| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elopabi | Structured version Visualization version GIF version | ||
| Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| elopabi.1 | ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) |
| elopabi.2 | ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| elopabi | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5787 | . . . 4 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | 1st2nd 8021 | . . . 4 ⊢ ((Rel {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 4 | id 22 | . . 3 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 5 | 3, 4 | eqeltrrd 2830 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 6 | fvex 6874 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
| 7 | fvex 6874 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
| 8 | elopabi.1 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) | |
| 9 | elopabi.2 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) | |
| 10 | 6, 7, 8, 9 | opelopab 5505 | . 2 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
| 11 | 5, 10 | sylib 218 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4598 {copab 5172 Rel wrel 5646 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: vciOLD 30497 sat1el2xp 35373 drngoi 37952 dicelval1sta 41188 |
| Copyright terms: Public domain | W3C validator |