![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carddom2 | Structured version Visualization version GIF version |
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 10623, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
carddom2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carddomi2 10039 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴 ≼ 𝐵)) | |
2 | brdom2 9042 | . . 3 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
3 | cardon 10013 | . . . . . . . 8 ⊢ (card‘𝐴) ∈ On | |
4 | 3 | onelssi 6510 | . . . . . . 7 ⊢ ((card‘𝐵) ∈ (card‘𝐴) → (card‘𝐵) ⊆ (card‘𝐴)) |
5 | carddomi2 10039 | . . . . . . . 8 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵 ≼ 𝐴)) | |
6 | 5 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵 ≼ 𝐴)) |
7 | domnsym 9165 | . . . . . . 7 ⊢ (𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵) | |
8 | 4, 6, 7 | syl56 36 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) → ¬ 𝐴 ≺ 𝐵)) |
9 | 8 | con2d 134 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → ¬ (card‘𝐵) ∈ (card‘𝐴))) |
10 | cardon 10013 | . . . . . 6 ⊢ (card‘𝐵) ∈ On | |
11 | ontri1 6429 | . . . . . 6 ⊢ (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))) | |
12 | 3, 10, 11 | mp2an 691 | . . . . 5 ⊢ ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)) |
13 | 9, 12 | imbitrrdi 252 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
14 | carden2b 10036 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (card‘𝐴) = (card‘𝐵)) | |
15 | eqimss 4067 | . . . . . 6 ⊢ ((card‘𝐴) = (card‘𝐵) → (card‘𝐴) ⊆ (card‘𝐵)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵)) |
17 | 16 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≈ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
18 | 13, 17 | jaod 858 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) → (card‘𝐴) ⊆ (card‘𝐵))) |
19 | 2, 18 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
20 | 1, 19 | impbid 212 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 Oncon0 6395 ‘cfv 6573 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-card 10008 |
This theorem is referenced by: carduni 10050 carden2 10056 cardsdom2 10057 domtri2 10058 infxpidm2 10086 cardaleph 10158 infenaleph 10160 alephinit 10164 ficardun2 10271 ackbij2 10311 cfflb 10328 fin1a2lem9 10477 carddom 10623 pwfseqlem5 10732 hashdom 14428 minregex2 43497 |
Copyright terms: Public domain | W3C validator |