Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovrfovd Structured version   Visualization version   GIF version

Theorem fsovrfovd 39696
 Description: The operator which gives a 1-to-1 a mapping to a subset and a reverse mapping from elements can be composed from the operator which gives a 1-to-1 mapping between relations and functions to subsets and the converse operator. (Contributed by RP, 15-May-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏𝑚 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovd.rf 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑢𝑎 ↦ {𝑣𝑏𝑢𝑟𝑣})))
fsovd.cnv 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠))
Assertion
Ref Expression
fsovrfovd (𝜑 → (𝐴𝑂𝐵) = ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ (𝐴𝑅𝐵))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑟,𝑢,𝑣   𝐴,𝑠,𝑎,𝑏,𝑓,𝑢,𝑣   𝑥,𝐴,𝑦,𝑎,𝑏,𝑓   𝐵,𝑎,𝑏,𝑓,𝑟,𝑢,𝑣   𝐵,𝑠   𝑦,𝐵   𝑊,𝑎,𝑢   𝜑,𝑎,𝑏,𝑓,𝑟,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑠)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑣,𝑢,𝑓,𝑠,𝑟,𝑎,𝑏)   𝑅(𝑥,𝑦,𝑣,𝑢,𝑓,𝑠,𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑣,𝑢,𝑓,𝑠,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑣,𝑢,𝑓,𝑠,𝑟,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑣,𝑓,𝑠,𝑟,𝑏)

Proof of Theorem fsovrfovd
Dummy variables 𝑐 𝑑 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsovd.b . . . . . 6 (𝜑𝐵𝑊)
2 fsovd.a . . . . . 6 (𝜑𝐴𝑉)
31, 2xpexd 7289 . . . . 5 (𝜑 → (𝐵 × 𝐴) ∈ V)
43adantr 473 . . . 4 ((𝜑𝑓 ∈ (𝒫 𝐵𝑚 𝐴)) → (𝐵 × 𝐴) ∈ V)
5 elmapi 8224 . . . . . . . . . . . . . . 15 (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) → 𝑓:𝐴⟶𝒫 𝐵)
65ffvelrnda 6674 . . . . . . . . . . . . . 14 ((𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ∧ 𝑢𝐴) → (𝑓𝑢) ∈ 𝒫 𝐵)
76elpwid 4432 . . . . . . . . . . . . 13 ((𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ∧ 𝑢𝐴) → (𝑓𝑢) ⊆ 𝐵)
87sseld 3856 . . . . . . . . . . . 12 ((𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ∧ 𝑢𝐴) → (𝑣 ∈ (𝑓𝑢) → 𝑣𝐵))
98impancom 444 . . . . . . . . . . 11 ((𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ∧ 𝑣 ∈ (𝑓𝑢)) → (𝑢𝐴𝑣𝐵))
109pm4.71d 554 . . . . . . . . . 10 ((𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ∧ 𝑣 ∈ (𝑓𝑢)) → (𝑢𝐴 ↔ (𝑢𝐴𝑣𝐵)))
1110ex 405 . . . . . . . . 9 (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) → (𝑣 ∈ (𝑓𝑢) → (𝑢𝐴 ↔ (𝑢𝐴𝑣𝐵))))
1211pm5.32rd 570 . . . . . . . 8 (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) → ((𝑢𝐴𝑣 ∈ (𝑓𝑢)) ↔ ((𝑢𝐴𝑣𝐵) ∧ 𝑣 ∈ (𝑓𝑢))))
13 ancom 453 . . . . . . . . 9 ((𝑢𝐴𝑣𝐵) ↔ (𝑣𝐵𝑢𝐴))
1413anbi1i 614 . . . . . . . 8 (((𝑢𝐴𝑣𝐵) ∧ 𝑣 ∈ (𝑓𝑢)) ↔ ((𝑣𝐵𝑢𝐴) ∧ 𝑣 ∈ (𝑓𝑢)))
1512, 14syl6bb 279 . . . . . . 7 (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) → ((𝑢𝐴𝑣 ∈ (𝑓𝑢)) ↔ ((𝑣𝐵𝑢𝐴) ∧ 𝑣 ∈ (𝑓𝑢))))
1615opabbidv 4993 . . . . . 6 (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) → {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} = {⟨𝑣, 𝑢⟩ ∣ ((𝑣𝐵𝑢𝐴) ∧ 𝑣 ∈ (𝑓𝑢))})
