![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > carddom2 | Structured version Visualization version GIF version |
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 10545, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
carddom2 | β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β π΄ βΌ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carddomi2 9961 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β π΄ βΌ π΅)) | |
2 | brdom2 8974 | . . 3 β’ (π΄ βΌ π΅ β (π΄ βΊ π΅ β¨ π΄ β π΅)) | |
3 | cardon 9935 | . . . . . . . 8 β’ (cardβπ΄) β On | |
4 | 3 | onelssi 6476 | . . . . . . 7 β’ ((cardβπ΅) β (cardβπ΄) β (cardβπ΅) β (cardβπ΄)) |
5 | carddomi2 9961 | . . . . . . . 8 β’ ((π΅ β dom card β§ π΄ β dom card) β ((cardβπ΅) β (cardβπ΄) β π΅ βΌ π΄)) | |
6 | 5 | ancoms 459 | . . . . . . 7 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΅) β (cardβπ΄) β π΅ βΌ π΄)) |
7 | domnsym 9095 | . . . . . . 7 β’ (π΅ βΌ π΄ β Β¬ π΄ βΊ π΅) | |
8 | 4, 6, 7 | syl56 36 | . . . . . 6 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΅) β (cardβπ΄) β Β¬ π΄ βΊ π΅)) |
9 | 8 | con2d 134 | . . . . 5 β’ ((π΄ β dom card β§ π΅ β dom card) β (π΄ βΊ π΅ β Β¬ (cardβπ΅) β (cardβπ΄))) |
10 | cardon 9935 | . . . . . 6 β’ (cardβπ΅) β On | |
11 | ontri1 6395 | . . . . . 6 β’ (((cardβπ΄) β On β§ (cardβπ΅) β On) β ((cardβπ΄) β (cardβπ΅) β Β¬ (cardβπ΅) β (cardβπ΄))) | |
12 | 3, 10, 11 | mp2an 690 | . . . . 5 β’ ((cardβπ΄) β (cardβπ΅) β Β¬ (cardβπ΅) β (cardβπ΄)) |
13 | 9, 12 | syl6ibr 251 | . . . 4 β’ ((π΄ β dom card β§ π΅ β dom card) β (π΄ βΊ π΅ β (cardβπ΄) β (cardβπ΅))) |
14 | carden2b 9958 | . . . . . 6 β’ (π΄ β π΅ β (cardβπ΄) = (cardβπ΅)) | |
15 | eqimss 4039 | . . . . . 6 β’ ((cardβπ΄) = (cardβπ΅) β (cardβπ΄) β (cardβπ΅)) | |
16 | 14, 15 | syl 17 | . . . . 5 β’ (π΄ β π΅ β (cardβπ΄) β (cardβπ΅)) |
17 | 16 | a1i 11 | . . . 4 β’ ((π΄ β dom card β§ π΅ β dom card) β (π΄ β π΅ β (cardβπ΄) β (cardβπ΅))) |
18 | 13, 17 | jaod 857 | . . 3 β’ ((π΄ β dom card β§ π΅ β dom card) β ((π΄ βΊ π΅ β¨ π΄ β π΅) β (cardβπ΄) β (cardβπ΅))) |
19 | 2, 18 | biimtrid 241 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β (π΄ βΌ π΅ β (cardβπ΄) β (cardβπ΅))) |
20 | 1, 19 | impbid 211 | 1 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β π΄ βΌ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β¨ wo 845 = wceq 1541 β wcel 2106 β wss 3947 class class class wbr 5147 dom cdm 5675 Oncon0 6361 βcfv 6540 β cen 8932 βΌ cdom 8933 βΊ csdm 8934 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-card 9930 |
This theorem is referenced by: carduni 9972 carden2 9978 cardsdom2 9979 domtri2 9980 infxpidm2 10008 cardaleph 10080 infenaleph 10082 alephinit 10086 ficardun2 10193 ficardun2OLD 10194 ackbij2 10234 cfflb 10250 fin1a2lem9 10399 carddom 10545 pwfseqlem5 10654 hashdom 14335 minregex2 42271 |
Copyright terms: Public domain | W3C validator |