![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopabi | Structured version Visualization version GIF version |
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
elopabi.1 | ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) |
elopabi.2 | ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
elopabi | ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5778 | . . . 4 ⊢ Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
2 | 1st2nd 7972 | . . . 4 ⊢ ((Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
3 | 1, 2 | mpan 689 | . . 3 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
4 | id 22 | . . 3 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
5 | 3, 4 | eqeltrrd 2839 | . 2 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
6 | fvex 6856 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
7 | fvex 6856 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
8 | elopabi.1 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) | |
9 | elopabi.2 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) | |
10 | 6, 7, 8, 9 | opelopab 5500 | . 2 ⊢ (⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒) |
11 | 5, 10 | sylib 217 | 1 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ⟨cop 4593 {copab 5168 Rel wrel 5639 ‘cfv 6497 1st c1st 7920 2nd c2nd 7921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fv 6505 df-1st 7922 df-2nd 7923 |
This theorem is referenced by: vciOLD 29506 sat1el2xp 33976 drngoi 36413 dicelval1sta 39653 |
Copyright terms: Public domain | W3C validator |