Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem3 Structured version   Visualization version   GIF version

Theorem pellexlem3 42812
Description: Lemma for pellex 42816. To each good rational approximation of (√‘𝐷), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
Distinct variable group:   𝑥,𝐷,𝑦,𝑧

Proof of Theorem pellexlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 12168 . . . 4 ℕ ∈ V
21, 1xpex 7709 . . 3 (ℕ × ℕ) ∈ V
3 opabssxp 5723 . . 3 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ⊆ (ℕ × ℕ)
42, 3ssexi 5272 . 2 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∈ V
5 simprl 770 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 𝑎 ∈ ℚ)
6 simprrl 780 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 0 < 𝑎)
7 qgt0numnn 16697 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ 0 < 𝑎) → (numer‘𝑎) ∈ ℕ)
85, 6, 7syl2anc 584 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (numer‘𝑎) ∈ ℕ)
9 qdencl 16687 . . . . . . . 8 (𝑎 ∈ ℚ → (denom‘𝑎) ∈ ℕ)
105, 9syl 17 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (denom‘𝑎) ∈ ℕ)
118, 10jca 511 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ))
12 simpll 766 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 𝐷 ∈ ℕ)
13 simplr 768 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ¬ (√‘𝐷) ∈ ℚ)
14 pellexlem1 42810 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0)
1512, 8, 10, 13, 14syl31anc 1375 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0)
16 simprrr 781 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))
17 qeqnumdivden 16692 . . . . . . . . . . . 12 (𝑎 ∈ ℚ → 𝑎 = ((numer‘𝑎) / (denom‘𝑎)))
1817oveq1d 7384 . . . . . . . . . . 11 (𝑎 ∈ ℚ → (𝑎 − (√‘𝐷)) = (((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷)))
1918fveq2d 6844 . . . . . . . . . 10 (𝑎 ∈ ℚ → (abs‘(𝑎 − (√‘𝐷))) = (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))))
2019breq1d 5112 . . . . . . . . 9 (𝑎 ∈ ℚ → ((abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2) ↔ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
215, 20syl 17 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ((abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2) ↔ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
2216, 21mpbid 232 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2))
23 pellexlem2 42811 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))
2412, 8, 10, 22, 23syl31anc 1375 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))
2511, 15, 24jca32 515 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
2625ex 412 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))) → (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))))
27 breq2 5106 . . . . . 6 (𝑥 = 𝑎 → (0 < 𝑥 ↔ 0 < 𝑎))
28 fvoveq1 7392 . . . . . . 7 (𝑥 = 𝑎 → (abs‘(𝑥 − (√‘𝐷))) = (abs‘(𝑎 − (√‘𝐷))))
29 fveq2 6840 . . . . . . . 8 (𝑥 = 𝑎 → (denom‘𝑥) = (denom‘𝑎))
3029oveq1d 7384 . . . . . . 7 (𝑥 = 𝑎 → ((denom‘𝑥)↑-2) = ((denom‘𝑎)↑-2))
3128, 30breq12d 5115 . . . . . 6 (𝑥 = 𝑎 → ((abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2) ↔ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
3227, 31anbi12d 632 . . . . 5 (𝑥 = 𝑎 → ((0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))))
3332elrab 3656 . . . 4 (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))))
34 fvex 6853 . . . . 5 (numer‘𝑎) ∈ V
35 fvex 6853 . . . . 5 (denom‘𝑎) ∈ V
36 eleq1 2816 . . . . . . 7 (𝑦 = (numer‘𝑎) → (𝑦 ∈ ℕ ↔ (numer‘𝑎) ∈ ℕ))
3736anbi1d 631 . . . . . 6 (𝑦 = (numer‘𝑎) → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ↔ ((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ)))
38 oveq1 7376 . . . . . . . . 9 (𝑦 = (numer‘𝑎) → (𝑦↑2) = ((numer‘𝑎)↑2))
3938oveq1d 7384 . . . . . . . 8 (𝑦 = (numer‘𝑎) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))))
4039neeq1d 2984 . . . . . . 7 (𝑦 = (numer‘𝑎) → (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ↔ (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0))
4139fveq2d 6844 . . . . . . . 8 (𝑦 = (numer‘𝑎) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) = (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))))
4241breq1d 5112 . . . . . . 7 (𝑦 = (numer‘𝑎) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))) ↔ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))
4340, 42anbi12d 632 . . . . . 6 (𝑦 = (numer‘𝑎) → ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))) ↔ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))
