Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovrfovd Structured version   Visualization version   GIF version

Theorem fsovrfovd 44005
Description: The operator which gives a 1-to-1 a mapping to a subset and a reverse mapping from elements can be composed from the operator which gives a 1-to-1 mapping between relations and functions to subsets and the converse operator. (Contributed by RP, 15-May-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovd.rf 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑢𝑎 ↦ {𝑣𝑏𝑢𝑟𝑣})))
fsovd.cnv 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠))
Assertion
Ref Expression
fsovrfovd (𝜑 → (𝐴𝑂𝐵) = ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ (𝐴𝑅𝐵))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑟,𝑢,𝑣   𝐴,𝑠,𝑎,𝑏,𝑓,𝑢,𝑣   𝑥,𝐴,𝑦,𝑎,𝑏,𝑓   𝐵,𝑎,𝑏,𝑓,𝑟,𝑢,𝑣   𝐵,𝑠   𝑦,𝐵   𝑊,𝑎,𝑢   𝜑,𝑎,𝑏,𝑓,𝑟,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑠)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑣,𝑢,𝑓,𝑠,𝑟,𝑎,𝑏)   𝑅(𝑥,𝑦,𝑣,𝑢,𝑓,𝑠,𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑣,𝑢,𝑓,𝑠,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑣,𝑢,𝑓,𝑠,𝑟,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑣,𝑓,𝑠,𝑟,𝑏)

Proof of Theorem fsovrfovd
Dummy variables 𝑐 𝑑 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsovd.b . . . . . 6 (𝜑𝐵𝑊)
2 fsovd.a . . . . . 6 (𝜑𝐴𝑉)
31, 2xpexd 7730 . . . . 5 (𝜑 → (𝐵 × 𝐴) ∈ V)
43adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝒫 𝐵m 𝐴)) → (𝐵 × 𝐴) ∈ V)
5 elmapi 8825 . . . . . . . . . . . . . . 15 (𝑓 ∈ (𝒫 𝐵m 𝐴) → 𝑓:𝐴⟶𝒫 𝐵)
65ffvelcdmda 7059 . . . . . . . . . . . . . 14 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑢𝐴) → (𝑓𝑢) ∈ 𝒫 𝐵)
76elpwid 4575 . . . . . . . . . . . . 13 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑢𝐴) → (𝑓𝑢) ⊆ 𝐵)
87sseld 3948 . . . . . . . . . . . 12 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑢𝐴) → (𝑣 ∈ (𝑓𝑢) → 𝑣𝐵))
98impancom 451 . . . . . . . . . . 11 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑣 ∈ (𝑓𝑢)) → (𝑢𝐴𝑣𝐵))
109pm4.71d 561 . . . . . . . . . 10 ((𝑓 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑣 ∈ (𝑓𝑢)) → (𝑢𝐴 ↔ (𝑢𝐴𝑣𝐵)))
1110ex 412 . . . . . . . . 9 (𝑓 ∈ (𝒫 𝐵m 𝐴) → (𝑣 ∈ (𝑓𝑢) → (𝑢𝐴 ↔ (𝑢𝐴𝑣𝐵))))
1211pm5.32rd 578 . . . . . . . 8 (𝑓 ∈ (𝒫 𝐵m 𝐴) → ((𝑢𝐴𝑣 ∈ (𝑓𝑢)) ↔ ((𝑢𝐴𝑣𝐵) ∧ 𝑣 ∈ (𝑓𝑢))))
13 ancom 460 . . . . . . . . 9 ((𝑢𝐴𝑣𝐵) ↔ (𝑣𝐵𝑢𝐴))
1413anbi1i 624 . . . . . . . 8 (((𝑢𝐴𝑣𝐵) ∧ 𝑣 ∈ (𝑓𝑢)) ↔ ((𝑣𝐵𝑢𝐴) ∧ 𝑣 ∈ (𝑓𝑢)))
1512, 14bitrdi 287 . . . . . . 7 (𝑓 ∈ (𝒫 𝐵m 𝐴) → ((𝑢𝐴𝑣 ∈ (𝑓𝑢)) ↔ ((𝑣𝐵𝑢𝐴) ∧ 𝑣 ∈ (𝑓𝑢))))
