MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddom2 Structured version   Visualization version   GIF version

Theorem carddom2 9974
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 10551, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddom2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ 𝐴 β‰Ό 𝐡))

Proof of Theorem carddom2
StepHypRef Expression
1 carddomi2 9967 . 2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) β†’ 𝐴 β‰Ό 𝐡))
2 brdom2 8980 . . 3 (𝐴 β‰Ό 𝐡 ↔ (𝐴 β‰Ί 𝐡 ∨ 𝐴 β‰ˆ 𝐡))
3 cardon 9941 . . . . . . . 8 (cardβ€˜π΄) ∈ On
43onelssi 6473 . . . . . . 7 ((cardβ€˜π΅) ∈ (cardβ€˜π΄) β†’ (cardβ€˜π΅) βŠ† (cardβ€˜π΄))
5 carddomi2 9967 . . . . . . . 8 ((𝐡 ∈ dom card ∧ 𝐴 ∈ dom card) β†’ ((cardβ€˜π΅) βŠ† (cardβ€˜π΄) β†’ 𝐡 β‰Ό 𝐴))
65ancoms 458 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΅) βŠ† (cardβ€˜π΄) β†’ 𝐡 β‰Ό 𝐴))
7 domnsym 9101 . . . . . . 7 (𝐡 β‰Ό 𝐴 β†’ Β¬ 𝐴 β‰Ί 𝐡)
84, 6, 7syl56 36 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΅) ∈ (cardβ€˜π΄) β†’ Β¬ 𝐴 β‰Ί 𝐡))
98con2d 134 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ί 𝐡 β†’ Β¬ (cardβ€˜π΅) ∈ (cardβ€˜π΄)))
10 cardon 9941 . . . . . 6 (cardβ€˜π΅) ∈ On
11 ontri1 6392 . . . . . 6 (((cardβ€˜π΄) ∈ On ∧ (cardβ€˜π΅) ∈ On) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ Β¬ (cardβ€˜π΅) ∈ (cardβ€˜π΄)))
123, 10, 11mp2an 689 . . . . 5 ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ Β¬ (cardβ€˜π΅) ∈ (cardβ€˜π΄))
139, 12imbitrrdi 251 . . . 4 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ί 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
14 carden2b 9964 . . . . . 6 (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) = (cardβ€˜π΅))
15 eqimss 4035 . . . . . 6 ((cardβ€˜π΄) = (cardβ€˜π΅) β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅))
1614, 15syl 17 . . . . 5 (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅))
1716a1i 11 . . . 4 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
1813, 17jaod 856 . . 3 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((𝐴 β‰Ί 𝐡 ∨ 𝐴 β‰ˆ 𝐡) β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
192, 18biimtrid 241 . 2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ό 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
201, 19impbid 211 1 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ 𝐴 β‰Ό 𝐡))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   = wceq 1533   ∈ wcel 2098   βŠ† wss 3943   class class class wbr 5141  dom cdm 5669  Oncon0 6358  β€˜cfv 6537   β‰ˆ cen 8938   β‰Ό cdom 8939   β‰Ί csdm 8940  cardccrd 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-card 9936
This theorem is referenced by:  carduni  9978  carden2  9984  cardsdom2  9985  domtri2  9986  infxpidm2  10014  cardaleph  10086  infenaleph  10088  alephinit  10092  ficardun2  10199  ficardun2OLD  10200  ackbij2  10240  cfflb  10256  fin1a2lem9  10405  carddom  10551  pwfseqlem5  10660  hashdom  14344  minregex2  42862
  Copyright terms: Public domain W3C validator