| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6321 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelss 6327 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 3 | 2 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3905 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3440 df-ss 3922 df-uni 4862 df-tr 5203 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 |
| This theorem is referenced by: ordunidif 6361 onelssi 6427 ssorduni 7719 sucexeloniOLD 7750 tfisi 7799 poseq 8098 tfrlem9 8314 tfrlem11 8317 oaordex 8483 oaass 8486 odi 8504 omass 8505 oewordri 8517 nnaordex 8563 domtriord 9047 hartogs 9455 card2on 9465 tskwe 9865 infxpenlem 9926 cfub 10162 cfsuc 10170 coflim 10174 hsmexlem2 10340 ondomon 10476 pwcfsdom 10496 inar1 10688 tskord 10693 grudomon 10730 gruina 10731 sltres 27590 nosupno 27631 nosupbday 27633 noinfno 27646 oldssmade 27809 madebday 27832 mulsproplem13 28054 mulsproplem14 28055 dfrdg2 35768 aomclem6 43032 nnoeomeqom 43285 naddgeoa 43367 naddwordnexlem1 43370 naddwordnexlem4 43374 iscard5 43509 |
| Copyright terms: Public domain | W3C validator |