| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelf | Structured version Visualization version GIF version | ||
| Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelf | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝐷〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssxp 6683 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
| 2 | 1 | sseld 3936 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝐷〉 ∈ 𝐹 → 〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵))) |
| 3 | opelxp 5659 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ (𝐴 × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
| 4 | 2, 3 | imbitrdi 251 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝐷〉 ∈ 𝐹 → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵))) |
| 5 | 4 | imp 406 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝐷〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 〈cop 4585 × cxp 5621 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: feu 6704 fcnvres 6705 fsn 7073 |
| Copyright terms: Public domain | W3C validator |