| Step | Hyp | Ref
| Expression |
| 1 | | fsovd.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 2 | | fsovd.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 3 | 1, 2 | xpexd 7771 |
. . . . 5
⊢ (𝜑 → (𝐵 × 𝐴) ∈ V) |
| 4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → (𝐵 × 𝐴) ∈ V) |
| 5 | | elmapi 8889 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝑓:𝐴⟶𝒫 𝐵) |
| 6 | 5 | ffvelcdmda 7104 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) ∈ 𝒫 𝐵) |
| 7 | 6 | elpwid 4609 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑢 ∈ 𝐴) → (𝑓‘𝑢) ⊆ 𝐵) |
| 8 | 7 | sseld 3982 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑢 ∈ 𝐴) → (𝑣 ∈ (𝑓‘𝑢) → 𝑣 ∈ 𝐵)) |
| 9 | 8 | impancom 451 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑣 ∈ (𝑓‘𝑢)) → (𝑢 ∈ 𝐴 → 𝑣 ∈ 𝐵)) |
| 10 | 9 | pm4.71d 561 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑣 ∈ (𝑓‘𝑢)) → (𝑢 ∈ 𝐴 ↔ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵))) |
| 11 | 10 | ex 412 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → (𝑣 ∈ (𝑓‘𝑢) → (𝑢 ∈ 𝐴 ↔ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)))) |
| 12 | 11 | pm5.32rd 578 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑣 ∈ (𝑓‘𝑢)))) |
| 13 | | ancom 460 |
. . . . . . . . 9
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ↔ (𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐴)) |
| 14 | 13 | anbi1i 624 |
. . . . . . . 8
⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑣 ∈ (𝑓‘𝑢)) ↔ ((𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ (𝑓‘𝑢))) |
| 15 | 12, 14 | bitrdi 287 |
. . . . . . 7
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢)) ↔ ((𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ (𝑓‘𝑢)))) |
| 16 | 15 | opabbidv 5209 |
. . . . . 6
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} = {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ (𝑓‘𝑢))}) |
| 17 | | opabssxp 5778 |
. . . . . 6
⊢
{〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑣 ∈ (𝑓‘𝑢))} ⊆ (𝐵 × 𝐴) |
| 18 | 16, 17 | eqsstrdi 4028 |
. . . . 5
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} ⊆ (𝐵 × 𝐴)) |
| 19 | 18 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} ⊆ (𝐵 × 𝐴)) |
| 20 | 4, 19 | sselpwd 5328 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} ∈ 𝒫 (𝐵 × 𝐴)) |
| 21 | | eqidd 2738 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))}) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))})) |
| 22 | | fsovd.rf |
. . . . 5
⊢ 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑢 ∈ 𝑎 ↦ {𝑣 ∈ 𝑏 ∣ 𝑢𝑟𝑣}))) |
| 23 | 22, 1, 2 | rfovd 44014 |
. . . 4
⊢ (𝜑 → (𝐵𝑅𝐴) = (𝑟 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑢 ∈ 𝐵 ↦ {𝑣 ∈ 𝐴 ∣ 𝑢𝑟𝑣}))) |
| 24 | | breq 5145 |
. . . . . . . 8
⊢ (𝑟 = 𝑡 → (𝑢𝑟𝑣 ↔ 𝑢𝑡𝑣)) |
| 25 | 24 | rabbidv 3444 |
. . . . . . 7
⊢ (𝑟 = 𝑡 → {𝑣 ∈ 𝐴 ∣ 𝑢𝑟𝑣} = {𝑣 ∈ 𝐴 ∣ 𝑢𝑡𝑣}) |
