MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsing Structured version   Visualization version   GIF version

Theorem alephsing 10236
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if (ℵ‘𝐴) < 𝐴, then (ℵ‘𝐴) is singular. Conversely, if (ℵ‘𝐴) is regular (i.e. weakly inaccessible), then (ℵ‘𝐴) = 𝐴, so 𝐴 has to be rather large (see alephfp 10068). Proposition 11.13 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephsing (Lim 𝐴 → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))

Proof of Theorem alephsing
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 10025 . . . . . . 7 ℵ Fn On
2 fnfun 6621 . . . . . . 7 (ℵ Fn On → Fun ℵ)
31, 2ax-mp 5 . . . . . 6 Fun ℵ
4 simpl 482 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ V)
5 resfunexg 7192 . . . . . 6 ((Fun ℵ ∧ 𝐴 ∈ V) → (ℵ ↾ 𝐴) ∈ V)
63, 4, 5sylancr 587 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴) ∈ V)
7 limelon 6400 . . . . . . . 8 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
8 onss 7764 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
97, 8syl 17 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ⊆ On)
10 fnssres 6644 . . . . . . 7 ((ℵ Fn On ∧ 𝐴 ⊆ On) → (ℵ ↾ 𝐴) Fn 𝐴)
111, 9, 10sylancr 587 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴) Fn 𝐴)
12 fvres 6880 . . . . . . . . . . 11 (𝑦𝐴 → ((ℵ ↾ 𝐴)‘𝑦) = (ℵ‘𝑦))
1312adantl 481 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) = (ℵ‘𝑦))
14 alephord2i 10037 . . . . . . . . . . 11 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
1514imp 406 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴))
1613, 15eqeltrd 2829 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
177, 16sylan 580 . . . . . . . 8 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
1817ralrimiva 3126 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → ∀𝑦𝐴 ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
19 fnfvrnss 7096 . . . . . . 7 (((ℵ ↾ 𝐴) Fn 𝐴 ∧ ∀𝑦𝐴 ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴)) → ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴))
2011, 18, 19syl2anc 584 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴))
21 df-f 6518 . . . . . 6 ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ↔ ((ℵ ↾ 𝐴) Fn 𝐴 ∧ ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴)))
2211, 20, 21sylanbrc 583 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴))
23 alephsmo 10062 . . . . . 6 Smo ℵ
241fndmi 6625 . . . . . . 7 dom ℵ = On
257, 24eleqtrrdi 2840 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ dom ℵ)
26 smores 8324 . . . . . 6 ((Smo ℵ ∧ 𝐴 ∈ dom ℵ) → Smo (ℵ ↾ 𝐴))
2723, 25, 26sylancr 587 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → Smo (ℵ ↾ 𝐴))
28 alephlim 10027 . . . . . . . 8 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑦𝐴 (ℵ‘𝑦))
2928eleq2d 2815 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝑥 ∈ (ℵ‘𝐴) ↔ 𝑥 𝑦𝐴 (ℵ‘𝑦)))
30 eliun 4962 . . . . . . . 8 (𝑥 𝑦𝐴 (ℵ‘𝑦) ↔ ∃𝑦𝐴 𝑥 ∈ (ℵ‘𝑦))
31 alephon 10029 . . . . . . . . . 10 (ℵ‘𝑦) ∈ On
3231onelssi 6452 . . . . . . . . 9 (𝑥 ∈ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑦))
3332reximi 3068 . . . . . . . 8 (∃𝑦𝐴 𝑥 ∈ (ℵ‘𝑦) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
3430, 33sylbi 217 . . . . . . 7 (𝑥 𝑦𝐴 (ℵ‘𝑦) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
3529, 34biimtrdi 253 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝑥 ∈ (ℵ‘𝐴) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
3635ralrimiv 3125 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
37 feq1 6669 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (𝑓:𝐴⟶(ℵ‘𝐴) ↔ (ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴)))
38 smoeq 8322 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (Smo 𝑓 ↔ Smo (ℵ ↾ 𝐴)))
39 fveq1 6860 . . . . . . . . . . . 12 (𝑓 = (ℵ ↾ 𝐴) → (𝑓𝑦) = ((ℵ ↾ 𝐴)‘𝑦))
4039, 12sylan9eq 2785 . . . . . . . . . . 11 ((𝑓 = (ℵ ↾ 𝐴) ∧ 𝑦𝐴) → (𝑓𝑦) = (ℵ‘𝑦))
4140sseq2d 3982 . . . . . . . . . 10 ((𝑓 = (ℵ ↾ 𝐴) ∧ 𝑦𝐴) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ⊆ (ℵ‘𝑦)))
4241rexbidva 3156 . . . . . . . . 9 (𝑓 = (ℵ ↾ 𝐴) → (∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
4342ralbidv 3157 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
4437, 38, 433anbi123d 1438 . . . . . . 7 (𝑓 = (ℵ ↾ 𝐴) → ((𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) ↔ ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))))
4544spcegv 3566 . . . . . 6 ((ℵ ↾ 𝐴) ∈ V → (((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦))))
4645imp 406 . . . . 5 (((ℵ ↾ 𝐴) ∈ V ∧ ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)))
476, 22, 27, 36, 46syl13anc 1374 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)))
48 alephon 10029 . . . . 5 (ℵ‘𝐴) ∈ On
49 cfcof 10234 . . . . 5 (((ℵ‘𝐴) ∈ On ∧ 𝐴 ∈ On) → (∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
5048, 7, 49sylancr 587 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → (∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
5147, 50mpd 15 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
5251expcom 413 . 2 (Lim 𝐴 → (𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
53 cf0 10211 . . 3 (cf‘∅) = ∅
54 fvprc 6853 . . . 4 𝐴 ∈ V → (ℵ‘𝐴) = ∅)
5554fveq2d 6865 . . 3 𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘∅))
56 fvprc 6853 . . 3 𝐴 ∈ V → (cf‘𝐴) = ∅)
5753, 55, 563eqtr4a 2791 . 2 𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
5852, 57pm2.61d1 180 1 (Lim 𝐴 → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299   ciun 4958  dom cdm 5641  ran crn 5642  cres 5643  Oncon0 6335  Lim wlim 6336  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  Smo wsmo 8317  cale 9896  cfccf 9897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-smo 8318  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-har 9517  df-card 9899  df-aleph 9900  df-cf 9901  df-acn 9902
This theorem is referenced by:  alephom  10545  winafp  10657
  Copyright terms: Public domain W3C validator