| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feu | Structured version Visualization version GIF version | ||
| Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| feu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6656 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | fneu2 6597 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹) | |
| 3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹) |
| 4 | opelf 6689 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 5 | 4 | simprd 495 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹) → 𝑦 ∈ 𝐵) |
| 6 | 5 | ex 412 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
| 7 | 6 | pm4.71rd 562 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (〈𝐶, 𝑦〉 ∈ 𝐹 ↔ (𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
| 8 | 7 | eubidv 2579 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (∃!𝑦〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹))) |
| 10 | 3, 9 | mpbid 232 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹)) |
| 11 | df-reu 3346 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 〈𝐶, 𝑦〉 ∈ 𝐹)) | |
| 12 | 10, 11 | sylibr 234 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 〈𝐶, 𝑦〉 ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃!weu 2561 ∃!wreu 3343 〈cop 4585 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fdmeu 6883 fsn 7073 f1ofveu 7347 |
| Copyright terms: Public domain | W3C validator |