Proof of Theorem xporderlem
Step | Hyp | Ref
| Expression |
1 | | df-br 5075 |
. . 3
⊢
(〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∈ 𝑇) |
2 | | xporderlem.1 |
. . . 4
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))))} |
3 | 2 | eleq2i 2830 |
. . 3
⊢
(〈〈𝑎,
𝑏〉, 〈𝑐, 𝑑〉〉 ∈ 𝑇 ↔ 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))))}) |
4 | 1, 3 | bitri 274 |
. 2
⊢
(〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))))}) |
5 | | opex 5379 |
. . 3
⊢
〈𝑎, 𝑏〉 ∈ V |
6 | | opex 5379 |
. . 3
⊢
〈𝑐, 𝑑〉 ∈ V |
7 | | eleq1 2826 |
. . . . . 6
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (𝑥 ∈ (𝐴 × 𝐵) ↔ 〈𝑎, 𝑏〉 ∈ (𝐴 × 𝐵))) |
8 | | opelxp 5625 |
. . . . . 6
⊢
(〈𝑎, 𝑏〉 ∈ (𝐴 × 𝐵) ↔ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) |
9 | 7, 8 | bitrdi 287 |
. . . . 5
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵))) |
10 | 9 | anbi1d 630 |
. . . 4
⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)))) |
11 | | vex 3436 |
. . . . . . 7
⊢ 𝑎 ∈ V |
12 | | vex 3436 |
. . . . . . 7
⊢ 𝑏 ∈ V |
13 | 11, 12 | op1std 7841 |
. . . . . 6
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (1st ‘𝑥) = 𝑎) |
14 | 13 | breq1d 5084 |
. . . . 5
⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((1st ‘𝑥)𝑅(1st ‘𝑦) ↔ 𝑎𝑅(1st ‘𝑦))) |
15 | 13 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((1st ‘𝑥) = (1st ‘𝑦) ↔ 𝑎 = (1st ‘𝑦))) |
16 | 11, 12 | op2ndd 7842 |
. . . . . . 7
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (2nd ‘𝑥) = 𝑏) |
17 | 16 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = 〈𝑎, 𝑏〉 → ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ↔ 𝑏𝑆(2nd ‘𝑦))) |
18 | 15, 17 | anbi12d 631 |
. . . . 5
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦)) ↔ (𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦)))) |
19 | 14, 18 | orbi12d 916 |
. . . 4
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))) ↔ (𝑎𝑅(1st ‘𝑦) ∨ (𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦))))) |
20 | 10, 19 | anbi12d 631 |
. . 3
⊢ (𝑥 = 〈𝑎, 𝑏〉 → (((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦)))) ↔ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ (𝑎𝑅(1st ‘𝑦) ∨ (𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦)))))) |
21 | | eleq1 2826 |
. . . . . 6
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (𝑦 ∈ (𝐴 × 𝐵) ↔ 〈𝑐, 𝑑〉 ∈ (𝐴 × 𝐵))) |
22 | | opelxp 5625 |
. . . . . 6
⊢
(〈𝑐, 𝑑〉 ∈ (𝐴 × 𝐵) ↔ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) |
23 | 21, 22 | bitrdi 287 |
. . . . 5
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (𝑦 ∈ (𝐴 × 𝐵) ↔ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵))) |
24 | 23 | anbi2d 629 |
. . . 4
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)))) |
25 | | vex 3436 |
. . . . . . 7
⊢ 𝑐 ∈ V |
26 | | vex 3436 |
. . . . . . 7
⊢ 𝑑 ∈ V |
27 | 25, 26 | op1std 7841 |
. . . . . 6
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (1st ‘𝑦) = 𝑐) |
28 | 27 | breq2d 5086 |
. . . . 5
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (𝑎𝑅(1st ‘𝑦) ↔ 𝑎𝑅𝑐)) |
29 | 27 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (𝑎 = (1st ‘𝑦) ↔ 𝑎 = 𝑐)) |
30 | 25, 26 | op2ndd 7842 |
. . . . . . 7
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (2nd ‘𝑦) = 𝑑) |
31 | 30 | breq2d 5086 |
. . . . . 6
⊢ (𝑦 = 〈𝑐, 𝑑〉 → (𝑏𝑆(2nd ‘𝑦) ↔ 𝑏𝑆𝑑)) |
32 | 29, 31 | anbi12d 631 |
. . . . 5
⊢ (𝑦 = 〈𝑐, 𝑑〉 → ((𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦)) ↔ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) |
33 | 28, 32 | orbi12d 916 |
. . . 4
⊢ (𝑦 = 〈𝑐, 𝑑〉 → ((𝑎𝑅(1st ‘𝑦) ∨ (𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦))) ↔ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) |
34 | 24, 33 | anbi12d 631 |
. . 3
⊢ (𝑦 = 〈𝑐, 𝑑〉 → ((((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ (𝑎𝑅(1st ‘𝑦) ∨ (𝑎 = (1st ‘𝑦) ∧ 𝑏𝑆(2nd ‘𝑦)))) ↔ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))))) |
35 | 5, 6, 20, 34 | opelopab 5455 |
. 2
⊢
(〈〈𝑎,
𝑏〉, 〈𝑐, 𝑑〉〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))))} ↔ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) |
36 | | an4 653 |
. . 3
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) ↔ ((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) |
37 | 36 | anbi1i 624 |
. 2
⊢ ((((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) ↔ (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) |
38 | 4, 35, 37 | 3bitri 297 |
1
⊢
(〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) |