![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feu | Structured version Visualization version GIF version |
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
feu | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6714 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fneu2 6657 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹) | |
3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹) |
4 | opelf 6749 | . . . . . . . 8 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → (𝐶 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
5 | 4 | simprd 496 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ 𝐵) |
6 | 5 | ex 413 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
7 | 6 | pm4.71rd 563 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ (𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
8 | 7 | eubidv 2580 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
9 | 8 | adantr 481 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (∃!𝑦⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹))) |
10 | 3, 9 | mpbid 231 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)) |
11 | df-reu 3377 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ⟨𝐶, 𝑦⟩ ∈ 𝐹)) | |
12 | 10, 11 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 ⟨𝐶, 𝑦⟩ ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∃!weu 2562 ∃!wreu 3374 ⟨cop 4633 Fn wfn 6535 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 |
This theorem is referenced by: fsn 7129 f1ofveu 7399 |
Copyright terms: Public domain | W3C validator |