Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrcmp2 Structured version   Visualization version   GIF version

Theorem cvrcmp2 36412
Description: If two lattice elements covered by a third are comparable, then they are equal. (Contributed by NM, 20-Jun-2012.)
Hypotheses
Ref Expression
cvrcmp.b 𝐵 = (Base‘𝐾)
cvrcmp.l = (le‘𝐾)
cvrcmp.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrcmp2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem cvrcmp2
StepHypRef Expression
1 opposet 36309 . . . 4 (𝐾 ∈ OP → 𝐾 ∈ Poset)
213ad2ant1 1128 . . 3 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → 𝐾 ∈ Poset)
3 simp1 1131 . . . 4 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → 𝐾 ∈ OP)
4 simp22 1202 . . . 4 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → 𝑌𝐵)
5 cvrcmp.b . . . . 5 𝐵 = (Base‘𝐾)
6 eqid 2819 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
75, 6opoccl 36322 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
83, 4, 7syl2anc 586 . . 3 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
9 simp21 1201 . . . 4 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → 𝑋𝐵)
105, 6opoccl 36322 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
113, 9, 10syl2anc 586 . . 3 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
12 simp23 1203 . . . 4 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → 𝑍𝐵)
135, 6opoccl 36322 . . . 4 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
143, 12, 13syl2anc 586 . . 3 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
15 cvrcmp.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
165, 6, 15cvrcon3b 36405 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍 ↔ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋)))
17163adant3r2 1178 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍 ↔ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋)))
185, 6, 15cvrcon3b 36405 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑍𝐵) → (𝑌𝐶𝑍 ↔ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌)))
19183adant3r1 1177 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌𝐶𝑍 ↔ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌)))
2017, 19anbi12d 632 . . . . 5 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑍𝑌𝐶𝑍) ↔ (((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋) ∧ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌))))
2120biimp3a 1463 . . . 4 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋) ∧ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌)))
2221ancomd 464 . . 3 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋)))
23 cvrcmp.l . . . 4 = (le‘𝐾)
245, 23, 15cvrcmp 36411 . . 3 ((𝐾 ∈ Poset ∧ (((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋))) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘𝑌) = ((oc‘𝐾)‘𝑋)))
252, 8, 11, 14, 22, 24syl131anc 1378 . 2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘𝑌) = ((oc‘𝐾)‘𝑋)))
265, 23, 6oplecon3b 36328 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
273, 9, 4, 26syl3anc 1366 . 2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (𝑋 𝑌 ↔ ((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
285, 6opcon3b 36324 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ((oc‘𝐾)‘𝑌) = ((oc‘𝐾)‘𝑋)))
293, 9, 4, 28syl3anc 1366 . 2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (𝑋 = 𝑌 ↔ ((oc‘𝐾)‘𝑌) = ((oc‘𝐾)‘𝑋)))
3025, 27, 293bitr4d 313 1 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108   class class class wbr 5057  cfv 6348  Basecbs 16475  lecple 16564  occoc 16565  Posetcpo 17542  OPcops 36300  ccvr 36390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7151  df-proset 17530  df-poset 17548  df-plt 17560  df-oposet 36304  df-covers 36394
This theorem is referenced by:  llncvrlpln  36686  lplncvrlvol  36744
  Copyright terms: Public domain W3C validator