17 opabssxp 5490 . . . . . 6 {⟨𝑣, 𝑢⟩ ∣ ((𝑣𝐵𝑢𝐴) ∧ 𝑣 ∈ (𝑓𝑢))} ⊆ (𝐵 × 𝐴)
1816, 17syl6eqss 3910 . . . . 5 (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) → {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ⊆ (𝐵 × 𝐴))
1918adantl 474 . . . 4 ((𝜑𝑓 ∈ (𝒫 𝐵𝑚 𝐴)) → {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ⊆ (𝐵 × 𝐴))
204, 19sselpwd 5084 . . 3 ((𝜑𝑓 ∈ (𝒫 𝐵𝑚 𝐴)) → {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ∈ 𝒫 (𝐵 × 𝐴))
21 eqidd 2776 . . 3 (𝜑 → (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}) = (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}))
22 fsovd.rf . . . . 5 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑢𝑎 ↦ {𝑣𝑏𝑢𝑟𝑣})))
2322, 1, 2rfovd 39688 . . . 4 (𝜑 → (𝐵𝑅𝐴) = (𝑟 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑟𝑣})))
24 breq 4929 . . . . . . . 8 (𝑟 = 𝑡 → (𝑢𝑟𝑣𝑢𝑡𝑣))
2524rabbidv 3400 . . . . . . 7 (𝑟 = 𝑡 → {𝑣𝐴𝑢𝑟𝑣} = {𝑣𝐴𝑢𝑡𝑣})
2625mpteq2dv 5021 . . . . . 6 (𝑟 = 𝑡 → (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑟𝑣}) = (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑡𝑣}))
27 breq1 4930 . . . . . . . . 9 (𝑢 = 𝑐 → (𝑢𝑡𝑣𝑐𝑡𝑣))
2827rabbidv 3400 . . . . . . . 8 (𝑢 = 𝑐 → {𝑣𝐴𝑢𝑡𝑣} = {𝑣𝐴𝑐𝑡𝑣})
29 breq2 4931 . . . . . . . . 9 (𝑣 = 𝑑 → (𝑐𝑡𝑣𝑐𝑡𝑑))
3029cbvrabv 3409 . . . . . . . 8 {𝑣𝐴𝑐𝑡𝑣} = {𝑑𝐴𝑐𝑡𝑑}
3128, 30syl6eq 2827 . . . . . . 7 (𝑢 = 𝑐 → {𝑣𝐴𝑢𝑡𝑣} = {𝑑𝐴𝑐𝑡𝑑})
3231cbvmptv 5026 . . . . . 6 (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑡𝑣}) = (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑})
3326, 32syl6eq 2827 . . . . 5 (𝑟 = 𝑡 → (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑟𝑣}) = (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑}))
3433cbvmptv 5026 . . . 4 (𝑟 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑢𝐵 ↦ {𝑣𝐴𝑢𝑟𝑣})) = (𝑡 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑}))
3523, 34syl6eq 2827 . . 3 (𝜑 → (𝐵𝑅𝐴) = (𝑡 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑})))
36 breq 4929 . . . . . . 7 (𝑡 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → (𝑐𝑡𝑑𝑐{⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}𝑑))
37 df-br 4928 . . . . . . . 8 (𝑐{⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}𝑑 ↔ ⟨𝑐, 𝑑⟩ ∈ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))})
38 vex 3415 . . . . . . . . 9 𝑐 ∈ V
39 vex 3415 . . . . . . . . 9 𝑑 ∈ V
40 eleq1w 2845 . . . . . . . . . 10 (𝑣 = 𝑐 → (𝑣 ∈ (𝑓𝑢) ↔ 𝑐 ∈ (𝑓𝑢)))
4140anbi2d 619 . . . . . . . . 9 (𝑣 = 𝑐 → ((𝑢𝐴𝑣 ∈ (𝑓𝑢)) ↔ (𝑢𝐴𝑐 ∈ (𝑓𝑢))))
42 eleq1w 2845 . . . . . . . . . 10 (𝑢 = 𝑑 → (𝑢𝐴𝑑𝐴))
43 fveq2 6497 . . . . . . . . . . 11 (𝑢 = 𝑑 → (𝑓𝑢) = (𝑓𝑑))
4443eleq2d 2848 . . . . . . . . . 10 (𝑢 = 𝑑 → (𝑐 ∈ (𝑓𝑢) ↔ 𝑐 ∈ (𝑓𝑑)))
4542, 44anbi12d 621 . . . . . . . . 9 (𝑢 = 𝑑 → ((𝑢𝐴𝑐 ∈ (𝑓𝑢)) ↔ (𝑑𝐴𝑐 ∈ (𝑓𝑑))))
4638, 39, 41, 45opelopab 5280 . . . . . . . 8 (⟨𝑐, 𝑑⟩ ∈ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ↔ (𝑑𝐴𝑐 ∈ (𝑓𝑑)))
4737, 46bitri 267 . . . . . . 7 (𝑐{⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}𝑑 ↔ (𝑑𝐴𝑐 ∈ (𝑓𝑑)))
