Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmod6i1 Structured version   Visualization version   GIF version

Theorem lhpmod6i1 37042
Description: Modular law for hyperplanes analogous to complement of atmod2i1 36864 for atoms. (Contributed by NM, 1-Jun-2013.)
Hypotheses
Ref Expression
lhpmod.b 𝐵 = (Base‘𝐾)
lhpmod.l = (le‘𝐾)
lhpmod.j = (join‘𝐾)
lhpmod.m = (meet‘𝐾)
lhpmod.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmod6i1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊))

Proof of Theorem lhpmod6i1
StepHypRef Expression
1 simp1l 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ HL)
2 simp1r 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑊𝐻)
3 eqid 2826 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
4 eqid 2826 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lhpmod.h . . . . 5 𝐻 = (LHyp‘𝐾)
63, 4, 5lhpocat 37020 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
71, 2, 6syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
8 hlop 36365 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ OP)
10 simp2l 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑋𝐵)
11 lhpmod.b . . . . 5 𝐵 = (Base‘𝐾)
1211, 3opoccl 36197 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
139, 10, 12syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
14 simp2r 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑌𝐵)
1511, 3opoccl 36197 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
169, 14, 15syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
17 simp3 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑋 𝑊)
1811, 5lhpbase 37001 . . . . . 6 (𝑊𝐻𝑊𝐵)
192, 18syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑊𝐵)
20 lhpmod.l . . . . . 6 = (le‘𝐾)
2111, 20, 3oplecon3b 36203 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊 ↔ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)))
229, 10, 19, 21syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 𝑊 ↔ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)))
2317, 22mpbid 233 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋))
24 lhpmod.j . . . 4 = (join‘𝐾)
25 lhpmod.m . . . 4 = (meet‘𝐾)
2611, 20, 24, 25, 4atmod2i1 36864 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
271, 7, 13, 16, 23, 26syl131anc 1377 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
281hllatd 36367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ Lat)
2911, 25latmcl 17652 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
3028, 14, 19, 29syl3anc 1365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑌 𝑊) ∈ 𝐵)
3111, 24latjcl 17651 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑋 (𝑌 𝑊)) ∈ 𝐵)
3228, 10, 30, 31syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) ∈ 𝐵)
3311, 24latjcl 17651 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3428, 10, 14, 33syl3anc 1365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 𝑌) ∈ 𝐵)
3511, 25latmcl 17652 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑊𝐵) → ((𝑋 𝑌) 𝑊) ∈ 𝐵)
3628, 34, 19, 35syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 𝑌) 𝑊) ∈ 𝐵)
3711, 3opcon3b 36199 . . . 4 ((𝐾 ∈ OP ∧ (𝑋 (𝑌 𝑊)) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑊) ∈ 𝐵) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊)))))
389, 32, 36, 37syl3anc 1365 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊)))))
39 hlol 36364 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
401, 39syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ OL)
4111, 24, 25, 3oldmm1 36220 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵𝑊𝐵) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)))
4240, 34, 19, 41syl3anc 1365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)))
4311, 24, 25, 3oldmj1 36224 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
4440, 10, 14, 43syl3anc 1365 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
4544oveq1d 7163 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)))
4642, 45eqtrd 2861 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)))
4711, 24, 25, 3oldmj1 36224 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))))
4840, 10, 30, 47syl3anc 1365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))))
4911, 24, 25, 3oldmm1 36220 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑊𝐵) → ((oc‘𝐾)‘(𝑌 𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
5040, 14, 19, 49syl3anc 1365 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑌 𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
5150oveq2d 7164 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
5248, 51eqtrd 2861 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
5346, 52eqeq12d 2842 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) ↔ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))))
5438, 53bitrd 280 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))))
5527, 54mpbird 258 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5063  cfv 6352  (class class class)co 7148  Basecbs 16473  lecple 16562  occoc 16563  joincjn 17544  meetcmee 17545  Latclat 17645  OPcops 36175  OLcol 36177  Atomscatm 36266  HLchlt 36353  LHypclh 36987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7680  df-2nd 7681  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-p1 17640  df-lat 17646  df-clat 17708  df-oposet 36179  df-ol 36181  df-oml 36182  df-covers 36269  df-ats 36270  df-atl 36301  df-cvlat 36325  df-hlat 36354  df-psubsp 36506  df-pmap 36507  df-padd 36799  df-lhyp 36991
This theorem is referenced by:  lhple  37045  trlcolem  37729
  Copyright terms: Public domain W3C validator