MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 6742
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 6719 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 6264 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 6723 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 4039 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 6721 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5690 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 584 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3991 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3947   × cxp 5673  dom cdm 5675  ran crn 5676  Rel wrel 5680  wf 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-fun 6542  df-fn 6543  df-f 6544
This theorem is referenced by:  funssxp  6743  opelf  6749  dff2  7097  dff3  7098  fndifnfp  7170  fex2  7920  fabexg  7921  f2ndf  8102  f1o2ndf1  8104  mapex  8822  fsetsspwxp  8843  uniixp  8911  wdom2d  9571  rankfu  9868  dfac12lem2  10135  infmap2  10209  axdc3lem  10441  fnct  10528  tskcard  10772  ixxex  13331  imasvscafn  17479  imasvscaf  17481  fnmrc  17547  mrcfval  17548  isacs1i  17597  mreacs  17598  pjfval  21252  pjpm  21254  isngp2  24097  volf  25037  fgraphopab  41937  dfno2  42164  issmflem  45429
  Copyright terms: Public domain W3C validator