MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 6612
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 6589 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 6161 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 6593 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 3973 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 6591 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5595 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 583 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3927 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wss 3883   × cxp 5578  dom cdm 5580  ran crn 5581  Rel wrel 5585  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  funssxp  6613  opelf  6619  dff2  6957  dff3  6958  fndifnfp  7030  fex2  7754  fabexg  7755  f2ndf  7932  f1o2ndf1  7934  mapex  8579  fsetsspwxp  8599  uniixp  8667  wdom2d  9269  rankfu  9566  dfac12lem2  9831  infmap2  9905  axdc3lem  10137  fnct  10224  tskcard  10468  ixxex  13019  imasvscafn  17165  imasvscaf  17167  fnmrc  17233  mrcfval  17234  isacs1i  17283  mreacs  17284  pjfval  20823  pjpm  20825  isngp2  23659  volf  24598  fgraphopab  40951  issmflem  44150
  Copyright terms: Public domain W3C validator