MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelss Structured version   Visualization version   GIF version

Theorem onelss 6108
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
onelss (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))

Proof of Theorem onelss
StepHypRef Expression
1 eloni 6076 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordelss 6082 . . 3 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
32ex 413 . 2 (Ord 𝐴 → (𝐵𝐴𝐵𝐴))
41, 3syl 17 1 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2081  wss 3859  Ord word 6065  Oncon0 6066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-v 3439  df-in 3866  df-ss 3874  df-uni 4746  df-tr 5064  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-ord 6069  df-on 6070
This theorem is referenced by:  ordunidif  6114  onelssi  6174  ssorduni  7356  suceloni  7384  tfisi  7429  tfrlem9  7873  tfrlem11  7876  oaordex  8034  oaass  8037  odi  8055  omass  8056  oewordri  8068  nnaordex  8114  domtriord  8510  hartogs  8854  card2on  8864  tskwe  9225  infxpenlem  9285  cfub  9517  cfsuc  9525  coflim  9529  hsmexlem2  9695  ondomon  9831  pwcfsdom  9851  inar1  10043  tskord  10048  grudomon  10085  gruina  10086  dfrdg2  32650  poseq  32705  sltres  32779  nosupno  32813  aomclem6  39163  iscard5  39405
  Copyright terms: Public domain W3C validator