| 26 | 25 | mpteq2dv 5244 |
. . . . . 6
⊢ (𝑟 = 𝑡 → (𝑢 ∈ 𝐵 ↦ {𝑣 ∈ 𝐴 ∣ 𝑢𝑟𝑣}) = (𝑢 ∈ 𝐵 ↦ {𝑣 ∈ 𝐴 ∣ 𝑢𝑡𝑣})) |
| 27 | | breq1 5146 |
. . . . . . . . 9
⊢ (𝑢 = 𝑐 → (𝑢𝑡𝑣 ↔ 𝑐𝑡𝑣)) |
| 28 | 27 | rabbidv 3444 |
. . . . . . . 8
⊢ (𝑢 = 𝑐 → {𝑣 ∈ 𝐴 ∣ 𝑢𝑡𝑣} = {𝑣 ∈ 𝐴 ∣ 𝑐𝑡𝑣}) |
| 29 | | breq2 5147 |
. . . . . . . . 9
⊢ (𝑣 = 𝑑 → (𝑐𝑡𝑣 ↔ 𝑐𝑡𝑑)) |
| 30 | 29 | cbvrabv 3447 |
. . . . . . . 8
⊢ {𝑣 ∈ 𝐴 ∣ 𝑐𝑡𝑣} = {𝑑 ∈ 𝐴 ∣ 𝑐𝑡𝑑} |
| 31 | 28, 30 | eqtrdi 2793 |
. . . . . . 7
⊢ (𝑢 = 𝑐 → {𝑣 ∈ 𝐴 ∣ 𝑢𝑡𝑣} = {𝑑 ∈ 𝐴 ∣ 𝑐𝑡𝑑}) |
| 32 | 31 | cbvmptv 5255 |
. . . . . 6
⊢ (𝑢 ∈ 𝐵 ↦ {𝑣 ∈ 𝐴 ∣ 𝑢𝑡𝑣}) = (𝑐 ∈ 𝐵 ↦ {𝑑 ∈ 𝐴 ∣ 𝑐𝑡𝑑}) |
| 33 | 26, 32 | eqtrdi 2793 |
. . . . 5
⊢ (𝑟 = 𝑡 → (𝑢 ∈ 𝐵 ↦ {𝑣 ∈ 𝐴 ∣ 𝑢𝑟𝑣}) = (𝑐 ∈ 𝐵 ↦ {𝑑 ∈ 𝐴 ∣ 𝑐𝑡𝑑})) |
| 34 | 33 | cbvmptv 5255 |
. . . 4
⊢ (𝑟 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑢 ∈ 𝐵 ↦ {𝑣 ∈ 𝐴 ∣ 𝑢𝑟𝑣})) = (𝑡 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑐 ∈ 𝐵 ↦ {𝑑 ∈ 𝐴 ∣ 𝑐𝑡𝑑})) |
| 35 | 23, 34 | eqtrdi 2793 |
. . 3
⊢ (𝜑 → (𝐵𝑅𝐴) = (𝑡 ∈ 𝒫 (𝐵 × 𝐴) ↦ (𝑐 ∈ 𝐵 ↦ {𝑑 ∈ 𝐴 ∣ 𝑐𝑡𝑑}))) |
| 36 | | breq 5145 |
. . . . . . 7
⊢ (𝑡 = {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} → (𝑐𝑡𝑑 ↔ 𝑐{〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))}𝑑)) |
| 37 | | df-br 5144 |
. . . . . . . 8
⊢ (𝑐{〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))}𝑑 ↔ 〈𝑐, 𝑑〉 ∈ {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))}) |
| 38 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑐 ∈ V |
| 39 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑑 ∈ V |
| 40 | | eleq1w 2824 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑐 → (𝑣 ∈ (𝑓‘𝑢) ↔ 𝑐 ∈ (𝑓‘𝑢))) |
| 41 | 40 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑣 = 𝑐 → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢)) ↔ (𝑢 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑢)))) |
| 42 | | eleq1w 2824 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑑 → (𝑢 ∈ 𝐴 ↔ 𝑑 ∈ 𝐴)) |
| 43 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑑 → (𝑓‘𝑢) = (𝑓‘𝑑)) |
| 44 | 43 | eleq2d 2827 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑑 → (𝑐 ∈ (𝑓‘𝑢) ↔ 𝑐 ∈ (𝑓‘𝑑))) |
| 45 | 42, 44 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑢 = 𝑑 → ((𝑢 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑢)) ↔ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑)))) |
| 46 | 38, 39, 41, 45 | opelopab 5547 |
. . . . . . . 8
⊢
(〈𝑐, 𝑑〉 ∈ {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} ↔ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑))) |
| 47 | 37, 46 | bitri 275 |
. . . . . . 7
⊢ (𝑐{〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))}𝑑 ↔ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑))) |
| 48 | 36, 47 | bitrdi 287 |
. . . . . 6
⊢ (𝑡 = {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} → (𝑐𝑡𝑑 ↔ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑)))) |
