Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmod2i2 Structured version   Visualization version   GIF version

Theorem lhpmod2i2 40157
Description: Modular law for hyperplanes analogous to atmod2i2 39981 for atoms. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
lhpmod.b 𝐵 = (Base‘𝐾)
lhpmod.l = (le‘𝐾)
lhpmod.j = (join‘𝐾)
lhpmod.m = (meet‘𝐾)
lhpmod.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmod2i2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))

Proof of Theorem lhpmod2i2
StepHypRef Expression
1 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
2 simp1r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑊𝐻)
3 eqid 2733 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
4 eqid 2733 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lhpmod.h . . . . 5 𝐻 = (LHyp‘𝐾)
63, 4, 5lhpocat 40136 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
71, 2, 6syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
8 hlop 39481 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ OP)
10 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑋𝐵)
11 lhpmod.b . . . . 5 𝐵 = (Base‘𝐾)
1211, 3opoccl 39313 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
139, 10, 12syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
14 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌𝐵)
1511, 3opoccl 39313 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
169, 14, 15syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
17 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌 𝑋)
18 lhpmod.l . . . . . 6 = (le‘𝐾)
1911, 18, 3oplecon3b 39319 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
209, 14, 10, 19syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑌 𝑋 ↔ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2117, 20mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))
22 lhpmod.j . . . 4 = (join‘𝐾)
23 lhpmod.m . . . 4 = (meet‘𝐾)
2411, 18, 22, 23, 4atmod1i2 39978 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
251, 7, 13, 16, 21, 24syl131anc 1385 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
261hllatd 39483 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ Lat)
2711, 5lhpbase 40117 . . . . . . 7 (𝑊𝐻𝑊𝐵)
282, 27syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑊𝐵)
2911, 23latmcl 18348 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
3026, 10, 28, 29syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 𝑊) ∈ 𝐵)
3111, 22latjcl 18347 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑊) 𝑌) ∈ 𝐵)
3226, 30, 14, 31syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) ∈ 𝐵)
3311, 22latjcl 18347 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑊𝐵𝑌𝐵) → (𝑊 𝑌) ∈ 𝐵)
3426, 28, 14, 33syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑊 𝑌) ∈ 𝐵)
3511, 23latmcl 18348 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑊 𝑌) ∈ 𝐵) → (𝑋 (𝑊 𝑌)) ∈ 𝐵)
3626, 10, 34, 35syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 (𝑊 𝑌)) ∈ 𝐵)
3711, 3opcon3b 39315 . . . 4 ((𝐾 ∈ OP ∧ ((𝑋 𝑊) 𝑌) ∈ 𝐵 ∧ (𝑋 (𝑊 𝑌)) ∈ 𝐵) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌))))
389, 32, 36, 37syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌))))
39 hlol 39480 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
401, 39syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ OL)
4111, 22, 23, 3oldmm1 39336 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (𝑊 𝑌) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))))
4240, 10, 34, 41syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))))
4311, 22, 23, 3oldmj1 39340 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑊𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑊 𝑌)) = (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌)))
4440, 28, 14, 43syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑊 𝑌)) = (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌)))
4544oveq2d 7368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))))
4642, 45eqtrd 2768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))))
4711, 22, 23, 3oldmj1 39340 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)))
4840, 30, 14, 47syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)))
4911, 22, 23, 3oldmm1 39336 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑊𝐵) → ((oc‘𝐾)‘(𝑋 𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
5040, 10, 28, 49syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
5150oveq1d 7367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
5248, 51eqtrd 2768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
5346, 52eqeq12d 2749 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) ↔ (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌))))
5438, 53bitrd 279 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌))))
5525, 54mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  occoc 17171  joincjn 18219  meetcmee 18220  Latclat 18339  OPcops 39291  OLcol 39293  Atomscatm 39382  HLchlt 39469  LHypclh 40103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-psubsp 39622  df-pmap 39623  df-padd 39915  df-lhyp 40107
This theorem is referenced by:  cdleme30a  40497  trlcolem  40845
  Copyright terms: Public domain W3C validator