Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem3 Structured version   Visualization version   GIF version

Theorem pellexlem3 41140
Description: Lemma for pellex 41144. To each good rational approximation of (√‘𝐷), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
Distinct variable group:   𝑥,𝐷,𝑦,𝑧

Proof of Theorem pellexlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 12159 . . . 4 ℕ ∈ V
21, 1xpex 7687 . . 3 (ℕ × ℕ) ∈ V
3 opabssxp 5724 . . 3 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ⊆ (ℕ × ℕ)
42, 3ssexi 5279 . 2 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∈ V
5 simprl 769 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 𝑎 ∈ ℚ)
6 simprrl 779 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 0 < 𝑎)
7 qgt0numnn 16626 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ 0 < 𝑎) → (numer‘𝑎) ∈ ℕ)
85, 6, 7syl2anc 584 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (numer‘𝑎) ∈ ℕ)
9 qdencl 16616 . . . . . . . 8 (𝑎 ∈ ℚ → (denom‘𝑎) ∈ ℕ)
105, 9syl 17 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (denom‘𝑎) ∈ ℕ)
118, 10jca 512 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ))
12 simpll 765 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 𝐷 ∈ ℕ)
13 simplr 767 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ¬ (√‘𝐷) ∈ ℚ)
14 pellexlem1 41138 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0)
1512, 8, 10, 13, 14syl31anc 1373 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0)
16 simprrr 780 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))
17 qeqnumdivden 16621 . . . . . . . . . . . 12 (𝑎 ∈ ℚ → 𝑎 = ((numer‘𝑎) / (denom‘𝑎)))
1817oveq1d 7372 . . . . . . . . . . 11 (𝑎 ∈ ℚ → (𝑎 − (√‘𝐷)) = (((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷)))
1918fveq2d 6846 . . . . . . . . . 10 (𝑎 ∈ ℚ → (abs‘(𝑎 − (√‘𝐷))) = (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))))
2019breq1d 5115 . . . . . . . . 9 (𝑎 ∈ ℚ → ((abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2) ↔ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
215, 20syl 17 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ((abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2) ↔ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
2216, 21mpbid 231 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2))
23 pellexlem2 41139 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))
2412, 8, 10, 22, 23syl31anc 1373 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))
2511, 15, 24jca32 516 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
2625ex 413 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))) → (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))))
27 breq2 5109 . . . . . 6 (𝑥 = 𝑎 → (0 < 𝑥 ↔ 0 < 𝑎))
28 fvoveq1 7380 . . . . . . 7 (𝑥 = 𝑎 → (abs‘(𝑥 − (√‘𝐷))) = (abs‘(𝑎 − (√‘𝐷))))
29 fveq2 6842 . . . . . . . 8 (𝑥 = 𝑎 → (denom‘𝑥) = (denom‘𝑎))
3029oveq1d 7372 . . . . . . 7 (𝑥 = 𝑎 → ((denom‘𝑥)↑-2) = ((denom‘𝑎)↑-2))
3128, 30breq12d 5118 . . . . . 6 (𝑥 = 𝑎 → ((abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2) ↔ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
3227, 31anbi12d 631 . . . . 5 (𝑥 = 𝑎 → ((0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))))
3332elrab 3645 . . . 4 (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))))
34 fvex 6855 . . . . 5 (numer‘𝑎) ∈ V
35 fvex 6855 . . . . 5 (denom‘𝑎) ∈ V
36 eleq1 2825 . . . . . . 7 (𝑦 = (numer‘𝑎) → (𝑦 ∈ ℕ ↔ (numer‘𝑎) ∈ ℕ))
3736anbi1d 630 . . . . . 6 (𝑦 = (numer‘𝑎) → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ↔ ((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ)))
38 oveq1 7364 . . . . . . . . 9 (𝑦 = (numer‘𝑎) → (𝑦↑2) = ((numer‘𝑎)↑2))
3938oveq1d 7372 . . . . . . . 8 (𝑦 = (numer‘𝑎) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))))
4039neeq1d 3003 . . . . . . 7 (𝑦 = (numer‘𝑎) → (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ↔ (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0))
4139fveq2d 6846 . . . . . . . 8 (𝑦 = (numer‘𝑎) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) = (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))))
4241breq1d 5115 . . . . . . 7 (𝑦 = (numer‘𝑎) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))) ↔ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))
4340, 42anbi12d 631 . . . . . 6 (𝑦 = (numer‘𝑎) → ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))) ↔ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))
