![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feu | Structured version Visualization version GIF version |
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
feu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6708 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fneu2 6651 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹) |
4 | opelf 6743 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | simprd 495 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ 𝐵) |
6 | 5 | ex 412 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
7 | 6 | pm4.71rd 562 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ (𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
8 | 7 | eubidv 2572 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
10 | 3, 9 | mpbid 231 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)) |
11 | df-reu 3369 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)) | |
12 | 10, 11 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ∃!weu 2554 ∃!wreu 3366 ⟨cop 4627 Fn wfn 6529 ⟶wf 6530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-fun 6536 df-fn 6537 df-f 6538 |
This theorem is referenced by: fsn 7126 f1ofveu 7396 |
Copyright terms: Public domain | W3C validator |