Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version |
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6276 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordelss 6282 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
3 | 2 | ex 413 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-tr 5192 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: ordunidif 6314 onelssi 6375 ssorduni 7629 sucexeloni 7658 suceloniOLD 7660 tfisi 7705 tfrlem9 8216 tfrlem11 8219 oaordex 8389 oaass 8392 odi 8410 omass 8411 oewordri 8423 nnaordex 8469 domtriord 8910 hartogs 9303 card2on 9313 tskwe 9708 infxpenlem 9769 cfub 10005 cfsuc 10013 coflim 10017 hsmexlem2 10183 ondomon 10319 pwcfsdom 10339 inar1 10531 tskord 10536 grudomon 10573 gruina 10574 dfrdg2 33771 poseq 33802 sltres 33865 nosupno 33906 nosupbday 33908 noinfno 33921 oldssmade 34060 madebday 34080 aomclem6 40884 iscard5 41143 |
Copyright terms: Public domain | W3C validator |