MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopabi Structured version   Visualization version   GIF version

Theorem elopabi 8041
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
Hypotheses
Ref Expression
elopabi.1 (𝑥 = (1st𝐴) → (𝜑𝜓))
elopabi.2 (𝑦 = (2nd𝐴) → (𝜓𝜒))
Assertion
Ref Expression
elopabi (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem elopabi
StepHypRef Expression
1 relopabv 5784 . . . 4 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 1st2nd 8018 . . . 4 ((Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
31, 2mpan 690 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
4 id 22 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
53, 4eqeltrrd 2829 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
6 fvex 6871 . . 3 (1st𝐴) ∈ V
7 fvex 6871 . . 3 (2nd𝐴) ∈ V
8 elopabi.1 . . 3 (𝑥 = (1st𝐴) → (𝜑𝜓))
9 elopabi.2 . . 3 (𝑦 = (2nd𝐴) → (𝜓𝜒))
106, 7, 8, 9opelopab 5502 . 2 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
115, 10sylib 218 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cop 4595  {copab 5169  Rel wrel 5643  cfv 6511  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968  df-2nd 7969
This theorem is referenced by:  vciOLD  30490  sat1el2xp  35366  drngoi  37945  dicelval1sta  41181
  Copyright terms: Public domain W3C validator