MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelf Structured version   Visualization version   GIF version

Theorem opelf 6770
Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelf ((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶𝐴𝐷𝐵))

Proof of Theorem opelf
StepHypRef Expression
1 fssxp 6764 . . . 4 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
21sseld 3994 . . 3 (𝐹:𝐴𝐵 → (⟨𝐶, 𝐷⟩ ∈ 𝐹 → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)))
3 opelxp 5725 . . 3 (⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵) ↔ (𝐶𝐴𝐷𝐵))
42, 3imbitrdi 251 . 2 (𝐹:𝐴𝐵 → (⟨𝐶, 𝐷⟩ ∈ 𝐹 → (𝐶𝐴𝐷𝐵)))
54imp 406 1 ((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  cop 4637   × cxp 5687  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  feu  6785  fcnvres  6786  fsn  7155
  Copyright terms: Public domain W3C validator