| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6324 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelss 6330 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 3 | 2 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3899 Ord word 6313 Oncon0 6314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-v 3440 df-ss 3916 df-uni 4861 df-tr 5203 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 |
| This theorem is referenced by: ordunidif 6364 onelssi 6430 ssorduni 7721 tfisi 7798 poseq 8097 tfrlem9 8313 tfrlem11 8316 oaordex 8482 oaass 8485 odi 8503 omass 8504 oewordri 8516 nnaordex 8562 domtriord 9046 hartogs 9440 card2on 9450 tskwe 9853 infxpenlem 9914 cfub 10150 cfsuc 10158 coflim 10162 hsmexlem2 10328 ondomon 10464 pwcfsdom 10484 inar1 10676 tskord 10681 grudomon 10718 gruina 10719 sltres 27611 nosupno 27652 nosupbday 27654 noinfno 27667 oldssmade 27832 madebday 27855 mulsproplem13 28077 mulsproplem14 28078 dfrdg2 35848 aomclem6 43166 nnoeomeqom 43419 naddgeoa 43501 naddwordnexlem1 43504 naddwordnexlem4 43508 iscard5 43643 |
| Copyright terms: Public domain | W3C validator |