MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomelir Structured version   Visualization version   GIF version

Theorem cardsdomelir 9926
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. This is half of the assertion cardsdomel 9927 and can be proven without the AC. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
cardsdomelir (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)

Proof of Theorem cardsdomelir
StepHypRef Expression
1 cardon 9897 . . . 4 (card‘𝐵) ∈ On
21onelssi 6449 . . . 4 (𝐴 ∈ (card‘𝐵) → 𝐴 ⊆ (card‘𝐵))
3 ssdomg 8971 . . . 4 ((card‘𝐵) ∈ On → (𝐴 ⊆ (card‘𝐵) → 𝐴 ≼ (card‘𝐵)))
41, 2, 3mpsyl 68 . . 3 (𝐴 ∈ (card‘𝐵) → 𝐴 ≼ (card‘𝐵))
5 elfvdm 6895 . . . 4 (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card)
6 cardid2 9906 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
75, 6syl 17 . . 3 (𝐴 ∈ (card‘𝐵) → (card‘𝐵) ≈ 𝐵)
8 domentr 8984 . . 3 ((𝐴 ≼ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴𝐵)
94, 7, 8syl2anc 584 . 2 (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)
10 cardne 9918 . 2 (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)
11 brsdom 8946 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
129, 10, 11sylanbrc 583 1 (𝐴 ∈ (card‘𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wss 3914   class class class wbr 5107  dom cdm 5638  Oncon0 6332  cfv 6511  cen 8915  cdom 8916  csdm 8917  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-en 8919  df-dom 8920  df-sdom 8921  df-card 9892
This theorem is referenced by:  cardsdomel  9927  pwsdompw  10156  alephval2  10525  pwcfsdom  10536  tskcard  10734
  Copyright terms: Public domain W3C validator