Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmod6i1 Structured version   Visualization version   GIF version

Theorem lhpmod6i1 35927
Description: Modular law for hyperplanes analogous to complement of atmod2i1 35749 for atoms. (Contributed by NM, 1-Jun-2013.)
Hypotheses
Ref Expression
lhpmod.b 𝐵 = (Base‘𝐾)
lhpmod.l = (le‘𝐾)
lhpmod.j = (join‘𝐾)
lhpmod.m = (meet‘𝐾)
lhpmod.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmod6i1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊))

Proof of Theorem lhpmod6i1
StepHypRef Expression
1 simp1l 1254 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ HL)
2 simp1r 1255 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑊𝐻)
3 eqid 2765 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
4 eqid 2765 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lhpmod.h . . . . 5 𝐻 = (LHyp‘𝐾)
63, 4, 5lhpocat 35905 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
71, 2, 6syl2anc 579 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾))
8 hlop 35250 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
91, 8syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ OP)
10 simp2l 1256 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑋𝐵)
11 lhpmod.b . . . . 5 𝐵 = (Base‘𝐾)
1211, 3opoccl 35082 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
139, 10, 12syl2anc 579 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
14 simp2r 1257 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑌𝐵)
1511, 3opoccl 35082 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
169, 14, 15syl2anc 579 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
17 simp3 1168 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑋 𝑊)
1811, 5lhpbase 35886 . . . . . 6 (𝑊𝐻𝑊𝐵)
192, 18syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝑊𝐵)
20 lhpmod.l . . . . . 6 = (le‘𝐾)
2111, 20, 3oplecon3b 35088 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊 ↔ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)))
229, 10, 19, 21syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 𝑊 ↔ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)))
2317, 22mpbid 223 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋))
24 lhpmod.j . . . 4 = (join‘𝐾)
25 lhpmod.m . . . 4 = (meet‘𝐾)
2611, 20, 24, 25, 4atmod2i1 35749 . . 3 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑊) ((oc‘𝐾)‘𝑋)) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
271, 7, 13, 16, 23, 26syl131anc 1502 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
281hllatd 35252 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ Lat)
2911, 25latmcl 17320 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
3028, 14, 19, 29syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑌 𝑊) ∈ 𝐵)
3111, 24latjcl 17319 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → (𝑋 (𝑌 𝑊)) ∈ 𝐵)
3228, 10, 30, 31syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) ∈ 𝐵)
3311, 24latjcl 17319 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3428, 10, 14, 33syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 𝑌) ∈ 𝐵)
3511, 25latmcl 17320 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑊𝐵) → ((𝑋 𝑌) 𝑊) ∈ 𝐵)
3628, 34, 19, 35syl3anc 1490 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 𝑌) 𝑊) ∈ 𝐵)
3711, 3opcon3b 35084 . . . 4 ((𝐾 ∈ OP ∧ (𝑋 (𝑌 𝑊)) ∈ 𝐵 ∧ ((𝑋 𝑌) 𝑊) ∈ 𝐵) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊)))))
389, 32, 36, 37syl3anc 1490 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊)))))
39 hlol 35249 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
401, 39syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → 𝐾 ∈ OL)
4111, 24, 25, 3oldmm1 35105 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑋 𝑌) ∈ 𝐵𝑊𝐵) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)))
4240, 34, 19, 41syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)))
4311, 24, 25, 3oldmj1 35109 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
4440, 10, 14, 43syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
4544oveq1d 6857 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘(𝑋 𝑌)) ((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)))
4642, 45eqtrd 2799 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)))
4711, 24, 25, 3oldmj1 35109 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑋𝐵 ∧ (𝑌 𝑊) ∈ 𝐵) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))))
4840, 10, 30, 47syl3anc 1490 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))))
4911, 24, 25, 3oldmm1 35105 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑌𝐵𝑊𝐵) → ((oc‘𝐾)‘(𝑌 𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
5040, 14, 19, 49syl3anc 1490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑌 𝑊)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))
5150oveq2d 6858 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘(𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
5248, 51eqtrd 2799 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊))))
5346, 52eqeq12d 2780 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (((oc‘𝐾)‘((𝑋 𝑌) 𝑊)) = ((oc‘𝐾)‘(𝑋 (𝑌 𝑊))) ↔ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))))
5438, 53bitrd 270 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → ((𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊) ↔ ((((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) ((oc‘𝐾)‘𝑊)) = (((oc‘𝐾)‘𝑋) (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑊)))))
5527, 54mpbird 248 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑊) → (𝑋 (𝑌 𝑊)) = ((𝑋 𝑌) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155   class class class wbr 4809  cfv 6068  (class class class)co 6842  Basecbs 16132  lecple 16223  occoc 16224  joincjn 17212  meetcmee 17213  Latclat 17313  OPcops 35060  OLcol 35062  Atomscatm 35151  HLchlt 35238  LHypclh 35872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-proset 17196  df-poset 17214  df-plt 17226  df-lub 17242  df-glb 17243  df-join 17244  df-meet 17245  df-p0 17307  df-p1 17308  df-lat 17314  df-clat 17376  df-oposet 35064  df-ol 35066  df-oml 35067  df-covers 35154  df-ats 35155  df-atl 35186  df-cvlat 35210  df-hlat 35239  df-psubsp 35391  df-pmap 35392  df-padd 35684  df-lhyp 35876
This theorem is referenced by:  lhple  35930  trlcolem  36614
  Copyright terms: Public domain W3C validator