MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddom2 Structured version   Visualization version   GIF version

Theorem carddom2 9991
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 10568, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddom2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem carddom2
StepHypRef Expression
1 carddomi2 9984 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
2 brdom2 8996 . . 3 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
3 cardon 9958 . . . . . . . 8 (card‘𝐴) ∈ On
43onelssi 6469 . . . . . . 7 ((card‘𝐵) ∈ (card‘𝐴) → (card‘𝐵) ⊆ (card‘𝐴))
5 carddomi2 9984 . . . . . . . 8 ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵𝐴))
65ancoms 458 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵𝐴))
7 domnsym 9113 . . . . . . 7 (𝐵𝐴 → ¬ 𝐴𝐵)
84, 6, 7syl56 36 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) → ¬ 𝐴𝐵))
98con2d 134 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → ¬ (card‘𝐵) ∈ (card‘𝐴)))
10 cardon 9958 . . . . . 6 (card‘𝐵) ∈ On
11 ontri1 6386 . . . . . 6 (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)))
123, 10, 11mp2an 692 . . . . 5 ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))
139, 12imbitrrdi 252 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵)))
14 carden2b 9981 . . . . . 6 (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))
15 eqimss 4017 . . . . . 6 ((card‘𝐴) = (card‘𝐵) → (card‘𝐴) ⊆ (card‘𝐵))
1614, 15syl 17 . . . . 5 (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵))
1716a1i 11 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵)))
1813, 17jaod 859 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴𝐵𝐴𝐵) → (card‘𝐴) ⊆ (card‘𝐵)))
192, 18biimtrid 242 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵)))
201, 19impbid 212 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wss 3926   class class class wbr 5119  dom cdm 5654  Oncon0 6352  cfv 6531  cen 8956  cdom 8957  csdm 8958  cardccrd 9949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-card 9953
This theorem is referenced by:  carduni  9995  carden2  10001  cardsdom2  10002  domtri2  10003  infxpidm2  10031  cardaleph  10103  infenaleph  10105  alephinit  10109  ficardun2  10216  ackbij2  10256  cfflb  10273  fin1a2lem9  10422  carddom  10568  pwfseqlem5  10677  hashdom  14397  minregex2  43559
  Copyright terms: Public domain W3C validator