MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelss Structured version   Visualization version   GIF version

Theorem onelss 6353
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
onelss (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))

Proof of Theorem onelss
StepHypRef Expression
1 eloni 6321 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordelss 6327 . . 3 ((Ord 𝐴𝐵𝐴) → 𝐵𝐴)
32ex 412 . 2 (Ord 𝐴 → (𝐵𝐴𝐵𝐴))
41, 3syl 17 1 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3905  Ord word 6310  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3440  df-ss 3922  df-uni 4862  df-tr 5203  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315
This theorem is referenced by:  ordunidif  6361  onelssi  6427  ssorduni  7719  sucexeloniOLD  7750  tfisi  7799  poseq  8098  tfrlem9  8314  tfrlem11  8317  oaordex  8483  oaass  8486  odi  8504  omass  8505  oewordri  8517  nnaordex  8563  domtriord  9047  hartogs  9455  card2on  9465  tskwe  9865  infxpenlem  9926  cfub  10162  cfsuc  10170  coflim  10174  hsmexlem2  10340  ondomon  10476  pwcfsdom  10496  inar1  10688  tskord  10693  grudomon  10730  gruina  10731  sltres  27590  nosupno  27631  nosupbday  27633  noinfno  27646  oldssmade  27809  madebday  27832  mulsproplem13  28054  mulsproplem14  28055  dfrdg2  35768  aomclem6  43032  nnoeomeqom  43285  naddgeoa  43367  naddwordnexlem1  43370  naddwordnexlem4  43374  iscard5  43509
  Copyright terms: Public domain W3C validator