| 49 | 48 | rabbidv 3444 |
. . . . 5
⊢ (𝑡 = {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} → {𝑑 ∈ 𝐴 ∣ 𝑐𝑡𝑑} = {𝑑 ∈ 𝐴 ∣ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑))}) |
| 50 | 49 | mpteq2dv 5244 |
. . . 4
⊢ (𝑡 = {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} → (𝑐 ∈ 𝐵 ↦ {𝑑 ∈ 𝐴 ∣ 𝑐𝑡𝑑}) = (𝑐 ∈ 𝐵 ↦ {𝑑 ∈ 𝐴 ∣ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑))})) |
| 51 | | ibar 528 |
. . . . . . . . 9
⊢ (𝑑 ∈ 𝐴 → (𝑐 ∈ (𝑓‘𝑑) ↔ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑)))) |
| 52 | 51 | bicomd 223 |
. . . . . . . 8
⊢ (𝑑 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑)) ↔ 𝑐 ∈ (𝑓‘𝑑))) |
| 53 | 52 | rabbiia 3440 |
. . . . . . 7
⊢ {𝑑 ∈ 𝐴 ∣ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑))} = {𝑑 ∈ 𝐴 ∣ 𝑐 ∈ (𝑓‘𝑑)} |
| 54 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑑 = 𝑥 → (𝑓‘𝑑) = (𝑓‘𝑥)) |
| 55 | 54 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝑑 = 𝑥 → (𝑐 ∈ (𝑓‘𝑑) ↔ 𝑐 ∈ (𝑓‘𝑥))) |
| 56 | 55 | cbvrabv 3447 |
. . . . . . 7
⊢ {𝑑 ∈ 𝐴 ∣ 𝑐 ∈ (𝑓‘𝑑)} = {𝑥 ∈ 𝐴 ∣ 𝑐 ∈ (𝑓‘𝑥)} |
| 57 | 53, 56 | eqtri 2765 |
. . . . . 6
⊢ {𝑑 ∈ 𝐴 ∣ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑))} = {𝑥 ∈ 𝐴 ∣ 𝑐 ∈ (𝑓‘𝑥)} |
| 58 | 57 | mpteq2i 5247 |
. . . . 5
⊢ (𝑐 ∈ 𝐵 ↦ {𝑑 ∈ 𝐴 ∣ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑))}) = (𝑐 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑐 ∈ (𝑓‘𝑥)}) |
| 59 | | eleq1w 2824 |
. . . . . . 7
⊢ (𝑐 = 𝑦 → (𝑐 ∈ (𝑓‘𝑥) ↔ 𝑦 ∈ (𝑓‘𝑥))) |
| 60 | 59 | rabbidv 3444 |
. . . . . 6
⊢ (𝑐 = 𝑦 → {𝑥 ∈ 𝐴 ∣ 𝑐 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) |
| 61 | 60 | cbvmptv 5255 |
. . . . 5
⊢ (𝑐 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑐 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) |
| 62 | 58, 61 | eqtri 2765 |
. . . 4
⊢ (𝑐 ∈ 𝐵 ↦ {𝑑 ∈ 𝐴 ∣ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ (𝑓‘𝑑))}) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) |
| 63 | 50, 62 | eqtrdi 2793 |
. . 3
⊢ (𝑡 = {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} → (𝑐 ∈ 𝐵 ↦ {𝑑 ∈ 𝐴 ∣ 𝑐𝑡𝑑}) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)})) |
| 64 | 20, 21, 35, 63 | fmptco 7149 |
. 2
⊢ (𝜑 → ((𝐵𝑅𝐴) ∘ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))})) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 65 | 2, 1 | xpexd 7771 |
. . . . . 6
⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 66 | 65 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → (𝐴 × 𝐵) ∈ V) |
| 67 | 12 | opabbidv 5209 |
. . . . . . 7
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑣 ∈ (𝑓‘𝑢))}) |
| 68 | | opabssxp 5778 |
. . . . . . 7
⊢
{〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵) ∧ 𝑣 ∈ (𝑓‘𝑢))} ⊆ (𝐴 × 𝐵) |
| 69 | 67, 68 | eqsstrdi 4028 |
. . . . . 6
⊢ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) → {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} ⊆ (𝐴 × 𝐵)) |
