| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelss | Structured version Visualization version GIF version | ||
| Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| onelss | ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6345 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordelss 6351 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 3 | 2 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 Ord word 6334 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3934 df-uni 4875 df-tr 5218 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: ordunidif 6385 onelssi 6452 ssorduni 7758 sucexeloniOLD 7789 tfisi 7838 poseq 8140 tfrlem9 8356 tfrlem11 8359 oaordex 8525 oaass 8528 odi 8546 omass 8547 oewordri 8559 nnaordex 8605 domtriord 9093 hartogs 9504 card2on 9514 tskwe 9910 infxpenlem 9973 cfub 10209 cfsuc 10217 coflim 10221 hsmexlem2 10387 ondomon 10523 pwcfsdom 10543 inar1 10735 tskord 10740 grudomon 10777 gruina 10778 sltres 27581 nosupno 27622 nosupbday 27624 noinfno 27637 oldssmade 27796 madebday 27818 mulsproplem13 28038 mulsproplem14 28039 dfrdg2 35790 aomclem6 43055 nnoeomeqom 43308 naddgeoa 43390 naddwordnexlem1 43393 naddwordnexlem4 43397 iscard5 43532 |
| Copyright terms: Public domain | W3C validator |