![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssxp | Structured version Visualization version GIF version |
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fssxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frel 6723 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
2 | relssdmrn 6268 | . . 3 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
4 | fdm 6727 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | eqimss 4041 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
7 | frn 6725 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
8 | xpss12 5692 | . . 3 ⊢ ((dom 𝐹 ⊆ 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) | |
9 | 6, 7, 8 | syl2anc 585 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) |
10 | 3, 9 | sstrd 3993 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ⊆ wss 3949 × cxp 5675 dom cdm 5677 ran crn 5678 Rel wrel 5682 ⟶wf 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-f 6548 |
This theorem is referenced by: funssxp 6747 opelf 6753 dff2 7101 dff3 7102 fndifnfp 7174 fex2 7924 fabexg 7925 f2ndf 8106 f1o2ndf1 8108 mapex 8826 fsetsspwxp 8847 uniixp 8915 wdom2d 9575 rankfu 9872 dfac12lem2 10139 infmap2 10213 axdc3lem 10445 fnct 10532 tskcard 10776 ixxex 13335 imasvscafn 17483 imasvscaf 17485 fnmrc 17551 mrcfval 17552 isacs1i 17601 mreacs 17602 pjfval 21261 pjpm 21263 isngp2 24106 volf 25046 fgraphopab 41952 dfno2 42179 issmflem 45443 |
Copyright terms: Public domain | W3C validator |