MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 6764
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 6742 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 6290 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 6746 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 4054 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 6744 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5704 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 584 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 4006 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wss 3963   × cxp 5687  dom cdm 5689  ran crn 5690  Rel wrel 5694  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  funssxp  6765  opelf  6770  dff2  7119  dff3  7120  fndifnfp  7196  fex2  7957  fabexd  7958  fabexgOLD  7960  f2ndf  8144  f1o2ndf1  8146  mapexOLD  8871  fsetsspwxp  8892  uniixp  8960  wdom2d  9618  rankfu  9915  dfac12lem2  10183  infmap2  10255  axdc3lem  10488  fnct  10575  tskcard  10819  ixxex  13395  imasvscafn  17584  imasvscaf  17586  fnmrc  17652  mrcfval  17653  isacs1i  17702  mreacs  17703  pjfval  21744  pjpm  21746  isngp2  24626  volf  25578  fgraphopab  43192  dfno2  43418  issmflem  46683
  Copyright terms: Public domain W3C validator