![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelf | Structured version Visualization version GIF version |
Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelf | ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 6701 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
2 | 1 | sseld 3948 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝐷⟩ ∈ 𝐹 → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵))) |
3 | opelxp 5674 | . . 3 ⊢ (⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
4 | 2, 3 | syl6ib 251 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝐷⟩ ∈ 𝐹 → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵))) |
5 | 4 | imp 408 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ⟨cop 4597 × cxp 5636 ⟶wf 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-opab 5173 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-fun 6503 df-fn 6504 df-f 6505 |
This theorem is referenced by: feu 6723 fcnvres 6724 fsn 7086 |
Copyright terms: Public domain | W3C validator |