| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6342 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelss 6348 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 3 | 2 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: ordunidif 6382 onelssi 6449 ssorduni 7755 sucexeloniOLD 7786 tfisi 7835 poseq 8137 tfrlem9 8353 tfrlem11 8356 oaordex 8522 oaass 8525 odi 8543 omass 8544 oewordri 8556 nnaordex 8602 domtriord 9087 hartogs 9497 card2on 9507 tskwe 9903 infxpenlem 9966 cfub 10202 cfsuc 10210 coflim 10214 hsmexlem2 10380 ondomon 10516 pwcfsdom 10536 inar1 10728 tskord 10733 grudomon 10770 gruina 10771 sltres 27574 nosupno 27615 nosupbday 27617 noinfno 27630 oldssmade 27789 madebday 27811 mulsproplem13 28031 mulsproplem14 28032 dfrdg2 35783 aomclem6 43048 nnoeomeqom 43301 naddgeoa 43383 naddwordnexlem1 43386 naddwordnexlem4 43390 iscard5 43525 |
| Copyright terms: Public domain | W3C validator |