Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version |
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6261 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordelss 6267 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
3 | 2 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: ordunidif 6299 onelssi 6360 ssorduni 7606 suceloni 7635 tfisi 7680 tfrlem9 8187 tfrlem11 8190 oaordex 8351 oaass 8354 odi 8372 omass 8373 oewordri 8385 nnaordex 8431 domtriord 8859 hartogs 9233 card2on 9243 tskwe 9639 infxpenlem 9700 cfub 9936 cfsuc 9944 coflim 9948 hsmexlem2 10114 ondomon 10250 pwcfsdom 10270 inar1 10462 tskord 10467 grudomon 10504 gruina 10505 dfrdg2 33677 poseq 33729 sltres 33792 nosupno 33833 nosupbday 33835 noinfno 33848 oldssmade 33987 madebday 34007 aomclem6 40800 iscard5 41039 |
Copyright terms: Public domain | W3C validator |