MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddom2 Structured version   Visualization version   GIF version

Theorem carddom2 10000
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 10577, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddom2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ 𝐴 β‰Ό 𝐡))

Proof of Theorem carddom2
StepHypRef Expression
1 carddomi2 9993 . 2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) β†’ 𝐴 β‰Ό 𝐡))
2 brdom2 9001 . . 3 (𝐴 β‰Ό 𝐡 ↔ (𝐴 β‰Ί 𝐡 ∨ 𝐴 β‰ˆ 𝐡))
3 cardon 9967 . . . . . . . 8 (cardβ€˜π΄) ∈ On
43onelssi 6479 . . . . . . 7 ((cardβ€˜π΅) ∈ (cardβ€˜π΄) β†’ (cardβ€˜π΅) βŠ† (cardβ€˜π΄))
5 carddomi2 9993 . . . . . . . 8 ((𝐡 ∈ dom card ∧ 𝐴 ∈ dom card) β†’ ((cardβ€˜π΅) βŠ† (cardβ€˜π΄) β†’ 𝐡 β‰Ό 𝐴))
65ancoms 457 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΅) βŠ† (cardβ€˜π΄) β†’ 𝐡 β‰Ό 𝐴))
7 domnsym 9122 . . . . . . 7 (𝐡 β‰Ό 𝐴 β†’ Β¬ 𝐴 β‰Ί 𝐡)
84, 6, 7syl56 36 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΅) ∈ (cardβ€˜π΄) β†’ Β¬ 𝐴 β‰Ί 𝐡))
98con2d 134 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ί 𝐡 β†’ Β¬ (cardβ€˜π΅) ∈ (cardβ€˜π΄)))
10 cardon 9967 . . . . . 6 (cardβ€˜π΅) ∈ On
11 ontri1 6398 . . . . . 6 (((cardβ€˜π΄) ∈ On ∧ (cardβ€˜π΅) ∈ On) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ Β¬ (cardβ€˜π΅) ∈ (cardβ€˜π΄)))
123, 10, 11mp2an 690 . . . . 5 ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ Β¬ (cardβ€˜π΅) ∈ (cardβ€˜π΄))
139, 12imbitrrdi 251 . . . 4 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ί 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
14 carden2b 9990 . . . . . 6 (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) = (cardβ€˜π΅))
15 eqimss 4031 . . . . . 6 ((cardβ€˜π΄) = (cardβ€˜π΅) β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅))
1614, 15syl 17 . . . . 5 (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅))
1716a1i 11 . . . 4 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
1813, 17jaod 857 . . 3 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((𝐴 β‰Ί 𝐡 ∨ 𝐴 β‰ˆ 𝐡) β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
192, 18biimtrid 241 . 2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (𝐴 β‰Ό 𝐡 β†’ (cardβ€˜π΄) βŠ† (cardβ€˜π΅)))
201, 19impbid 211 1 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ 𝐴 β‰Ό 𝐡))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 845   = wceq 1533   ∈ wcel 2098   βŠ† wss 3939   class class class wbr 5143  dom cdm 5672  Oncon0 6364  β€˜cfv 6543   β‰ˆ cen 8959   β‰Ό cdom 8960   β‰Ί csdm 8961  cardccrd 9958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6367  df-on 6368  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-card 9962
This theorem is referenced by:  carduni  10004  carden2  10010  cardsdom2  10011  domtri2  10012  infxpidm2  10040  cardaleph  10112  infenaleph  10114  alephinit  10118  ficardun2  10225  ficardun2OLD  10226  ackbij2  10266  cfflb  10282  fin1a2lem9  10431  carddom  10577  pwfseqlem5  10686  hashdom  14370  minregex2  43030
  Copyright terms: Public domain W3C validator