Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmod2i2 Structured version   Visualization version   GIF version

Theorem lhpmod2i2 38031
Description: Modular law for hyperplanes analogous to atmod2i2 37855 for atoms. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
lhpmod.b 𝐵 = (Base‘𝐾)
lhpmod.l = (le‘𝐾)
lhpmod.j = (join‘𝐾)
lhpmod.m = (meet‘𝐾)
lhpmod.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmod2i2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))

Proof of Theorem lhpmod2i2
StepHypRef Expression
1 simp1l 1195 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
2 simp1r 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑊𝐻)
3 eqid 2739 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
4 eqid 2739 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lhpmod.h . . . . 5 𝐻 = (LHyp‘𝐾)
63, 4, 5lhpocat 38010 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
71, 2, 6syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
8 hlop 37355 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ OP)
10 simp2l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑋𝐵)
11 lhpmod.b . . . . 5 𝐵 = (Base‘𝐾)
1211, 3opoccl 37187 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
139, 10, 12syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
14 simp2r 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌𝐵)
1511, 3opoccl 37187 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
169, 14, 15syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
17 simp3 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌 𝑋)
18 lhpmod.l . . . . . 6 = (le‘𝐾)
1911, 18, 3oplecon3b 37193 . . . . 5 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
209, 14, 10, 19syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑌 𝑋 ↔ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2117, 20mpbid 231 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌))
22 lhpmod.j . . . 4 = (join‘𝐾)
23 lhpmod.m . . . 4 = (meet‘𝐾)
2411, 18, 22, 23, 4atmod1i2 37852 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
251, 7, 13, 16, 21, 24syl131anc 1381 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
261hllatd 37357 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ Lat)
2711, 5lhpbase 37991 . . . . . . 7 (𝑊𝐻𝑊𝐵)
282, 27syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑊𝐵)
2911, 23latmcl 18139 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
3026, 10, 28, 29syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 𝑊) ∈ 𝐵)
3111, 22latjcl 18138 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑊) 𝑌) ∈ 𝐵)
3226, 30, 14, 31syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) ∈ 𝐵)
3311, 22latjcl 18138 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑊𝐵𝑌𝐵) → (𝑊 𝑌) ∈ 𝐵)
3426, 28, 14, 33syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑊 𝑌) ∈ 𝐵)
3511, 23latmcl 18139 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑊 𝑌) ∈ 𝐵) → (𝑋 (𝑊 𝑌)) ∈ 𝐵)
3626, 10, 34, 35syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 (𝑊 𝑌)) ∈ 𝐵)
3711, 3opcon3b 37189 . . . 4 ((𝐾 ∈ OP ∧ ((𝑋 𝑊) 𝑌) ∈ 𝐵 ∧ (𝑋 (𝑊 𝑌)) ∈ 𝐵) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌))))
389, 32, 36, 37syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌))))
39 hlol 37354 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
401, 39syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ OL)
4111, 22, 23, 3oldmm1 37210 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (𝑊 𝑌) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))))
4240, 10, 34, 41syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))))
4311, 22, 23, 3oldmj1 37214 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑊𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑊 𝑌)) = (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌)))
4440, 28, 14, 43syl3anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑊 𝑌)) = (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌)))
4544oveq2d 7284 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))))
4642, 45eqtrd 2779 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))))
4711, 22, 23, 3oldmj1 37214 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑊) ∈ 𝐵𝑌𝐵) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)))
4840, 30, 14, 47syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)))
4911, 22, 23, 3oldmm1 37210 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑊𝐵) → ((oc‘𝐾)‘(𝑋 𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
5040, 10, 28, 49syl3anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘(𝑋 𝑊)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)))
5150oveq1d 7283 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘(𝑋 𝑊)) ((oc‘𝐾)‘𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
5248, 51eqtrd 2779 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌)))
5346, 52eqeq12d 2755 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((oc‘𝐾)‘(𝑋 (𝑊 𝑌))) = ((oc‘𝐾)‘((𝑋 𝑊) 𝑌)) ↔ (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌))))
5438, 53bitrd 278 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)) ↔ (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑌))) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑊)) ((oc‘𝐾)‘𝑌))))
5525, 54mpbird 256 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑊) 𝑌) = (𝑋 (𝑊 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  lecple 16950  occoc 16951  joincjn 18010  meetcmee 18011  Latclat 18130  OPcops 37165  OLcol 37167  Atomscatm 37256  HLchlt 37343  LHypclh 37977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-p1 18125  df-lat 18131  df-clat 18198  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-psubsp 37496  df-pmap 37497  df-padd 37789  df-lhyp 37981
This theorem is referenced by:  cdleme30a  38371  trlcolem  38719
  Copyright terms: Public domain W3C validator