| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelf | Structured version Visualization version GIF version | ||
| Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelf | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝐷〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssxp 6673 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 2 | 1 | sseld 3928 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝐷〉 ∈ 𝐹 → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵))) |
| 3 | opelxp 5647 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
| 4 | 2, 3 | imbitrdi 251 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝐷〉 ∈ 𝐹 → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵))) |
| 5 | 4 | imp 406 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝐷〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 〈cop 4577 × cxp 5609 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-f 6480 |
| This theorem is referenced by: feu 6694 fcnvres 6695 fsn 7063 |
| Copyright terms: Public domain | W3C validator |