1615opabbidv 5176 . . . . . 6 (𝑓 ∈ (𝒫 𝐵m 𝐴) → {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} = {⟨𝑣, 𝑢⟩ ∣ ((𝑣𝐵𝑢𝐴) ∧ 𝑣 ∈ (𝑓𝑢))})
17 opabssxp 5734 . . . . . 6 {⟨𝑣, 𝑢⟩ ∣ ((𝑣𝐵𝑢𝐴) ∧ 𝑣 ∈ (𝑓𝑢))} ⊆ (𝐵 × 𝐴)
1816, 17eqsstrdi 3994 . . . . 5 (𝑓 ∈ (𝒫 𝐵m 𝐴) → {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ⊆ (𝐵 × 𝐴))
1918adantl 481 . . . 4 ((𝜑𝑓 ∈ (𝒫 𝐵m 𝐴)) → {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ⊆ (𝐵 × 𝐴))
204, 19sselpwd 5286 . . 3 ((𝜑𝑓 ∈ (𝒫 𝐵m 𝐴)) → {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ∈ 𝒫 (𝐵 × 𝐴))
21 eqidd 2731 . . 3 (𝜑 → (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}))
22 fsovd.rf . . . . 5 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑢𝑎 ↦ {𝑣𝑏𝑢𝑟𝑣})))
2322, 1, 2rfovd 43997 . . . 4 (𝜑 → (𝐵𝑅𝐴) = (𝑟 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑟𝑣})))
24 breq 5112 . . . . . . . 8 (𝑟 = 𝑡 → (𝑢𝑟𝑣𝑢𝑡𝑣))
2524rabbidv 3416 . . . . . . 7 (𝑟 = 𝑡 → {𝑣𝐴𝑢𝑟𝑣} = {𝑣𝐴𝑢𝑡𝑣})
2625mpteq2dv 5204 . . . . . 6 (𝑟 = 𝑡 → (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑟𝑣}) = (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑡𝑣}))
27 breq1 5113 . . . . . . . . 9 (𝑢 = 𝑐 → (𝑢𝑡𝑣𝑐𝑡𝑣))
2827rabbidv 3416 . . . . . . . 8 (𝑢 = 𝑐 → {𝑣𝐴𝑢𝑡𝑣} = {𝑣𝐴𝑐𝑡𝑣})
29 breq2 5114 . . . . . . . . 9 (𝑣 = 𝑑 → (𝑐𝑡𝑣𝑐𝑡𝑑))
3029cbvrabv 3419 . . . . . . . 8 {𝑣𝐴𝑐𝑡𝑣} = {𝑑𝐴𝑐𝑡𝑑}
3128, 30eqtrdi 2781 . . . . . . 7 (𝑢 = 𝑐 → {𝑣𝐴𝑢𝑡𝑣} = {𝑑𝐴𝑐𝑡𝑑})
3231cbvmptv 5214 . . . . . 6 (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑡𝑣}) = (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑})
3326, 32eqtrdi 2781 . . . . 5 (𝑟 = 𝑡 → (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑟𝑣}) = (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑}))
3433cbvmptv 5214 . . . 4 (𝑟 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑟𝑣})) = (𝑡 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑}))
3523, 34eqtrdi 2781 . . 3 (𝜑 → (𝐵𝑅𝐴) = (𝑡 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑})))
36 breq 5112 . . . . . . 7 (𝑡 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → (𝑐𝑡𝑑𝑐{⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}𝑑))
37 df-br 5111 . . . . . . . 8 (𝑐{⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}𝑑 ↔ ⟨𝑐, 𝑑⟩ ∈ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))})
38 vex 3454 . . . . . . . . 9 𝑐 ∈ V
39 vex 3454 . . . . . . . . 9 𝑑 ∈ V
40 eleq1w 2812 . . . . . . . . . 10 (𝑣 = 𝑐 → (𝑣 ∈ (𝑓𝑢) ↔ 𝑐 ∈ (𝑓𝑢)))
4140anbi2d 630 . . . . . . . . 9 (𝑣 = 𝑐 → ((𝑢𝐴𝑣 ∈ (𝑓𝑢)) ↔ (𝑢𝐴𝑐 ∈ (𝑓𝑢))))
42 eleq1w 2812 . . . . . . . . . 10 (𝑢 = 𝑑 → (𝑢𝐴𝑑𝐴))
43 fveq2 6861 . . . . . . . . . . 11 (𝑢 = 𝑑 → (𝑓𝑢) = (𝑓𝑑))
