Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlspjN Structured version   Visualization version   GIF version

Theorem omlspjN 35282
Description: Contraction of a Sasaki projection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlspj.b 𝐵 = (Base‘𝐾)
omlspj.l = (le‘𝐾)
omlspj.j = (join‘𝐾)
omlspj.m = (meet‘𝐾)
omlspj.o = (oc‘𝐾)
Assertion
Ref Expression
omlspjN ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑋 ( 𝑌)) 𝑌) = 𝑋)

Proof of Theorem omlspjN
StepHypRef Expression
1 omllat 35263 . . . . . 6 (𝐾 ∈ OML → 𝐾 ∈ Lat)
213ad2ant1 1164 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ Lat)
3 omlop 35262 . . . . . . 7 (𝐾 ∈ OML → 𝐾 ∈ OP)
433ad2ant1 1164 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ OP)
5 simp2r 1258 . . . . . 6 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌𝐵)
6 omlspj.b . . . . . . 7 𝐵 = (Base‘𝐾)
7 omlspj.o . . . . . . 7 = (oc‘𝐾)
86, 7opoccl 35215 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
94, 5, 8syl2anc 580 . . . . 5 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ( 𝑌) ∈ 𝐵)
10 omlspj.m . . . . . 6 = (meet‘𝐾)
116, 10latmcom 17390 . . . . 5 ((𝐾 ∈ Lat ∧ ( 𝑌) ∈ 𝐵𝑌𝐵) → (( 𝑌) 𝑌) = (𝑌 ( 𝑌)))
122, 9, 5, 11syl3anc 1491 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (( 𝑌) 𝑌) = (𝑌 ( 𝑌)))
13 eqid 2799 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
146, 7, 10, 13opnoncon 35229 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵) → (𝑌 ( 𝑌)) = (0.‘𝐾))
154, 5, 14syl2anc 580 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑌 ( 𝑌)) = (0.‘𝐾))
1612, 15eqtrd 2833 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (( 𝑌) 𝑌) = (0.‘𝐾))
1716oveq2d 6894 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (( 𝑌) 𝑌)) = (𝑋 (0.‘𝐾)))
18 simp1 1167 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ OML)
19 simp2l 1257 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑋𝐵)
20 simp3 1169 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑋 𝑌)
21 eqid 2799 . . . . . 6 (cm‘𝐾) = (cm‘𝐾)
226, 21cmtidN 35278 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵) → 𝑌(cm‘𝐾)𝑌)
2318, 5, 22syl2anc 580 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌(cm‘𝐾)𝑌)
246, 7, 21cmt3N 35272 . . . . 5 ((𝐾 ∈ OML ∧ 𝑌𝐵𝑌𝐵) → (𝑌(cm‘𝐾)𝑌 ↔ ( 𝑌)(cm‘𝐾)𝑌))
2518, 5, 5, 24syl3anc 1491 . . . 4 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑌(cm‘𝐾)𝑌 ↔ ( 𝑌)(cm‘𝐾)𝑌))
2623, 25mpbid 224 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ( 𝑌)(cm‘𝐾)𝑌)
27 omlspj.l . . . 4 = (le‘𝐾)
28 omlspj.j . . . 4 = (join‘𝐾)
296, 27, 28, 10, 21omlmod1i2N 35281 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵 ∧ ( 𝑌) ∈ 𝐵𝑌𝐵) ∧ (𝑋 𝑌 ∧ ( 𝑌)(cm‘𝐾)𝑌)) → (𝑋 (( 𝑌) 𝑌)) = ((𝑋 ( 𝑌)) 𝑌))
3018, 19, 9, 5, 20, 26, 29syl132anc 1508 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (( 𝑌) 𝑌)) = ((𝑋 ( 𝑌)) 𝑌))
31 omlol 35261 . . . 4 (𝐾 ∈ OML → 𝐾 ∈ OL)
32313ad2ant1 1164 . . 3 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ OL)
336, 28, 13olj01 35246 . . 3 ((𝐾 ∈ OL ∧ 𝑋𝐵) → (𝑋 (0.‘𝐾)) = 𝑋)
3432, 19, 33syl2anc 580 . 2 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (0.‘𝐾)) = 𝑋)
3517, 30, 343eqtr3d 2841 1 ((𝐾 ∈ OML ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑋 ( 𝑌)) 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157   class class class wbr 4843  cfv 6101  (class class class)co 6878  Basecbs 16184  lecple 16274  occoc 16275  joincjn 17259  meetcmee 17260  0.cp0 17352  Latclat 17360  OPcops 35193  cmccmtN 35194  OLcol 35195  OMLcoml 35196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-proset 17243  df-poset 17261  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-lat 17361  df-oposet 35197  df-cmtN 35198  df-ol 35199  df-oml 35200
This theorem is referenced by:  doca2N  37147  djajN  37158
  Copyright terms: Public domain W3C validator