| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssxp | Structured version Visualization version GIF version | ||
| Description: A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fssxp | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frel 6661 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → Rel 𝐹) | |
| 2 | relssdmrn 6221 | . . 3 ⊢ (Rel 𝐹 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (dom 𝐹 × ran 𝐹)) |
| 4 | fdm 6665 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 5 | eqimss 3989 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → dom 𝐹 ⊆ 𝐴) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 ⊆ 𝐴) |
| 7 | frn 6663 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 8 | xpss12 5634 | . . 3 ⊢ ((dom 𝐹 ⊆ 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) | |
| 9 | 6, 7, 8 | syl2anc 584 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (dom 𝐹 × ran 𝐹) ⊆ (𝐴 × 𝐵)) |
| 10 | 3, 9 | sstrd 3941 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⊆ wss 3898 × cxp 5617 dom cdm 5619 ran crn 5620 Rel wrel 5624 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: funssxp 6684 opelf 6689 dff2 7038 dff3 7039 fndifnfp 7116 fex2 7872 fabexd 7873 fabexgOLD 7875 f2ndf 8056 f1o2ndf1 8058 mapexOLD 8762 fsetsspwxp 8783 uniixp 8851 wdom2d 9473 rankfu 9777 dfac12lem2 10043 infmap2 10115 axdc3lem 10348 fnct 10435 tskcard 10679 ixxex 13258 imasvscafn 17443 imasvscaf 17445 fnmrc 17515 mrcfval 17516 isacs1i 17565 mreacs 17566 pjfval 21645 pjpm 21647 isngp2 24513 volf 25458 fgraphopab 43320 dfno2 43545 issmflem 46849 |
| Copyright terms: Public domain | W3C validator |