4443eleq2d 2815 . . . . . . . . . 10 (𝑢 = 𝑑 → (𝑐 ∈ (𝑓𝑢) ↔ 𝑐 ∈ (𝑓𝑑)))
4542, 44anbi12d 632 . . . . . . . . 9 (𝑢 = 𝑑 → ((𝑢𝐴𝑐 ∈ (𝑓𝑢)) ↔ (𝑑𝐴𝑐 ∈ (𝑓𝑑))))
4638, 39, 41, 45opelopab 5505 . . . . . . . 8 (⟨𝑐, 𝑑⟩ ∈ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ↔ (𝑑𝐴𝑐 ∈ (𝑓𝑑)))
4737, 46bitri 275 . . . . . . 7 (𝑐{⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}𝑑 ↔ (𝑑𝐴𝑐 ∈ (𝑓𝑑)))
4836, 47bitrdi 287 . . . . . 6 (𝑡 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → (𝑐𝑡𝑑 ↔ (𝑑𝐴𝑐 ∈ (𝑓𝑑))))
4948rabbidv 3416 . . . . 5 (𝑡 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → {𝑑𝐴𝑐𝑡𝑑} = {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))})
5049mpteq2dv 5204 . . . 4 (𝑡 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑}) = (𝑐𝐵 ↦ {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))}))
51 ibar 528 . . . . . . . . 9 (𝑑𝐴 → (𝑐 ∈ (𝑓𝑑) ↔ (𝑑𝐴𝑐 ∈ (𝑓𝑑))))
5251bicomd 223 . . . . . . . 8 (𝑑𝐴 → ((𝑑𝐴𝑐 ∈ (𝑓𝑑)) ↔ 𝑐 ∈ (𝑓𝑑)))
5352rabbiia 3412 . . . . . . 7 {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))} = {𝑑𝐴𝑐 ∈ (𝑓𝑑)}
54 fveq2 6861 . . . . . . . . 9 (𝑑 = 𝑥 → (𝑓𝑑) = (𝑓𝑥))
5554eleq2d 2815 . . . . . . . 8 (𝑑 = 𝑥 → (𝑐 ∈ (𝑓𝑑) ↔ 𝑐 ∈ (𝑓𝑥)))
5655cbvrabv 3419 . . . . . . 7 {𝑑𝐴𝑐 ∈ (𝑓𝑑)} = {𝑥𝐴𝑐 ∈ (𝑓𝑥)}
5753, 56eqtri 2753 . . . . . 6 {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))} = {𝑥𝐴𝑐 ∈ (𝑓𝑥)}
5857mpteq2i 5206 . . . . 5 (𝑐𝐵 ↦ {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))}) = (𝑐𝐵 ↦ {𝑥𝐴𝑐 ∈ (𝑓𝑥)})
59 eleq1w 2812 . . . . . . 7 (𝑐 = 𝑦 → (𝑐 ∈ (𝑓𝑥) ↔ 𝑦 ∈ (𝑓𝑥)))
6059rabbidv 3416 . . . . . 6 (𝑐 = 𝑦 → {𝑥𝐴𝑐 ∈ (𝑓𝑥)} = {𝑥𝐴𝑦 ∈ (𝑓𝑥)})
6160cbvmptv 5214 . . . . 5 (𝑐𝐵 ↦ {𝑥𝐴𝑐 ∈ (𝑓𝑥)}) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})
6258, 61eqtri 2753 . . . 4 (𝑐𝐵 ↦ {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))}) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})
6350, 62eqtrdi 2781 . . 3 (𝑡 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑}) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}))
6420, 21, 35, 63fmptco 7104 . 2 (𝜑 → ((𝐵𝑅𝐴) ∘ (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))})) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
652, 1xpexd 7730 . . . . . 6 (𝜑 → (𝐴 × 𝐵) ∈ V)
6665adantr 480 . . . . 5 ((𝜑𝑓 ∈ (𝒫 𝐵m 𝐴)) → (𝐴 × 𝐵) ∈ V)
6712opabbidv 5176 . . . . . . 7 (𝑓 ∈ (𝒫 𝐵m 𝐴) → {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐵) ∧ 𝑣 ∈ (𝑓𝑢))})
68 opabssxp 5734 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐵) ∧ 𝑣 ∈ (𝑓𝑢))} ⊆ (𝐴 × 𝐵)
6967, 68eqsstrdi 3994 . . . . . 6 (𝑓 ∈ (𝒫 𝐵m 𝐴) → {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ⊆ (𝐴 × 𝐵))
