MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelss Structured version   Visualization version   GIF version

Theorem onelss 5983
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
onelss (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))

Proof of Theorem onelss
StepHypRef Expression
1 eloni 5951 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordelss 5957 . . 3 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
32ex 402 . 2 (Ord 𝐴 → (𝐵𝐴𝐵𝐴))
41, 3syl 17 1 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157  wss 3769  Ord word 5940  Oncon0 5941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-v 3387  df-in 3776  df-ss 3783  df-uni 4629  df-tr 4946  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-ord 5944  df-on 5945
This theorem is referenced by:  ordunidif  5989  onelssi  6049  ssorduni  7219  suceloni  7247  tfisi  7292  tfrlem9  7720  tfrlem11  7723  oaordex  7878  oaass  7881  odi  7899  omass  7900  oewordri  7912  nnaordex  7958  domtriord  8348  hartogs  8691  card2on  8701  tskwe  9062  infxpenlem  9122  cfub  9359  cfsuc  9367  coflim  9371  hsmexlem2  9537  ondomon  9673  pwcfsdom  9693  inar1  9885  tskord  9890  grudomon  9927  gruina  9928  dfrdg2  32213  poseq  32266  sltres  32328  nosupno  32362  aomclem6  38414
  Copyright terms: Public domain W3C validator