| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardsdomelir | Structured version Visualization version GIF version | ||
| Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. This is half of the assertion cardsdomel 9906 and can be proven without the AC. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardsdomelir | ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≺ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9876 | . . . 4 ⊢ (card‘𝐵) ∈ On | |
| 2 | 1 | onelssi 6438 | . . . 4 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ⊆ (card‘𝐵)) |
| 3 | ssdomg 8949 | . . . 4 ⊢ ((card‘𝐵) ∈ On → (𝐴 ⊆ (card‘𝐵) → 𝐴 ≼ (card‘𝐵))) | |
| 4 | 1, 2, 3 | mpsyl 68 | . . 3 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≼ (card‘𝐵)) |
| 5 | elfvdm 6878 | . . . 4 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card) | |
| 6 | cardid2 9885 | . . . 4 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ (card‘𝐵) → (card‘𝐵) ≈ 𝐵) |
| 8 | domentr 8962 | . . 3 ⊢ ((𝐴 ≼ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴 ≼ 𝐵) | |
| 9 | 4, 7, 8 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≼ 𝐵) |
| 10 | cardne 9897 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) | |
| 11 | brsdom 8924 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 12 | 9, 10, 11 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≺ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 dom cdm 5631 Oncon0 6321 ‘cfv 6500 ≈ cen 8893 ≼ cdom 8894 ≺ csdm 8895 cardccrd 9867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6324 df-on 6325 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-en 8897 df-dom 8898 df-sdom 8899 df-card 9871 |
| This theorem is referenced by: cardsdomel 9906 pwsdompw 10135 alephval2 10504 pwcfsdom 10515 tskcard 10713 |
| Copyright terms: Public domain | W3C validator |