| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6373 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelss 6379 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 3 | 2 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3931 Ord word 6362 Oncon0 6363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3465 df-ss 3948 df-uni 4888 df-tr 5240 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-on 6367 |
| This theorem is referenced by: ordunidif 6413 onelssi 6479 ssorduni 7781 sucexeloniOLD 7812 suceloniOLD 7814 tfisi 7862 poseq 8165 tfrlem9 8407 tfrlem11 8410 oaordex 8578 oaass 8581 odi 8599 omass 8600 oewordri 8612 nnaordex 8658 domtriord 9145 hartogs 9566 card2on 9576 tskwe 9972 infxpenlem 10035 cfub 10271 cfsuc 10279 coflim 10283 hsmexlem2 10449 ondomon 10585 pwcfsdom 10605 inar1 10797 tskord 10802 grudomon 10839 gruina 10840 sltres 27643 nosupno 27684 nosupbday 27686 noinfno 27699 oldssmade 27852 madebday 27874 mulsproplem13 28090 mulsproplem14 28091 dfrdg2 35755 aomclem6 43034 nnoeomeqom 43287 naddgeoa 43369 naddwordnexlem1 43372 naddwordnexlem4 43376 iscard5 43511 |
| Copyright terms: Public domain | W3C validator |