| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssxp | Structured version Visualization version GIF version | ||
| Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fssxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frel 6661 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
| 2 | relssdmrn 6221 | . . 3 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
| 4 | fdm 6665 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 5 | eqimss 3996 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
| 7 | frn 6663 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 8 | xpss12 5638 | . . 3 ⊢ ((dom 𝐹 ⊆ 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) | |
| 9 | 6, 7, 8 | syl2anc 584 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) |
| 10 | 3, 9 | sstrd 3948 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3905 × cxp 5621 dom cdm 5623 ran crn 5624 Rel wrel 5628 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: funssxp 6684 opelf 6689 dff2 7037 dff3 7038 fndifnfp 7116 fex2 7876 fabexd 7877 fabexgOLD 7879 f2ndf 8060 f1o2ndf1 8062 mapexOLD 8766 fsetsspwxp 8787 uniixp 8855 wdom2d 9491 rankfu 9792 dfac12lem2 10058 infmap2 10130 axdc3lem 10363 fnct 10450 tskcard 10694 ixxex 13277 imasvscafn 17459 imasvscaf 17461 fnmrc 17531 mrcfval 17532 isacs1i 17581 mreacs 17582 pjfval 21631 pjpm 21633 isngp2 24501 volf 25446 fgraphopab 43176 dfno2 43401 issmflem 46709 |
| Copyright terms: Public domain | W3C validator |