![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version |
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6405 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordelss 6411 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
3 | 2 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: ordunidif 6444 onelssi 6510 ssorduni 7814 sucexeloniOLD 7846 suceloniOLD 7848 tfisi 7896 poseq 8199 tfrlem9 8441 tfrlem11 8444 oaordex 8614 oaass 8617 odi 8635 omass 8636 oewordri 8648 nnaordex 8694 domtriord 9189 hartogs 9613 card2on 9623 tskwe 10019 infxpenlem 10082 cfub 10318 cfsuc 10326 coflim 10330 hsmexlem2 10496 ondomon 10632 pwcfsdom 10652 inar1 10844 tskord 10849 grudomon 10886 gruina 10887 sltres 27725 nosupno 27766 nosupbday 27768 noinfno 27781 oldssmade 27934 madebday 27956 mulsproplem13 28172 mulsproplem14 28173 dfrdg2 35759 aomclem6 43016 nnoeomeqom 43274 naddgeoa 43356 naddwordnexlem1 43359 naddwordnexlem4 43363 iscard5 43498 |
Copyright terms: Public domain | W3C validator |