MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 6683
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 6661 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 6221 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 6665 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 3989 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 6663 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5634 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 584 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3941 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3898   × cxp 5617  dom cdm 5619  ran crn 5620  Rel wrel 5624  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  funssxp  6684  opelf  6689  dff2  7038  dff3  7039  fndifnfp  7116  fex2  7872  fabexd  7873  fabexgOLD  7875  f2ndf  8056  f1o2ndf1  8058  mapexOLD  8762  fsetsspwxp  8783  uniixp  8851  wdom2d  9473  rankfu  9777  dfac12lem2  10043  infmap2  10115  axdc3lem  10348  fnct  10435  tskcard  10679  ixxex  13258  imasvscafn  17443  imasvscaf  17445  fnmrc  17515  mrcfval  17516  isacs1i  17565  mreacs  17566  pjfval  21645  pjpm  21647  isngp2  24513  volf  25458  fgraphopab  43320  dfno2  43545  issmflem  46849
  Copyright terms: Public domain W3C validator