MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feu Structured version   Visualization version   GIF version

Theorem feu 6699
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
feu ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶

Proof of Theorem feu
StepHypRef Expression
1 ffn 6651 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fneu2 6592 . . . 4 ((𝐹 Fn 𝐴𝐶𝐴) → ∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹)
31, 2sylan 580 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹)
4 opelf 6684 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → (𝐶𝐴𝑦𝐵))
54simprd 495 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → 𝑦𝐵)
65ex 412 . . . . . 6 (𝐹:𝐴𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹𝑦𝐵))
76pm4.71rd 562 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ (𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)))
87eubidv 2581 . . . 4 (𝐹:𝐴𝐵 → (∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)))
98adantr 480 . . 3 ((𝐹:𝐴𝐵𝐶𝐴) → (∃!𝑦𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)))
103, 9mpbid 232 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))
11 df-reu 3347 . 2 (∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))
1210, 11sylibr 234 1 ((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  ∃!weu 2563  ∃!wreu 3344  cop 4582   Fn wfn 6476  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  fdmeu  6878  fsn  7068  f1ofveu  7340
  Copyright terms: Public domain W3C validator