![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopabi | Structured version Visualization version GIF version |
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
elopabi.1 | ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) |
elopabi.2 | ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
elopabi | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 5451 | . . . 4 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | 1st2nd 7449 | . . . 4 ⊢ ((Rel {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
3 | 1, 2 | mpan 682 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
4 | id 22 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
5 | 3, 4 | eqeltrrd 2879 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
6 | fvex 6424 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
7 | fvex 6424 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
8 | elopabi.1 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) | |
9 | elopabi.2 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) | |
10 | 6, 7, 8, 9 | opelopab 5193 | . 2 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
11 | 5, 10 | sylib 210 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 〈cop 4374 {copab 4905 Rel wrel 5317 ‘cfv 6101 1st c1st 7399 2nd c2nd 7400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fv 6109 df-1st 7401 df-2nd 7402 |
This theorem is referenced by: vciOLD 27941 drngoi 34237 dicelval1sta 37208 |
Copyright terms: Public domain | W3C validator |