MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 6683
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 6661 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 6221 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 6665 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 3996 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 6663 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5638 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 584 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3948 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3905   × cxp 5621  dom cdm 5623  ran crn 5624  Rel wrel 5628  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  funssxp  6684  opelf  6689  dff2  7037  dff3  7038  fndifnfp  7116  fex2  7876  fabexd  7877  fabexgOLD  7879  f2ndf  8060  f1o2ndf1  8062  mapexOLD  8766  fsetsspwxp  8787  uniixp  8855  wdom2d  9491  rankfu  9792  dfac12lem2  10058  infmap2  10130  axdc3lem  10363  fnct  10450  tskcard  10694  ixxex  13277  imasvscafn  17459  imasvscaf  17461  fnmrc  17531  mrcfval  17532  isacs1i  17581  mreacs  17582  pjfval  21631  pjpm  21633  isngp2  24501  volf  25446  fgraphopab  43176  dfno2  43401  issmflem  46709
  Copyright terms: Public domain W3C validator