876  df-oml 38877
This theorem is referenced by:  doca2N  40825  djajN  40836
  Copyright terms: Public domain W3C validator