MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xporderlem Structured version   Visualization version   GIF version

Theorem xporderlem 7883
Description: Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
Hypothesis
Ref Expression
xporderlem.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}
Assertion
Ref Expression
xporderlem (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑎,𝑦   𝑥,𝑏,𝑦   𝑥,𝑐,𝑦   𝑥,𝑑,𝑦
Allowed substitution hints:   𝐴(𝑎,𝑏,𝑐,𝑑)   𝐵(𝑎,𝑏,𝑐,𝑑)   𝑅(𝑎,𝑏,𝑐,𝑑)   𝑆(𝑎,𝑏,𝑐,𝑑)   𝑇(𝑥,𝑦,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem xporderlem
StepHypRef Expression
1 df-br 5044 . . 3 (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ 𝑇)
2 xporderlem.1 . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))}
32eleq2i 2825 . . 3 (⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ 𝑇 ↔ ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))})
41, 3bitri 278 . 2 (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))})
5 opex 5337 . . 3 𝑎, 𝑏⟩ ∈ V
6 opex 5337 . . 3 𝑐, 𝑑⟩ ∈ V
7 eleq1 2821 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥 ∈ (𝐴 × 𝐵) ↔ ⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐵)))
8 opelxp 5576 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ (𝐴 × 𝐵) ↔ (𝑎𝐴𝑏𝐵))
97, 8bitrdi 290 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (𝑥 ∈ (𝐴 × 𝐵) ↔ (𝑎𝐴𝑏𝐵)))
109anbi1d 633 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵))))
11 vex 3405 . . . . . . 7 𝑎 ∈ V
12 vex 3405 . . . . . . 7 𝑏 ∈ V
1311, 12op1std 7760 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → (1st𝑥) = 𝑎)
1413breq1d 5053 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → ((1st𝑥)𝑅(1st𝑦) ↔ 𝑎𝑅(1st𝑦)))
1513eqeq1d 2736 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → ((1st𝑥) = (1st𝑦) ↔ 𝑎 = (1st𝑦)))
1611, 12op2ndd 7761 . . . . . . 7 (𝑥 = ⟨𝑎, 𝑏⟩ → (2nd𝑥) = 𝑏)
1716breq1d 5053 . . . . . 6 (𝑥 = ⟨𝑎, 𝑏⟩ → ((2nd𝑥)𝑆(2nd𝑦) ↔ 𝑏𝑆(2nd𝑦)))
1815, 17anbi12d 634 . . . . 5 (𝑥 = ⟨𝑎, 𝑏⟩ → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦)) ↔ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦))))
1914, 18orbi12d 919 . . . 4 (𝑥 = ⟨𝑎, 𝑏⟩ → (((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))) ↔ (𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦)))))
2010, 19anbi12d 634 . . 3 (𝑥 = ⟨𝑎, 𝑏⟩ → (((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦)))) ↔ (((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ (𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦))))))
21 eleq1 2821 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑦 ∈ (𝐴 × 𝐵) ↔ ⟨𝑐, 𝑑⟩ ∈ (𝐴 × 𝐵)))
22 opelxp 5576 . . . . . 6 (⟨𝑐, 𝑑⟩ ∈ (𝐴 × 𝐵) ↔ (𝑐𝐴𝑑𝐵))
2321, 22bitrdi 290 . . . . 5 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑦 ∈ (𝐴 × 𝐵) ↔ (𝑐𝐴𝑑𝐵)))
2423anbi2d 632 . . . 4 (𝑦 = ⟨𝑐, 𝑑⟩ → (((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ↔ ((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵))))
25 vex 3405 . . . . . . 7 𝑐 ∈ V
26 vex 3405 . . . . . . 7 𝑑 ∈ V
2725, 26op1std 7760 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (1st𝑦) = 𝑐)
2827breq2d 5055 . . . . 5 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑎𝑅(1st𝑦) ↔ 𝑎𝑅𝑐))
2927eqeq2d 2745 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑎 = (1st𝑦) ↔ 𝑎 = 𝑐))
3025, 26op2ndd 7761 . . . . . . 7 (𝑦 = ⟨𝑐, 𝑑⟩ → (2nd𝑦) = 𝑑)
3130breq2d 5055 . . . . . 6 (𝑦 = ⟨𝑐, 𝑑⟩ → (𝑏𝑆(2nd𝑦) ↔ 𝑏𝑆𝑑))
3229, 31anbi12d 634 . . . . 5 (𝑦 = ⟨𝑐, 𝑑⟩ → ((𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦)) ↔ (𝑎 = 𝑐𝑏𝑆𝑑)))
3328, 32orbi12d 919 . . . 4 (𝑦 = ⟨𝑐, 𝑑⟩ → ((𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦))) ↔ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
3424, 33anbi12d 634 . . 3 (𝑦 = ⟨𝑐, 𝑑⟩ → ((((𝑎𝐴𝑏𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ (𝑎𝑅(1st𝑦) ∨ (𝑎 = (1st𝑦) ∧ 𝑏𝑆(2nd𝑦)))) ↔ (((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑)))))
355, 6, 20, 34opelopab 5412 . 2 (⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st𝑥)𝑅(1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥)𝑆(2nd𝑦))))} ↔ (((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
36 an4 656 . . 3 (((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ↔ ((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)))
3736anbi1i 627 . 2 ((((𝑎𝐴𝑏𝐵) ∧ (𝑐𝐴𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))) ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
384, 35, 373bitri 300 1 (⟨𝑎, 𝑏𝑇𝑐, 𝑑⟩ ↔ (((𝑎𝐴𝑐𝐴) ∧ (𝑏𝐵𝑑𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐𝑏𝑆𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  cop 4537   class class class wbr 5043  {copab 5105   × cxp 5538  cfv 6369  1st c1st 7748  2nd c2nd 7749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-sbc 3688  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-iota 6327  df-fun 6371  df-fv 6377  df-1st 7750  df-2nd 7751
This theorem is referenced by:  poxp  7884  soxp  7885
  Copyright terms: Public domain W3C validator