Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmod2i2 Structured version   Visualization version   GIF version

Theorem lhpmod2i2 37056
Description: Modular law for hyperplanes analogous to atmod2i2 36880 for atoms. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
lhpmod.b 𝐵 = (Base‘𝐾)
lhpmod.l = (le‘𝐾)
lhpmod.j = (join‘𝐾)
lhpmod.m = (meet‘𝐾)
lhpmod.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmod2i2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))

Proof of Theorem lhpmod2i2
StepHypRef Expression
1 simp1l 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
2 simp1r 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑊𝐻)
3 eqid 2821 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
4 eqid 2821 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lhpmod.h . . . . 5 𝐻 = (LHyp‘𝐾)
63, 4, 5lhpocat 37035 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
71, 2, 6syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
8 hlop 36380 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ OP)
10 simp2l 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑋𝐵)
11 lhpmod.b . . . . 5 𝐵 = (Base‘𝐾)
1211, 3opoccl 36212 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
139, 10, 12syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
14 simp2r 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌𝐵)
1511, 3opoccl 36212 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
169, 14, 15syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
17 simp3 1130 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌 𝑋)
18 lhpmod.l . . . . . 6 = (le‘𝐾)
1911, 18, 3oplecon3b 36218 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
209, 14, 10, 19syl3anc 1363 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑌 𝑋 ↔ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2117, 20mpbid 233 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))
22 lhpmod.j . . . 4 = (join‘𝐾)
23 lhpmod.m . . . 4 = (meet‘𝐾)
2411, 18, 22, 23, 4atmod1i2 36877 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
251, 7, 13, 16, 21, 24syl131anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
261hllatd 36382 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ Lat)
2711, 5lhpbase 37016 . . . . . . 7 (𝑊𝐻𝑊𝐵)
282, 27syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑊𝐵)
2911, 23latmcl 17652 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
3026, 10, 28, 29syl3anc 1363 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 𝑊) ∈ 𝐵)
3111, 22latjcl 17651 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑊) 𝑌) ∈ 𝐵)
3226, 30, 14, 31syl3anc 1363 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) ∈ 𝐵)
3311, 22latjcl 17651 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑊𝐵𝑌𝐵) → (𝑊 𝑌) ∈ 𝐵)
3426, 28, 14, 33syl3anc 1363 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑊 𝑌) ∈ 𝐵)
3511, 23latmcl 17652 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑊 𝑌) ∈ 𝐵) → (𝑋 (𝑊 𝑌)) ∈ 𝐵)
3626, 10, 34, 35syl3anc 1363 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 (𝑊 𝑌)) ∈ 𝐵)
3711, 3opcon3b 36214 . . . 4 ((𝐾 ∈ OP ∧ ((𝑋 𝑊) 𝑌) ∈ 𝐵 ∧ (𝑋 (𝑊 𝑌)) ∈ 𝐵) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌))))
389, 32, 36, 37syl3anc 1363 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌))))
39 hlol 36379 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
401, 39syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ OL)
4111, 22, 23, 3oldmm1 36235 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (𝑊 𝑌) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))))
4240, 10, 34, 41syl3anc 1363 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))))
4311, 22, 23, 3oldmj1 36239 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑊𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑊 𝑌)) = (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌)))
4440, 28, 14, 43syl3anc 1363 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑊 𝑌)) = (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌)))
4544oveq2d 7161 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))))
4642, 45eqtrd 2856 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))))
4711, 22, 23, 3oldmj1 36239 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)))
4840, 30, 14, 47syl3anc 1363 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)))
4911, 22, 23, 3oldmm1 36235 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑊𝐵) → ((oc‘𝐾)‘(𝑋 𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
5040, 10, 28, 49syl3anc 1363 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
5150oveq1d 7160 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
5248, 51eqtrd 2856 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
5346, 52eqeq12d 2837 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) ↔ (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌))))
5438, 53bitrd 280 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌))))
5525, 54mpbird 258 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5058  cfv 6349  (class class class)co 7145  Basecbs 16473  lecple 16562  occoc 16563  joincjn 17544  meetcmee 17545  Latclat 17645  OPcops 36190  OLcol 36192  Atomscatm 36281  HLchlt 36368  LHypclh 37002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7680  df-2nd 7681  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-p1 17640  df-lat 17646  df-clat 17708  df-oposet 36194  df-ol 36196  df-oml 36197  df-covers 36284  df-ats 36285  df-atl 36316  df-cvlat 36340  df-hlat 36369  df-psubsp 36521  df-pmap 36522  df-padd 36814  df-lhyp 37006
This theorem is referenced by:  cdleme30a  37396  trlcolem  37744
  Copyright terms: Public domain W3C validator