| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardsdomelir | Structured version Visualization version GIF version | ||
| Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. This is half of the assertion cardsdomel 9873 and can be proven without the AC. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardsdomelir | ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≺ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9843 | . . . 4 ⊢ (card‘𝐵) ∈ On | |
| 2 | 1 | onelssi 6428 | . . . 4 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ⊆ (card‘𝐵)) |
| 3 | ssdomg 8928 | . . . 4 ⊢ ((card‘𝐵) ∈ On → (𝐴 ⊆ (card‘𝐵) → 𝐴 ≼ (card‘𝐵))) | |
| 4 | 1, 2, 3 | mpsyl 68 | . . 3 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≼ (card‘𝐵)) |
| 5 | elfvdm 6862 | . . . 4 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card) | |
| 6 | cardid2 9852 | . . . 4 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ (card‘𝐵) → (card‘𝐵) ≈ 𝐵) |
| 8 | domentr 8941 | . . 3 ⊢ ((𝐴 ≼ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝐴 ≼ 𝐵) | |
| 9 | 4, 7, 8 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≼ 𝐵) |
| 10 | cardne 9864 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) | |
| 11 | brsdom 8903 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
| 12 | 9, 10, 11 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ≺ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5093 dom cdm 5619 Oncon0 6312 ‘cfv 6487 ≈ cen 8872 ≼ cdom 8873 ≺ csdm 8874 cardccrd 9834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6315 df-on 6316 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-en 8876 df-dom 8877 df-sdom 8878 df-card 9838 |
| This theorem is referenced by: cardsdomel 9873 pwsdompw 10100 alephval2 10469 pwcfsdom 10480 tskcard 10678 |
| Copyright terms: Public domain | W3C validator |