![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopabi | Structured version Visualization version GIF version |
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
elopabi.1 | ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) |
elopabi.2 | ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
elopabi | ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5814 | . . . 4 ⊢ Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
2 | 1st2nd 8021 | . . . 4 ⊢ ((Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
4 | id 22 | . . 3 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
5 | 3, 4 | eqeltrrd 2828 | . 2 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
6 | fvex 6897 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
7 | fvex 6897 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
8 | elopabi.1 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → (𝜑 ↔ 𝜓)) | |
9 | elopabi.2 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → (𝜓 ↔ 𝜒)) | |
10 | 6, 7, 8, 9 | opelopab 5535 | . 2 ⊢ (⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒) |
11 | 5, 10 | sylib 217 | 1 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 {copab 5203 Rel wrel 5674 ‘cfv 6536 1st c1st 7969 2nd c2nd 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6488 df-fun 6538 df-fv 6544 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: vciOLD 30318 sat1el2xp 34897 drngoi 37331 dicelval1sta 40570 |
Copyright terms: Public domain | W3C validator |