MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 6743
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 6721 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 6268 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 6725 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 4022 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 6723 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5680 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 584 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3974 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wss 3931   × cxp 5663  dom cdm 5665  ran crn 5666  Rel wrel 5670  wf 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-fun 6543  df-fn 6544  df-f 6545
This theorem is referenced by:  funssxp  6744  opelf  6749  dff2  7099  dff3  7100  fndifnfp  7178  fex2  7940  fabexd  7941  fabexgOLD  7943  f2ndf  8127  f1o2ndf1  8129  mapexOLD  8854  fsetsspwxp  8875  uniixp  8943  wdom2d  9602  rankfu  9899  dfac12lem2  10167  infmap2  10239  axdc3lem  10472  fnct  10559  tskcard  10803  ixxex  13380  imasvscafn  17553  imasvscaf  17555  fnmrc  17621  mrcfval  17622  isacs1i  17671  mreacs  17672  pjfval  21680  pjpm  21682  isngp2  24554  volf  25500  fgraphopab  43178  dfno2  43403  issmflem  46699
  Copyright terms: Public domain W3C validator