MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssxp Structured version   Visualization version   GIF version

Theorem fssxp 6508
Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fssxp (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))

Proof of Theorem fssxp
StepHypRef Expression
1 frel 6492 . . 3 (𝐹:𝐴𝐵 → Rel 𝐹)
2 relssdmrn 6088 . . 3 (Rel 𝐹𝐹 ⊆ (dom 𝐹 × ran 𝐹))
31, 2syl 17 . 2 (𝐹:𝐴𝐵𝐹 ⊆ (dom 𝐹 × ran 𝐹))
4 fdm 6495 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5 eqimss 3971 . . . 4 (dom 𝐹 = 𝐴 → dom 𝐹𝐴)
64, 5syl 17 . . 3 (𝐹:𝐴𝐵 → dom 𝐹𝐴)
7 frn 6493 . . 3 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8 xpss12 5534 . . 3 ((dom 𝐹𝐴 ∧ ran 𝐹𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
96, 7, 8syl2anc 587 . 2 (𝐹:𝐴𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵))
103, 9sstrd 3925 1 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wss 3881   × cxp 5517  dom cdm 5519  ran crn 5520  Rel wrel 5524  wf 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-cnv 5527  df-dm 5529  df-rn 5530  df-fun 6326  df-fn 6327  df-f 6328
This theorem is referenced by:  funssxp  6509  opelf  6513  dff2  6842  dff3  6843  fndifnfp  6915  fex2  7620  fabexg  7621  f2ndf  7799  f1o2ndf1  7801  mapex  8395  uniixp  8468  wdom2d  9028  rankfu  9290  dfac12lem2  9555  infmap2  9629  axdc3lem  9861  fnct  9948  tskcard  10192  ixxex  12737  imasvscafn  16802  imasvscaf  16804  fnmrc  16870  mrcfval  16871  isacs1i  16920  mreacs  16921  pjfval  20395  pjpm  20397  isngp2  23203  volf  24133  fgraphopab  40154  issmflem  43361
  Copyright terms: Public domain W3C validator