MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomelir Structured version   Visualization version   GIF version

Theorem cardsdomelir 10014
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. This is half of the assertion cardsdomel 10015 and can be proven without the AC. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
cardsdomelir (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)

Proof of Theorem cardsdomelir
StepHypRef Expression
1 cardon 9985 . . . 4 (card‘𝐵) ∈ On
21onelssi 6498 . . . 4 (𝐴 ∈ (card‘𝐵) → 𝐴 ⊆ (card‘𝐵))
3 ssdomg 9041 . . . 4 ((card‘𝐵) ∈ On → (𝐴 ⊆ (card‘𝐵) → 𝐴 ≼ (card‘𝐵)))
41, 2, 3mpsyl 68 . . 3 (𝐴 ∈ (card‘𝐵) → 𝐴 ≼ (card‘𝐵))
5 elfvdm 6942 . . . 4 (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card)
6 cardid2 9994 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
75, 6syl 17 . . 3 (𝐴 ∈ (card‘𝐵) → (card‘𝐵) ≈ 𝐵)
8 domentr 9054 . . 3 ((𝐴 ≼ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴𝐵)
94, 7, 8syl2anc 584 . 2 (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)
10 cardne 10006 . 2 (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)
11 brsdom 9016 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
129, 10, 11sylanbrc 583 1 (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  wss 3950   class class class wbr 5142  dom cdm 5684  Oncon0 6383  cfv 6560  cen 8983  cdom 8984  csdm 8985  cardccrd 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-en 8987  df-dom 8988  df-sdom 8989  df-card 9980
This theorem is referenced by:  cardsdomel  10015  pwsdompw  10244  alephval2  10613  pwcfsdom  10624  tskcard  10822
  Copyright terms: Public domain W3C validator