| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssxp | Structured version Visualization version GIF version | ||
| Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fssxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frel 6696 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
| 2 | relssdmrn 6244 | . . 3 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
| 4 | fdm 6700 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 5 | eqimss 4008 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
| 7 | frn 6698 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 8 | xpss12 5656 | . . 3 ⊢ ((dom 𝐹 ⊆ 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) | |
| 9 | 6, 7, 8 | syl2anc 584 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) |
| 10 | 3, 9 | sstrd 3960 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 × cxp 5639 dom cdm 5641 ran crn 5642 Rel wrel 5646 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: funssxp 6719 opelf 6724 dff2 7074 dff3 7075 fndifnfp 7153 fex2 7915 fabexd 7916 fabexgOLD 7918 f2ndf 8102 f1o2ndf1 8104 mapexOLD 8808 fsetsspwxp 8829 uniixp 8897 wdom2d 9540 rankfu 9837 dfac12lem2 10105 infmap2 10177 axdc3lem 10410 fnct 10497 tskcard 10741 ixxex 13324 imasvscafn 17507 imasvscaf 17509 fnmrc 17575 mrcfval 17576 isacs1i 17625 mreacs 17626 pjfval 21622 pjpm 21624 isngp2 24492 volf 25437 fgraphopab 43199 dfno2 43424 issmflem 46732 |
| Copyright terms: Public domain | W3C validator |