MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 6718
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 6696 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 6244 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 6700 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 4008 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 6698 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5656 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 584 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3960 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3917   × cxp 5639  dom cdm 5641  ran crn 5642  Rel wrel 5646  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518
This theorem is referenced by:  funssxp  6719  opelf  6724  dff2  7074  dff3  7075  fndifnfp  7153  fex2  7915  fabexd  7916  fabexgOLD  7918  f2ndf  8102  f1o2ndf1  8104  mapexOLD  8808  fsetsspwxp  8829  uniixp  8897  wdom2d  9540  rankfu  9837  dfac12lem2  10105  infmap2  10177  axdc3lem  10410  fnct  10497  tskcard  10741  ixxex  13324  imasvscafn  17507  imasvscaf  17509  fnmrc  17575  mrcfval  17576  isacs1i  17625  mreacs  17626  pjfval  21622  pjpm  21624  isngp2  24492  volf  25437  fgraphopab  43199  dfno2  43424  issmflem  46732
  Copyright terms: Public domain W3C validator