| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6312 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelss 6318 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 3 | 2 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 ⊆ wss 3900 Ord word 6301 Oncon0 6302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3436 df-ss 3917 df-uni 4858 df-tr 5197 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6305 df-on 6306 |
| This theorem is referenced by: ordunidif 6352 onelssi 6418 ssorduni 7707 tfisi 7784 poseq 8083 tfrlem9 8299 tfrlem11 8302 oaordex 8468 oaass 8471 odi 8489 omass 8490 oewordri 8502 nnaordex 8548 domtriord 9031 hartogs 9425 card2on 9435 tskwe 9835 infxpenlem 9896 cfub 10132 cfsuc 10140 coflim 10144 hsmexlem2 10310 ondomon 10446 pwcfsdom 10466 inar1 10658 tskord 10663 grudomon 10700 gruina 10701 sltres 27594 nosupno 27635 nosupbday 27637 noinfno 27650 oldssmade 27815 madebday 27838 mulsproplem13 28060 mulsproplem14 28061 dfrdg2 35808 aomclem6 43071 nnoeomeqom 43324 naddgeoa 43406 naddwordnexlem1 43409 naddwordnexlem4 43413 iscard5 43548 |
| Copyright terms: Public domain | W3C validator |