| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > carddom2 | Structured version Visualization version GIF version | ||
| Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 10568, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| carddom2 | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carddomi2 9984 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴 ≼ 𝐵)) | |
| 2 | brdom2 8996 | . . 3 ⊢ (𝐴 ≼ 𝐵 ↔ (𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵)) | |
| 3 | cardon 9958 | . . . . . . . 8 ⊢ (card‘𝐴) ∈ On | |
| 4 | 3 | onelssi 6469 | . . . . . . 7 ⊢ ((card‘𝐵) ∈ (card‘𝐴) → (card‘𝐵) ⊆ (card‘𝐴)) |
| 5 | carddomi2 9984 | . . . . . . . 8 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵 ≼ 𝐴)) | |
| 6 | 5 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ⊆ (card‘𝐴) → 𝐵 ≼ 𝐴)) |
| 7 | domnsym 9113 | . . . . . . 7 ⊢ (𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵) | |
| 8 | 4, 6, 7 | syl56 36 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐵) ∈ (card‘𝐴) → ¬ 𝐴 ≺ 𝐵)) |
| 9 | 8 | con2d 134 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → ¬ (card‘𝐵) ∈ (card‘𝐴))) |
| 10 | cardon 9958 | . . . . . 6 ⊢ (card‘𝐵) ∈ On | |
| 11 | ontri1 6386 | . . . . . 6 ⊢ (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴))) | |
| 12 | 3, 10, 11 | mp2an 692 | . . . . 5 ⊢ ((card‘𝐴) ⊆ (card‘𝐵) ↔ ¬ (card‘𝐵) ∈ (card‘𝐴)) |
| 13 | 9, 12 | imbitrrdi 252 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≺ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
| 14 | carden2b 9981 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (card‘𝐴) = (card‘𝐵)) | |
| 15 | eqimss 4017 | . . . . . 6 ⊢ ((card‘𝐴) = (card‘𝐵) → (card‘𝐴) ⊆ (card‘𝐵)) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵)) |
| 17 | 16 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≈ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
| 18 | 13, 17 | jaod 859 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴 ≺ 𝐵 ∨ 𝐴 ≈ 𝐵) → (card‘𝐴) ⊆ (card‘𝐵))) |
| 19 | 2, 18 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 → (card‘𝐴) ⊆ (card‘𝐵))) |
| 20 | 1, 19 | impbid 212 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 dom cdm 5654 Oncon0 6352 ‘cfv 6531 ≈ cen 8956 ≼ cdom 8957 ≺ csdm 8958 cardccrd 9949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-card 9953 |
| This theorem is referenced by: carduni 9995 carden2 10001 cardsdom2 10002 domtri2 10003 infxpidm2 10031 cardaleph 10103 infenaleph 10105 alephinit 10109 ficardun2 10216 ackbij2 10256 cfflb 10273 fin1a2lem9 10422 carddom 10568 pwfseqlem5 10677 hashdom 14397 minregex2 43559 |
| Copyright terms: Public domain | W3C validator |