Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrcmp2 Structured version   Visualization version   GIF version

Theorem cvrcmp2 39262
Description: If two lattice elements covered by a third are comparable, then they are equal. (Contributed by NM, 20-Jun-2012.)
Hypotheses
Ref Expression
cvrcmp.b 𝐵 = (Base‘𝐾)
cvrcmp.l = (le‘𝐾)
cvrcmp.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrcmp2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem cvrcmp2
StepHypRef Expression
1 opposet 39159 . . . 4 (𝐾 ∈ OP → 𝐾 ∈ Poset)
213ad2ant1 1133 . . 3 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → 𝐾 ∈ Poset)
3 simp1 1136 . . . 4 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → 𝐾 ∈ OP)
4 simp22 1208 . . . 4 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → 𝑌𝐵)
5 cvrcmp.b . . . . 5 𝐵 = (Base‘𝐾)
6 eqid 2729 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
75, 6opoccl 39172 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
83, 4, 7syl2anc 584 . . 3 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
9 simp21 1207 . . . 4 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → 𝑋𝐵)
105, 6opoccl 39172 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
113, 9, 10syl2anc 584 . . 3 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
12 simp23 1209 . . . 4 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → 𝑍𝐵)
135, 6opoccl 39172 . . . 4 ((𝐾 ∈ OP ∧ 𝑍𝐵) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
143, 12, 13syl2anc 584 . . 3 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → ((oc‘𝐾)‘𝑍) ∈ 𝐵)
15 cvrcmp.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
165, 6, 15cvrcon3b 39255 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑍𝐵) → (𝑋𝐶𝑍 ↔ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋)))
17163adant3r2 1184 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑍 ↔ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋)))
185, 6, 15cvrcon3b 39255 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑍𝐵) → (𝑌𝐶𝑍 ↔ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌)))
19183adant3r1 1183 . . . . . 6 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌𝐶𝑍 ↔ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌)))
2017, 19anbi12d 632 . . . . 5 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑍𝑌𝐶𝑍) ↔ (((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋) ∧ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌))))
2120biimp3a 1471 . . . 4 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋) ∧ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌)))
2221ancomd 461 . . 3 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋)))
23 cvrcmp.l . . . 4 = (le‘𝐾)
245, 23, 15cvrcmp 39261 . . 3 ((𝐾 ∈ Poset ∧ (((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑍) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑌) ∧ ((oc‘𝐾)‘𝑍)𝐶((oc‘𝐾)‘𝑋))) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘𝑌) = ((oc‘𝐾)‘𝑋)))
252, 8, 11, 14, 22, 24syl131anc 1385 . 2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋) ↔ ((oc‘𝐾)‘𝑌) = ((oc‘𝐾)‘𝑋)))
265, 23, 6oplecon3b 39178 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
273, 9, 4, 26syl3anc 1373 . 2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (𝑋 𝑌 ↔ ((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
285, 6opcon3b 39174 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ((oc‘𝐾)‘𝑌) = ((oc‘𝐾)‘𝑋)))
293, 9, 4, 28syl3anc 1373 . 2 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (𝑋 = 𝑌 ↔ ((oc‘𝐾)‘𝑌) = ((oc‘𝐾)‘𝑋)))
3025, 27, 293bitr4d 311 1 ((𝐾 ∈ OP ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋𝐶𝑍𝑌𝐶𝑍)) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  Basecbs 17138  lecple 17186  occoc 17187  Posetcpo 18231  OPcops 39150  ccvr 39240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-proset 18218  df-poset 18237  df-plt 18252  df-oposet 39154  df-covers 39244
This theorem is referenced by:  llncvrlpln  39537  lplncvrlvol  39595
  Copyright terms: Public domain W3C validator