MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsing Structured version   Visualization version   GIF version

Theorem alephsing 10290
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if (ℵ‘𝐴) < 𝐴, then (ℵ‘𝐴) is singular. Conversely, if (ℵ‘𝐴) is regular (i.e. weakly inaccessible), then (ℵ‘𝐴) = 𝐴, so 𝐴 has to be rather large (see alephfp 10122). Proposition 11.13 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephsing (Lim 𝐴 → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))

Proof of Theorem alephsing
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 10079 . . . . . . 7 ℵ Fn On
2 fnfun 6638 . . . . . . 7 (ℵ Fn On → Fun ℵ)
31, 2ax-mp 5 . . . . . 6 Fun ℵ
4 simpl 482 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ V)
5 resfunexg 7207 . . . . . 6 ((Fun ℵ ∧ 𝐴 ∈ V) → (ℵ ↾ 𝐴) ∈ V)
63, 4, 5sylancr 587 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴) ∈ V)
7 limelon 6417 . . . . . . . 8 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
8 onss 7779 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
97, 8syl 17 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ⊆ On)
10 fnssres 6661 . . . . . . 7 ((ℵ Fn On ∧ 𝐴 ⊆ On) → (ℵ ↾ 𝐴) Fn 𝐴)
111, 9, 10sylancr 587 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴) Fn 𝐴)
12 fvres 6895 . . . . . . . . . . 11 (𝑦𝐴 → ((ℵ ↾ 𝐴)‘𝑦) = (ℵ‘𝑦))
1312adantl 481 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) = (ℵ‘𝑦))
14 alephord2i 10091 . . . . . . . . . . 11 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
1514imp 406 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴))
1613, 15eqeltrd 2834 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
177, 16sylan 580 . . . . . . . 8 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
1817ralrimiva 3132 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → ∀𝑦𝐴 ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
19 fnfvrnss 7111 . . . . . . 7 (((ℵ ↾ 𝐴) Fn 𝐴 ∧ ∀𝑦𝐴 ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴)) → ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴))
2011, 18, 19syl2anc 584 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴))
21 df-f 6535 . . . . . 6 ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ↔ ((ℵ ↾ 𝐴) Fn 𝐴 ∧ ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴)))
2211, 20, 21sylanbrc 583 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴))
23 alephsmo 10116 . . . . . 6 Smo ℵ
241fndmi 6642 . . . . . . 7 dom ℵ = On
257, 24eleqtrrdi 2845 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ dom ℵ)
26 smores 8366 . . . . . 6 ((Smo ℵ ∧ 𝐴 ∈ dom ℵ) → Smo (ℵ ↾ 𝐴))
2723, 25, 26sylancr 587 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → Smo (ℵ ↾ 𝐴))
28 alephlim 10081 . . . . . . . 8 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑦𝐴 (ℵ‘𝑦))
2928eleq2d 2820 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝑥 ∈ (ℵ‘𝐴) ↔ 𝑥 𝑦𝐴 (ℵ‘𝑦)))
30 eliun 4971 . . . . . . . 8 (𝑥 𝑦𝐴 (ℵ‘𝑦) ↔ ∃𝑦𝐴 𝑥 ∈ (ℵ‘𝑦))
31 alephon 10083 . . . . . . . . . 10 (ℵ‘𝑦) ∈ On
3231onelssi 6469 . . . . . . . . 9 (𝑥 ∈ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑦))
3332reximi 3074 . . . . . . . 8 (∃𝑦𝐴 𝑥 ∈ (ℵ‘𝑦) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
3430, 33sylbi 217 . . . . . . 7 (𝑥 𝑦𝐴 (ℵ‘𝑦) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
3529, 34biimtrdi 253 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝑥 ∈ (ℵ‘𝐴) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
3635ralrimiv 3131 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
37 feq1 6686 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (𝑓:𝐴⟶(ℵ‘𝐴) ↔ (ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴)))
38 smoeq 8364 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (Smo 𝑓 ↔ Smo (ℵ ↾ 𝐴)))
39 fveq1 6875 . . . . . . . . . . . 12 (𝑓 = (ℵ ↾ 𝐴) → (𝑓𝑦) = ((ℵ ↾ 𝐴)‘𝑦))
4039, 12sylan9eq 2790 . . . . . . . . . . 11 ((𝑓 = (ℵ ↾ 𝐴) ∧ 𝑦𝐴) → (𝑓𝑦) = (ℵ‘𝑦))
4140sseq2d 3991 . . . . . . . . . 10 ((𝑓 = (ℵ ↾ 𝐴) ∧ 𝑦𝐴) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ⊆ (ℵ‘𝑦)))
4241rexbidva 3162 . . . . . . . . 9 (𝑓 = (ℵ ↾ 𝐴) → (∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
4342ralbidv 3163 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
4437, 38, 433anbi123d 1438 . . . . . . 7 (𝑓 = (ℵ ↾ 𝐴) → ((𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) ↔ ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))))
4544spcegv 3576 . . . . . 6 ((ℵ ↾ 𝐴) ∈ V → (((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦))))
4645imp 406 . . . . 5 (((ℵ ↾ 𝐴) ∈ V ∧ ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)))
476, 22, 27, 36, 46syl13anc 1374 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)))
48 alephon 10083 . . . . 5 (ℵ‘𝐴) ∈ On
49 cfcof 10288 . . . . 5 (((ℵ‘𝐴) ∈ On ∧ 𝐴 ∈ On) → (∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
5048, 7, 49sylancr 587 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → (∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
5147, 50mpd 15 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
5251expcom 413 . 2 (Lim 𝐴 → (𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
53 cf0 10265 . . 3 (cf‘∅) = ∅
54 fvprc 6868 . . . 4 𝐴 ∈ V → (ℵ‘𝐴) = ∅)
5554fveq2d 6880 . . 3 𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘∅))
56 fvprc 6868 . . 3 𝐴 ∈ V → (cf‘𝐴) = ∅)
5753, 55, 563eqtr4a 2796 . 2 𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
5852, 57pm2.61d1 180 1 (Lim 𝐴 → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926  c0 4308   ciun 4967  dom cdm 5654  ran crn 5655  cres 5656  Oncon0 6352  Lim wlim 6353  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  Smo wsmo 8359  cale 9950  cfccf 9951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-smo 8360  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-oi 9524  df-har 9571  df-card 9953  df-aleph 9954  df-cf 9955  df-acn 9956
This theorem is referenced by:  alephom  10599  winafp  10711
  Copyright terms: Public domain W3C validator