4836, 47syl6bb 279 . . . . . 6 (𝑡 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → (𝑐𝑡𝑑 ↔ (𝑑𝐴𝑐 ∈ (𝑓𝑑))))
4948rabbidv 3400 . . . . 5 (𝑡 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → {𝑑𝐴𝑐𝑡𝑑} = {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))})
5049mpteq2dv 5021 . . . 4 (𝑡 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑}) = (𝑐𝐵 ↦ {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))}))
51 ibar 521 . . . . . . . . 9 (𝑑𝐴 → (𝑐 ∈ (𝑓𝑑) ↔ (𝑑𝐴𝑐 ∈ (𝑓𝑑))))
5251bicomd 215 . . . . . . . 8 (𝑑𝐴 → ((𝑑𝐴𝑐 ∈ (𝑓𝑑)) ↔ 𝑐 ∈ (𝑓𝑑)))
5352rabbiia 3395 . . . . . . 7 {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))} = {𝑑𝐴𝑐 ∈ (𝑓𝑑)}
54 fveq2 6497 . . . . . . . . 9 (𝑑 = 𝑥 → (𝑓𝑑) = (𝑓𝑥))
5554eleq2d 2848 . . . . . . . 8 (𝑑 = 𝑥 → (𝑐 ∈ (𝑓𝑑) ↔ 𝑐 ∈ (𝑓𝑥)))
5655cbvrabv 3409 . . . . . . 7 {𝑑𝐴𝑐 ∈ (𝑓𝑑)} = {𝑥𝐴𝑐 ∈ (𝑓𝑥)}
5753, 56eqtri 2799 . . . . . 6 {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))} = {𝑥𝐴𝑐 ∈ (𝑓𝑥)}
5857mpteq2i 5017 . . . . 5 (𝑐𝐵 ↦ {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))}) = (𝑐𝐵 ↦ {𝑥𝐴𝑐 ∈ (𝑓𝑥)})
59 eleq1w 2845 . . . . . . 7 (𝑐 = 𝑦 → (𝑐 ∈ (𝑓𝑥) ↔ 𝑦 ∈ (𝑓𝑥)))
6059rabbidv 3400 . . . . . 6 (𝑐 = 𝑦 → {𝑥𝐴𝑐 ∈ (𝑓𝑥)} = {𝑥𝐴𝑦 ∈ (𝑓𝑥)})
6160cbvmptv 5026 . . . . 5 (𝑐𝐵 ↦ {𝑥𝐴𝑐 ∈ (𝑓𝑥)}) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})
6258, 61eqtri 2799 . . . 4 (𝑐𝐵 ↦ {𝑑𝐴 ∣ (𝑑𝐴𝑐 ∈ (𝑓𝑑))}) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})
6350, 62syl6eq 2827 . . 3 (𝑡 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → (𝑐𝐵 ↦ {𝑑𝐴𝑐𝑡𝑑}) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}))
6420, 21, 35, 63fmptco 6712 . 2 (𝜑 → ((𝐵𝑅𝐴) ∘ (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))})) = (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
652, 1xpexd 7289 . . . . . 6 (𝜑 → (𝐴 × 𝐵) ∈ V)
6665adantr 473 . . . . 5 ((𝜑𝑓 ∈ (𝒫 𝐵𝑚 𝐴)) → (𝐴 × 𝐵) ∈ V)
6712opabbidv 4993 . . . . . . 7 (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) → {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐵) ∧ 𝑣 ∈ (𝑓𝑢))})
68 opabssxp 5490 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐵) ∧ 𝑣 ∈ (𝑓𝑢))} ⊆ (𝐴 × 𝐵)
6967, 68syl6eqss 3910 . . . . . 6 (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) → {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ⊆ (𝐴 × 𝐵))
7069adantl 474 . . . . 5 ((𝜑𝑓 ∈ (𝒫 𝐵𝑚 𝐴)) → {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ⊆ (𝐴 × 𝐵))
7166, 70sselpwd 5084 . . . 4 ((𝜑𝑓 ∈ (𝒫 𝐵𝑚 𝐴)) → {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} ∈ 𝒫 (𝐴 × 𝐵))
72 eqid 2775 . . . . . 6 (𝐴𝑅𝐵) = (𝐴𝑅𝐵)
7322, 2, 1, 72rfovcnvd 39692 . . . . 5 (𝜑(𝐴𝑅𝐵) = (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}))
7473idi 1 . . . 4 (𝜑(𝐴𝑅𝐵) = (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}))
75 fsovd.cnv . . . . . 6 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠))
7675a1i 11 . . . . 5 (𝜑𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠)))
