Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version |
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6278 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordelss 6284 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
3 | 2 | ex 413 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3888 Ord word 6267 Oncon0 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3433 df-in 3895 df-ss 3905 df-uni 4842 df-tr 5194 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-ord 6271 df-on 6272 |
This theorem is referenced by: ordunidif 6316 onelssi 6377 ssorduni 7629 sucexeloni 7658 suceloniOLD 7660 tfisi 7705 tfrlem9 8214 tfrlem11 8217 oaordex 8387 oaass 8390 odi 8408 omass 8409 oewordri 8421 nnaordex 8467 domtriord 8908 hartogs 9301 card2on 9311 tskwe 9706 infxpenlem 9767 cfub 10003 cfsuc 10011 coflim 10015 hsmexlem2 10181 ondomon 10317 pwcfsdom 10337 inar1 10529 tskord 10534 grudomon 10571 gruina 10572 dfrdg2 33768 poseq 33799 sltres 33862 nosupno 33903 nosupbday 33905 noinfno 33918 oldssmade 34057 madebday 34077 aomclem6 40881 iscard5 41120 |
Copyright terms: Public domain | W3C validator |