| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > carddom2 | Structured version Visualization version GIF version | ||
| Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 10448, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| carddom2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carddomi2 9866 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴 ≼ 𝐵)) | |
| 2 | brdom2 8907 | . . 3 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
| 3 | cardon 9840 | . . . . . . . 8 ⊢ (card‘𝐴) ∈ On | |
| 4 | 3 | onelssi 6423 | . . . . . . 7 ⊢ ((card‘𝐵) ∈ (card‘𝐴) → (card‘𝐵) ⊆ (card‘𝐴)) |
| 5 | carddomi2 9866 | . . . . . . . 8 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵 ≼ 𝐴)) | |
| 6 | 5 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵 ≼ 𝐴)) |
| 7 | domnsym 9020 | . . . . . . 7 ⊢ (𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵) | |
| 8 | 4, 6, 7 | syl56 36 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) → ¬ 𝐴 ≺ 𝐵)) |
| 9 | 8 | con2d 134 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → ¬ (card‘𝐵) ∈ (card‘𝐴))) |
| 10 | cardon 9840 | . . . . . 6 ⊢ (card‘𝐵) ∈ On | |
| 11 | ontri1 6341 | . . . . . 6 ⊢ (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))) | |
| 12 | 3, 10, 11 | mp2an 692 | . . . . 5 ⊢ ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)) |
| 13 | 9, 12 | imbitrrdi 252 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
| 14 | carden2b 9863 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (card‘𝐴) = (card‘𝐵)) | |
| 15 | eqimss 3994 | . . . . . 6 ⊢ ((card‘𝐴) = (card‘𝐵) → (card‘𝐴) ⊆ (card‘𝐵)) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵)) |
| 17 | 16 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≈ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
| 18 | 13, 17 | jaod 859 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) → (card‘𝐴) ⊆ (card‘𝐵))) |
| 19 | 2, 18 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
| 20 | 1, 19 | impbid 212 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 class class class wbr 5092 dom cdm 5619 Oncon0 6307 ‘cfv 6482 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 cardccrd 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-card 9835 |
| This theorem is referenced by: carduni 9877 carden2 9883 cardsdom2 9884 domtri2 9885 infxpidm2 9911 cardaleph 9983 infenaleph 9985 alephinit 9989 ficardun2 10096 ackbij2 10136 cfflb 10153 fin1a2lem9 10302 carddom 10448 pwfseqlem5 10557 hashdom 14286 minregex2 43518 |
| Copyright terms: Public domain | W3C validator |