| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6362 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelss 6368 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 3 | 2 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 Ord word 6351 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-ss 3943 df-uni 4884 df-tr 5230 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: ordunidif 6402 onelssi 6469 ssorduni 7773 sucexeloniOLD 7804 suceloniOLD 7806 tfisi 7854 poseq 8157 tfrlem9 8399 tfrlem11 8402 oaordex 8570 oaass 8573 odi 8591 omass 8592 oewordri 8604 nnaordex 8650 domtriord 9137 hartogs 9558 card2on 9568 tskwe 9964 infxpenlem 10027 cfub 10263 cfsuc 10271 coflim 10275 hsmexlem2 10441 ondomon 10577 pwcfsdom 10597 inar1 10789 tskord 10794 grudomon 10831 gruina 10832 sltres 27626 nosupno 27667 nosupbday 27669 noinfno 27682 oldssmade 27841 madebday 27863 mulsproplem13 28083 mulsproplem14 28084 dfrdg2 35813 aomclem6 43083 nnoeomeqom 43336 naddgeoa 43418 naddwordnexlem1 43421 naddwordnexlem4 43425 iscard5 43560 |
| Copyright terms: Public domain | W3C validator |