MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelf Structured version   Visualization version   GIF version

Theorem opelf 6619
Description: The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelf ((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶𝐴𝐷𝐵))

Proof of Theorem opelf
StepHypRef Expression
1 fssxp 6612 . . . 4 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
21sseld 3916 . . 3 (𝐹:𝐴𝐵 → (⟨𝐶, 𝐷⟩ ∈ 𝐹 → ⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵)))
3 opelxp 5616 . . 3 (⟨𝐶, 𝐷⟩ ∈ (𝐴 × 𝐵) ↔ (𝐶𝐴𝐷𝐵))
42, 3syl6ib 250 . 2 (𝐹:𝐴𝐵 → (⟨𝐶, 𝐷⟩ ∈ 𝐹 → (𝐶𝐴𝐷𝐵)))
54imp 406 1 ((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cop 4564   × cxp 5578  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  feu  6634  fcnvres  6635  fsn  6989
  Copyright terms: Public domain W3C validator