| 70 | 69 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} ⊆ (𝐴 × 𝐵)) |
| 71 | 66, 70 | sselpwd 5328 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} ∈ 𝒫 (𝐴 × 𝐵)) |
| 72 | | eqid 2737 |
. . . . 5
⊢ (𝐴𝑅𝐵) = (𝐴𝑅𝐵) |
| 73 | 22, 2, 1, 72 | rfovcnvd 44018 |
. . . 4
⊢ (𝜑 → ◡(𝐴𝑅𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))})) |
| 74 | | fsovd.cnv |
. . . . . 6
⊢ 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ ◡𝑠)) |
| 75 | 74 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐶 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ ◡𝑠))) |
| 76 | | xpeq12 5710 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎 × 𝑏) = (𝐴 × 𝐵)) |
| 77 | 76 | pweqd 4617 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → 𝒫 (𝑎 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
| 78 | 77 | mpteq1d 5237 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ ◡𝑠) = (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ ◡𝑠)) |
| 79 | 78 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑠 ∈ 𝒫 (𝑎 × 𝑏) ↦ ◡𝑠) = (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ ◡𝑠)) |
| 80 | 2 | elexd 3504 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
| 81 | 1 | elexd 3504 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
| 82 | | pwexg 5378 |
. . . . . 6
⊢ ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V) |
| 83 | | mptexg 7241 |
. . . . . 6
⊢
(𝒫 (𝐴
× 𝐵) ∈ V →
(𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ ◡𝑠) ∈ V) |
| 84 | 65, 82, 83 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ ◡𝑠) ∈ V) |
| 85 | 75, 79, 80, 81, 84 | ovmpod 7585 |
. . . 4
⊢ (𝜑 → (𝐴𝐶𝐵) = (𝑠 ∈ 𝒫 (𝐴 × 𝐵) ↦ ◡𝑠)) |
| 86 | | cnveq 5884 |
. . . . 5
⊢ (𝑠 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} → ◡𝑠 = ◡{〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))}) |
| 87 | | cnvopab 6157 |
. . . . 5
⊢ ◡{〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} = {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} |
| 88 | 86, 87 | eqtrdi 2793 |
. . . 4
⊢ (𝑠 = {〈𝑢, 𝑣〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))} → ◡𝑠 = {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))}) |
| 89 | 71, 73, 85, 88 | fmptco 7149 |
. . 3
⊢ (𝜑 → ((𝐴𝐶𝐵) ∘ ◡(𝐴𝑅𝐵)) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))})) |
| 90 | 89 | coeq2d 5873 |
. 2
⊢ (𝜑 → ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ ◡(𝐴𝑅𝐵))) = ((𝐵𝑅𝐴) ∘ (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑣, 𝑢〉 ∣ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ (𝑓‘𝑢))}))) |
| 91 | | fsovd.fs |
. . 3
⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 92 | 91, 2, 1 | fsovd 44021 |
. 2
⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 93 | 64, 90, 92 | 3eqtr4rd 2788 |
1
⊢ (𝜑 → (𝐴𝑂𝐵) = ((𝐵𝑅𝐴) ∘ ((𝐴𝐶𝐵) ∘ ◡(𝐴𝑅𝐵)))) |