Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmod6i1 Structured version   Visualization version   GIF version

Theorem lhpmod6i1 40211
Description: Modular law for hyperplanes analogous to complement of atmod2i1 40033 for atoms. (Contributed by NM, 1-Jun-2013.)
Hypotheses
Ref Expression
lhpmod.b 𝐵 = (Base‘𝐾)
lhpmod.l = (le‘𝐾)
lhpmod.j = (join‘𝐾)
lhpmod.m = (meet‘𝐾)
lhpmod.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmod6i1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊))

Proof of Theorem lhpmod6i1
StepHypRef Expression
1 simp1l 1198 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ HL)
2 simp1r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑊𝐻)
3 eqid 2733 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
4 eqid 2733 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lhpmod.h . . . . 5 𝐻 = (LHyp‘𝐾)
63, 4, 5lhpocat 40189 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
71, 2, 6syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
8 hlop 39534 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ OP)
10 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑋𝐵)
11 lhpmod.b . . . . 5 𝐵 = (Base‘𝐾)
1211, 3opoccl 39366 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
139, 10, 12syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
14 simp2r 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑌𝐵)
1511, 3opoccl 39366 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
169, 14, 15syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
17 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑋 𝑊)
1811, 5lhpbase 40170 . . . . . 6 (𝑊𝐻𝑊𝐵)
192, 18syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑊𝐵)
20 lhpmod.l . . . . . 6 = (le‘𝐾)
2111, 20, 3oplecon3b 39372 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊 ↔ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)))
229, 10, 19, 21syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 𝑊 ↔ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)))
2317, 22mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋))
24 lhpmod.j . . . 4 = (join‘𝐾)
25 lhpmod.m . . . 4 = (meet‘𝐾)
2611, 20, 24, 25, 4atmod2i1 40033 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
271, 7, 13, 16, 23, 26syl131anc 1385 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
281hllatd 39536 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ Lat)
2911, 25latmcl 18354 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
3028, 14, 19, 29syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑌 𝑊) ∈ 𝐵)
3111, 24latjcl 18353 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑋 (𝑌 𝑊)) ∈ 𝐵)
3228, 10, 30, 31syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) ∈ 𝐵)
3311, 24latjcl 18353 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3428, 10, 14, 33syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 𝑌) ∈ 𝐵)
3511, 25latmcl 18354 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑊𝐵) → ((𝑋 𝑌) 𝑊) ∈ 𝐵)
3628, 34, 19, 35syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 𝑌) 𝑊) ∈ 𝐵)
3711, 3opcon3b 39368 . . . 4 ((𝐾 ∈ OP ∧ (𝑋 (𝑌 𝑊)) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑊) ∈ 𝐵) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊)))))
389, 32, 36, 37syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊)))))
39 hlol 39533 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
401, 39syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ OL)
4111, 24, 25, 3oldmm1 39389 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵𝑊𝐵) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)))
4240, 34, 19, 41syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)))
4311, 24, 25, 3oldmj1 39393 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
4440, 10, 14, 43syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
4544oveq1d 7370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)))
4642, 45eqtrd 2768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)))
4711, 24, 25, 3oldmj1 39393 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))))
4840, 10, 30, 47syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))))
4911, 24, 25, 3oldmm1 39389 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑊𝐵) → ((oc‘𝐾)‘(𝑌 𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
5040, 14, 19, 49syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑌 𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
5150oveq2d 7371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
5248, 51eqtrd 2768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
5346, 52eqeq12d 2749 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) ↔ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))))
5438, 53bitrd 279 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))))
5527, 54mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  occoc 17176  joincjn 18225  meetcmee 18226  Latclat 18345  OPcops 39344  OLcol 39346  Atomscatm 39435  HLchlt 39522  LHypclh 40156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-psubsp 39675  df-pmap 39676  df-padd 39968  df-lhyp 40160
This theorem is referenced by:  lhple  40214  trlcolem  40898
  Copyright terms: Public domain W3C validator