MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddom2 Structured version   Visualization version   GIF version

Theorem carddom2 9968
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 10545, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddom2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ 𝐴 β‰Ό 𝐡))

Proof of Theorem carddom2
StepHypRef Expression
1 carddomi2 9961 . 2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) β†’ 𝐴 β‰Ό 𝐡))
2 brdom2 8974 . . 3 (𝐴 β‰Ό 𝐡 ↔ (𝐴 β‰Ί 𝐡 ∨ 𝐴 β‰ˆ 𝐡))
3 cardon 9935 . . . . . . . 8 (cardβ€˜π΄) ∈ On
43onelssi 6476 . . . . . . 7 ((cardβ€˜π΅) ∈ (cardβ€˜π΄) β†’ (cardβ€˜π΅) βŠ† (cardβ€˜π΄))
5 carddomi2 9961 . . . . . . . 8 ((𝐡 ∈ dom card ∧ 𝐴 ∈ dom card) β†’ ((cardβ€˜π΅) βŠ† (cardβ€˜π΄) β†’ 𝐡 β‰Ό 𝐴))
65ancoms 459 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΅) βŠ† (cardβ€˜π΄) β†’ 𝐡 β‰Ό 𝐴))
7 domnsym 9095 . . . . . . 7 (𝐡 β‰Ό 𝐴 β†’ Β¬ 𝐴 β‰Ί 𝐡)
84, 6, 7syl56 36 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΅) ∈ (cardβ€˜π΄) β†’ Β¬ 𝐴 β‰Ί 𝐡))
98con2d 134 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ί 𝐡 β†’ Β¬ (cardβ€˜π΅) ∈ (cardβ€˜π΄)))
10 cardon 9935 . . . . . 6 (cardβ€˜π΅) ∈ On
11 ontri1 6395 . . . . . 6 (((cardβ€˜π΄) ∈ On ∧ (cardβ€˜π΅) ∈ On) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ Β¬ (cardβ€˜π΅) ∈ (cardβ€˜π΄)))
123, 10, 11mp2an 690 . . . . 5 ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ Β¬ (cardβ€˜π΅) ∈ (cardβ€˜π΄))
139, 12syl6ibr 251 . . . 4 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ί 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
14 carden2b 9958 . . . . . 6 (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) = (cardβ€˜π΅))
15 eqimss 4039 . . . . . 6 ((cardβ€˜π΄) = (cardβ€˜π΅) β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅))
1614, 15syl 17 . . . . 5 (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅))
1716a1i 11 . . . 4 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
1813, 17jaod 857 . . 3 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((𝐴 β‰Ί 𝐡 ∨ 𝐴 β‰ˆ 𝐡) β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
192, 18biimtrid 241 . 2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ό 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
201, 19impbid 211 1 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ 𝐴 β‰Ό 𝐡))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106   βŠ† wss 3947   class class class wbr 5147  dom cdm 5675  Oncon0 6361  β€˜cfv 6540   β‰ˆ cen 8932   β‰Ό cdom 8933   β‰Ί csdm 8934  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-card 9930
This theorem is referenced by:  carduni  9972  carden2  9978  cardsdom2  9979  domtri2  9980  infxpidm2  10008  cardaleph  10080  infenaleph  10082  alephinit  10086  ficardun2  10193  ficardun2OLD  10194  ackbij2  10234  cfflb  10250  fin1a2lem9  10399  carddom  10545  pwfseqlem5  10654  hashdom  14335  minregex2  42271
  Copyright terms: Public domain W3C validator