77 xpeq12 5429 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵))
7877pweqd 4425 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵))
7978mpteq1d 5014 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠) = (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ 𝑠))
8079adantl 474 . . . . 5 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵)) → (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ 𝑠) = (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ 𝑠))
812elexd 3432 . . . . 5 (𝜑𝐴 ∈ V)
821elexd 3432 . . . . 5 (𝜑𝐵 ∈ V)
83 pwexg 5130 . . . . . 6 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
84 mptexg 6808 . . . . . 6 (𝒫 (𝐴 × 𝐵) ∈ V → (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ 𝑠) ∈ V)
8565, 83, 843syl 18 . . . . 5 (𝜑 → (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ 𝑠) ∈ V)
8676, 80, 81, 82, 85ovmpod 7116 . . . 4 (𝜑 → (𝐴𝐶𝐵) = (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ 𝑠))
87 cnveq 5591 . . . . 5 (𝑠 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → 𝑠 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))})
88 cnvopab 5835 . . . . 5 {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}
8987, 88syl6eq 2827 . . . 4 (𝑠 = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))} → 𝑠 = {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))})
9071, 74, 86, 89fmptco 6712 . . 3 (𝜑 → ((𝐴𝐶𝐵) ∘ (𝐴𝑅𝐵)) = (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))}))
9190coeq2d 5580 . 2 (𝜑 → ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ (𝐴𝑅𝐵))) = ((𝐵𝑅𝐴) ∘ (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ {⟨𝑣, 𝑢⟩ ∣ (𝑢𝐴𝑣 ∈ (𝑓𝑢))})))
92 fsovd.fs . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏𝑚 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
9392, 2, 1fsovd 39695 . 2 (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵𝑚 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
9464, 91, 933eqtr4rd 2822 1 (𝜑 → (𝐴𝑂𝐵) = ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ (𝐴𝑅𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 387   = wceq 1507   ∈ wcel 2048  {crab 3089  Vcvv 3412   ⊆ wss 3828  𝒫 cpw 4420  ⟨cop 4445   class class class wbr 4927  {copab 4989   ↦ cmpt 5006   × cxp 5402  ◡ccnv 5403   ∘ ccom 5408  ‘cfv 6186  (class class class)co 6974   ∈ cmpo 6976   ↑𝑚 cmap 8202 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-rep 5047  ax-sep 5058  ax-nul 5065  ax-pow 5117  ax-pr 5184  ax-un 7277 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ne 2965  df-ral 3090  df-rex 3091  df-reu 3092  df-rab 3094  df-v 3414  df-sbc 3681  df-csb 3786  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-nul 4178  df-if 4349  df-pw 4422  df-sn 4440  df-pr 4442  df-op 4446  df-uni 4711  df-iun 4792  df-br 4928  df-opab 4990  df-mpt 5007  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7498  df-2nd 7499  df-map 8204 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator