| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feu | Structured version Visualization version GIF version | ||
| Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| feu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6656 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fneu2 6597 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹) |
| 4 | opelf 6689 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | simprd 495 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹) → 𝑦 ∈ 𝐵) |
| 6 | 5 | ex 412 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
| 7 | 6 | pm4.71rd 562 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝑦〉 ∈ 𝐹 ↔ (𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
| 8 | 7 | eubidv 2583 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
| 10 | 3, 9 | mpbid 232 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹)) |
| 11 | df-reu 3348 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹)) | |
| 12 | 10, 11 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∃!weu 2565 ∃!wreu 3345 〈cop 4581 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fdmeu 6884 fsn 7074 f1ofveu 7346 |
| Copyright terms: Public domain | W3C validator |