MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 6715
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 6693 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 6241 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 6697 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 4005 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 6695 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5653 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 584 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3957 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3914   × cxp 5636  dom cdm 5638  ran crn 5639  Rel wrel 5643  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  funssxp  6716  opelf  6721  dff2  7071  dff3  7072  fndifnfp  7150  fex2  7912  fabexd  7913  fabexgOLD  7915  f2ndf  8099  f1o2ndf1  8101  mapexOLD  8805  fsetsspwxp  8826  uniixp  8894  wdom2d  9533  rankfu  9830  dfac12lem2  10098  infmap2  10170  axdc3lem  10403  fnct  10490  tskcard  10734  ixxex  13317  imasvscafn  17500  imasvscaf  17502  fnmrc  17568  mrcfval  17569  isacs1i  17618  mreacs  17619  pjfval  21615  pjpm  21617  isngp2  24485  volf  25430  fgraphopab  43192  dfno2  43417  issmflem  46725
  Copyright terms: Public domain W3C validator