![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feu | Structured version Visualization version GIF version |
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
feu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6716 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fneu2 6659 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹) |
4 | opelf 6752 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | simprd 495 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ 𝐵) |
6 | 5 | ex 412 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
7 | 6 | pm4.71rd 562 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ (𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
8 | 7 | eubidv 2575 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
10 | 3, 9 | mpbid 231 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)) |
11 | df-reu 3372 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)) | |
12 | 10, 11 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∃!weu 2557 ∃!wreu 3369 ⟨cop 4630 Fn wfn 6537 ⟶wf 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-fun 6544 df-fn 6545 df-f 6546 |
This theorem is referenced by: fdmeu 6949 fsn 7138 f1ofveu 7408 |
Copyright terms: Public domain | W3C validator |