MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddom2 Structured version   Visualization version   GIF version

Theorem carddom2 10046
Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 10623, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddom2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem carddom2
StepHypRef Expression
1 carddomi2 10039 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
2 brdom2 9042 . . 3 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
3 cardon 10013 . . . . . . . 8 (card‘𝐴) ∈ On
43onelssi 6510 . . . . . . 7 ((card‘𝐵) ∈ (card‘𝐴) → (card‘𝐵) ⊆ (card‘𝐴))
5 carddomi2 10039 . . . . . . . 8 ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵𝐴))
65ancoms 458 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵𝐴))
7 domnsym 9165 . . . . . . 7 (𝐵𝐴 → ¬ 𝐴𝐵)
84, 6, 7syl56 36 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) → ¬ 𝐴𝐵))
98con2d 134 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → ¬ (card‘𝐵) ∈ (card‘𝐴)))
10 cardon 10013 . . . . . 6 (card‘𝐵) ∈ On
11 ontri1 6429 . . . . . 6 (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)))
123, 10, 11mp2an 691 . . . . 5 ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))
139, 12imbitrrdi 252 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵)))
14 carden2b 10036 . . . . . 6 (𝐴𝐵 → (card‘𝐴) = (card‘𝐵))
15 eqimss 4067 . . . . . 6 ((card‘𝐴) = (card‘𝐵) → (card‘𝐴) ⊆ (card‘𝐵))
1614, 15syl 17 . . . . 5 (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵))
1716a1i 11 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵)))
1813, 17jaod 858 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴𝐵𝐴𝐵) → (card‘𝐴) ⊆ (card‘𝐵)))
192, 18biimtrid 242 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 → (card‘𝐴) ⊆ (card‘𝐵)))
201, 19impbid 212 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wss 3976   class class class wbr 5166  dom cdm 5700  Oncon0 6395  cfv 6573  cen 9000  cdom 9001  csdm 9002  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-card 10008
This theorem is referenced by:  carduni  10050  carden2  10056  cardsdom2  10057  domtri2  10058  infxpidm2  10086  cardaleph  10158  infenaleph  10160  alephinit  10164  ficardun2  10271  ackbij2  10311  cfflb  10328  fin1a2lem9  10477  carddom  10623  pwfseqlem5  10732  hashdom  14428  minregex2  43497
  Copyright terms: Public domain W3C validator