4437, 43anbi12d 631 . . . . 5 (𝑦 = (numer‘𝑎) → (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) ↔ (((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
45 eleq1 2825 . . . . . . 7 (𝑧 = (denom‘𝑎) → (𝑧 ∈ ℕ ↔ (denom‘𝑎) ∈ ℕ))
4645anbi2d 629 . . . . . 6 (𝑧 = (denom‘𝑎) → (((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ↔ ((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ)))
47 oveq1 7364 . . . . . . . . . 10 (𝑧 = (denom‘𝑎) → (𝑧↑2) = ((denom‘𝑎)↑2))
4847oveq2d 7373 . . . . . . . . 9 (𝑧 = (denom‘𝑎) → (𝐷 · (𝑧↑2)) = (𝐷 · ((denom‘𝑎)↑2)))
4948oveq2d 7373 . . . . . . . 8 (𝑧 = (denom‘𝑎) → (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) = (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))))
5049neeq1d 3003 . . . . . . 7 (𝑧 = (denom‘𝑎) → ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ↔ (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0))
5149fveq2d 6846 . . . . . . . 8 (𝑧 = (denom‘𝑎) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) = (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))))
5251breq1d 5115 . . . . . . 7 (𝑧 = (denom‘𝑎) → ((abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))) ↔ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))
5350, 52anbi12d 631 . . . . . 6 (𝑧 = (denom‘𝑎) → (((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))) ↔ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
5446, 53anbi12d 631 . . . . 5 (𝑧 = (denom‘𝑎) → ((((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) ↔ (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))))
5534, 35, 44, 54opelopab 5499 . . . 4 (⟨(numer‘𝑎), (denom‘𝑎)⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
5626, 33, 553imtr4g 295 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} → ⟨(numer‘𝑎), (denom‘𝑎)⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}))
57 ssrab2 4037 . . . . . 6 {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ⊆ ℚ
58 simprl 769 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})
5957, 58sselid 3942 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑎 ∈ ℚ)
60 simprr 771 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})
6157, 60sselid 3942 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑏 ∈ ℚ)
6234, 35opth 5433 . . . . . . 7 (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏)))
63 simprl 769 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → (numer‘𝑎) = (numer‘𝑏))
64 simprr 771 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → (denom‘𝑎) = (denom‘𝑏))
6563, 64oveq12d 7375 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → ((numer‘𝑎) / (denom‘𝑎)) = ((numer‘𝑏) / (denom‘𝑏)))
66 simpll 765 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 ∈ ℚ)
6766, 17syl 17 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 = ((numer‘𝑎) / (denom‘𝑎)))
68 simplr 767 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑏 ∈ ℚ)
69 qeqnumdivden 16621 . . . . . . . . . 10 (𝑏 ∈ ℚ → 𝑏 = ((numer‘𝑏) / (denom‘𝑏)))
7068, 69syl 17 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑏 = ((numer‘𝑏) / (denom‘𝑏)))
7165, 67, 703eqtr4d 2786 . . . . . . . 8 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 = 𝑏)
7271ex 413 . . . . . . 7 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏)) → 𝑎 = 𝑏))
7362, 72biimtrid 241 . . . . . 6 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ → 𝑎 = 𝑏))
74 fveq2 6842 . . . . . . 7 (𝑎 = 𝑏 → (numer‘𝑎) = (numer‘𝑏))
75 fveq2 6842 . . . . . . 7 (𝑎 = 𝑏 → (denom‘𝑎) = (denom‘𝑏))
7674, 75opeq12d 4838 . . . . . 6 (𝑎 = 𝑏 → ⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩)
7773, 76impbid1 224 . . . . 5 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏))
7859, 61, 77syl2anc 584 . . . 4 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏))
7978ex 413 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))}) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏)))
8056, 79dom2d 8933 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∈ V → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}))
814, 80mpi 20 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  {crab 3407  Vcvv 3445  cop 4592   class class class wbr 5105  {copab 5167   × cxp 5631  cfv 6496  (class class class)co 7357  cdom 8881  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  cq 12873  cexp 13967  csqrt 15118  abscabs 15119  numercnumer 16608  denomcdenom 16609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-numer 16610  df-denom 16611
This theorem is referenced by:  pellexlem4  41141
  Copyright terms: Public domain W3C validator