4437, 43anbi12d 632 . . . . 5 (𝑦 = (numer‘𝑎) → (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) ↔ (((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
45 eleq1 2816 . . . . . . 7 (𝑧 = (denom‘𝑎) → (𝑧 ∈ ℕ ↔ (denom‘𝑎) ∈ ℕ))
4645anbi2d 630 . . . . . 6 (𝑧 = (denom‘𝑎) → (((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ↔ ((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ)))
47 oveq1 7376 . . . . . . . . . 10 (𝑧 = (denom‘𝑎) → (𝑧↑2) = ((denom‘𝑎)↑2))
4847oveq2d 7385 . . . . . . . . 9 (𝑧 = (denom‘𝑎) → (𝐷 · (𝑧↑2)) = (𝐷 · ((denom‘𝑎)↑2)))
4948oveq2d 7385 . . . . . . . 8 (𝑧 = (denom‘𝑎) → (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) = (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))))
5049neeq1d 2984 . . . . . . 7 (𝑧 = (denom‘𝑎) → ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ↔ (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0))
5149fveq2d 6844 . . . . . . . 8 (𝑧 = (denom‘𝑎) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) = (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))))
5251breq1d 5112 . . . . . . 7 (𝑧 = (denom‘𝑎) → ((abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))) ↔ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))
5350, 52anbi12d 632 . . . . . 6 (𝑧 = (denom‘𝑎) → (((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))) ↔ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
5446, 53anbi12d 632 . . . . 5 (𝑧 = (denom‘𝑎) → ((((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) ↔ (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))))
5534, 35, 44, 54opelopab 5497 . . . 4 (⟨(numer‘𝑎), (denom‘𝑎)⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
5626, 33, 553imtr4g 296 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} → ⟨(numer‘𝑎), (denom‘𝑎)⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}))
57 ssrab2 4039 . . . . . 6 {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ⊆ ℚ
58 simprl 770 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})
5957, 58sselid 3941 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑎 ∈ ℚ)
60 simprr 772 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})
6157, 60sselid 3941 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑏 ∈ ℚ)
6234, 35opth 5431 . . . . . . 7 (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏)))
63 simprl 770 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → (numer‘𝑎) = (numer‘𝑏))
64 simprr 772 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → (denom‘𝑎) = (denom‘𝑏))
6563, 64oveq12d 7387 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → ((numer‘𝑎) / (denom‘𝑎)) = ((numer‘𝑏) / (denom‘𝑏)))
66 simpll 766 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 ∈ ℚ)
6766, 17syl 17 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 = ((numer‘𝑎) / (denom‘𝑎)))
68 simplr 768 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑏 ∈ ℚ)
69 qeqnumdivden 16692 . . . . . . . . . 10 (𝑏 ∈ ℚ → 𝑏 = ((numer‘𝑏) / (denom‘𝑏)))
7068, 69syl 17 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑏 = ((numer‘𝑏) / (denom‘𝑏)))
7165, 67, 703eqtr4d 2774 . . . . . . . 8 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 = 𝑏)
7271ex 412 . . . . . . 7 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏)) → 𝑎 = 𝑏))
7362, 72biimtrid 242 . . . . . 6 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ → 𝑎 = 𝑏))
74 fveq2 6840 . . . . . . 7 (𝑎 = 𝑏 → (numer‘𝑎) = (numer‘𝑏))
75 fveq2 6840 . . . . . . 7 (𝑎 = 𝑏 → (denom‘𝑎) = (denom‘𝑏))
7674, 75opeq12d 4841 . . . . . 6 (𝑎 = 𝑏 → ⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩)
7773, 76impbid1 225 . . . . 5 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏))
7859, 61, 77syl2anc 584 . . . 4 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏))
7978ex 412 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))}) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏)))
8056, 79dom2d 8941 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∈ V → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}))
814, 80mpi 20 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3402  Vcvv 3444  cop 4591   class class class wbr 5102  {copab 5164   × cxp 5629  cfv 6499  (class class class)co 7369  cdom 8893  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  cq 12883  cexp 14002  csqrt 15175  abscabs 15176  numercnumer 16679  denomcdenom 16680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-numer 16681  df-denom 16682
This theorem is referenced by:  pellexlem4  42813
  Copyright terms: Public domain W3C validator