7069adantl 481 . . . . 5 ((𝜑𝑓 ∈ (𝒫 𝐵m 𝐴)) → {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ⊆ (𝐴 × 𝐵))
7166, 70sselpwd 5286 . . . 4 ((𝜑𝑓 ∈ (𝒫 𝐵m 𝐴)) → {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ∈ 𝒫 (𝐴 × 𝐵))
72 eqid 2730 . . . . 5 (𝐴𝑅𝐵) = (𝐴𝑅𝐵)
7322, 2, 1, 72rfovcnvd 44001 . . . 4 (𝜑(𝐴𝑅𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}))
74 fsovd.cnv . . . . . 6 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠))
7574a1i 11 . . . . 5 (𝜑𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠)))
76 xpeq12 5666 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵))
7776pweqd 4583 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵))
7877mpteq1d 5200 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠) = (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ 𝑠))
7978adantl 481 . . . . 5 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠) = (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ 𝑠))
802elexd 3474 . . . . 5 (𝜑𝐴 ∈ V)
811elexd 3474 . . . . 5 (𝜑𝐵 ∈ V)
82 pwexg 5336 . . . . . 6 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
83 mptexg 7198 . . . . . 6 (𝒫 (𝐴 × 𝐵) ∈ V → (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ 𝑠) ∈ V)
8465, 82, 833syl 18 . . . . 5 (𝜑 → (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ 𝑠) ∈ V)
8575, 79, 80, 81, 84ovmpod 7544 . . . 4 (𝜑 → (𝐴𝐶𝐵) = (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ 𝑠))
86 cnveq 5840 . . . . 5 (𝑠 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → 𝑠 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))})
87 cnvopab 6113 . . . . 5 {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}
8886, 87eqtrdi 2781 . . . 4 (𝑠 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → 𝑠 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))})
8971, 73, 85, 88fmptco 7104 . . 3 (𝜑 → ((𝐴𝐶𝐵) ∘ (𝐴𝑅𝐵)) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}))
9089coeq2d 5829 . 2 (𝜑 → ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ (𝐴𝑅𝐵))) = ((𝐵𝑅𝐴) ∘ (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))})))
91 fsovd.fs . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
9291, 2, 1fsovd 44004 . 2 (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
9364, 90, 923eqtr4rd 2776 1 (𝜑 → (𝐴𝑂𝐵) = ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ (𝐴𝑅𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917  𝒫 cpw 4566  cop 4598   class class class wbr 5110  {copab 5172  cmpt 5191   × cxp 5639  ccnv 5640  ccom 5645  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator