MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneli Structured version   Visualization version   GIF version

Theorem oneli 6485
Description: A member of an ordinal number is an ordinal number. Theorem 7M(a) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
oneli (𝐵𝐴𝐵 ∈ On)

Proof of Theorem oneli
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 onelon 6396 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
31, 2mpan 688 1 (𝐵𝐴𝐵 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Oncon0 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6374  df-on 6375
This theorem is referenced by:  onssneli  6487  oawordeulem  8575  rankuni  9888  tcrank  9909  cardne  9990  cardval2  10016  alephsuc2  10105  cfsmolem  10295  cfcof  10299  alephreg  10607  pwcfsdom  10608  tskcard  10806  lrcut  27875  onsucconni  36052
  Copyright terms: Public domain W3C validator