Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oneli | Structured version Visualization version GIF version |
Description: A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
oneli | ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | onelon 6198 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 Oncon0 6173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-tr 5142 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-ord 6176 df-on 6177 |
This theorem is referenced by: onssneli 6283 oawordeulem 8195 rankuni 9330 tcrank 9351 cardne 9432 cardval2 9458 alephsuc2 9545 cfsmolem 9735 cfcof 9739 alephreg 10047 pwcfsdom 10048 tskcard 10246 lrcut 33666 onsucconni 34201 |
Copyright terms: Public domain | W3C validator |