Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelf | Structured version Visualization version GIF version |
Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelf | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝐷〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 6673 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
2 | 1 | sseld 3930 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝐷〉 ∈ 𝐹 → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵))) |
3 | opelxp 5650 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
4 | 2, 3 | syl6ib 250 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝐷〉 ∈ 𝐹 → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵))) |
5 | 4 | imp 407 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝐷〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 〈cop 4578 × cxp 5612 ⟶wf 6469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-fun 6475 df-fn 6476 df-f 6477 |
This theorem is referenced by: feu 6695 fcnvres 6696 fsn 7057 |
Copyright terms: Public domain | W3C validator |