Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem3 Structured version   Visualization version   GIF version

Theorem pellexlem3 42824
Description: Lemma for pellex 42828. To each good rational approximation of (√‘𝐷), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
Distinct variable group:   𝑥,𝐷,𝑦,𝑧

Proof of Theorem pellexlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 12134 . . . 4 ℕ ∈ V
21, 1xpex 7689 . . 3 (ℕ × ℕ) ∈ V
3 opabssxp 5711 . . 3 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ⊆ (ℕ × ℕ)
42, 3ssexi 5261 . 2 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∈ V
5 simprl 770 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 𝑎 ∈ ℚ)
6 simprrl 780 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 0 < 𝑎)
7 qgt0numnn 16662 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ 0 < 𝑎) → (numer‘𝑎) ∈ ℕ)
85, 6, 7syl2anc 584 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (numer‘𝑎) ∈ ℕ)
9 qdencl 16652 . . . . . . . 8 (𝑎 ∈ ℚ → (denom‘𝑎) ∈ ℕ)
105, 9syl 17 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (denom‘𝑎) ∈ ℕ)
118, 10jca 511 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ))
12 simpll 766 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 𝐷 ∈ ℕ)
13 simplr 768 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ¬ (√‘𝐷) ∈ ℚ)
14 pellexlem1 42822 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0)
1512, 8, 10, 13, 14syl31anc 1375 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0)
16 simprrr 781 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))
17 qeqnumdivden 16657 . . . . . . . . . . . 12 (𝑎 ∈ ℚ → 𝑎 = ((numer‘𝑎) / (denom‘𝑎)))
1817oveq1d 7364 . . . . . . . . . . 11 (𝑎 ∈ ℚ → (𝑎 − (√‘𝐷)) = (((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷)))
1918fveq2d 6826 . . . . . . . . . 10 (𝑎 ∈ ℚ → (abs‘(𝑎 − (√‘𝐷))) = (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))))
2019breq1d 5102 . . . . . . . . 9 (𝑎 ∈ ℚ → ((abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2) ↔ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
215, 20syl 17 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ((abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2) ↔ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
2216, 21mpbid 232 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2))
23 pellexlem2 42823 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))
2412, 8, 10, 22, 23syl31anc 1375 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))
2511, 15, 24jca32 515 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
2625ex 412 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))) → (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))))
27 breq2 5096 . . . . . 6 (𝑥 = 𝑎 → (0 < 𝑥 ↔ 0 < 𝑎))
28 fvoveq1 7372 . . . . . . 7 (𝑥 = 𝑎 → (abs‘(𝑥 − (√‘𝐷))) = (abs‘(𝑎 − (√‘𝐷))))
29 fveq2 6822 . . . . . . . 8 (𝑥 = 𝑎 → (denom‘𝑥) = (denom‘𝑎))
3029oveq1d 7364 . . . . . . 7 (𝑥 = 𝑎 → ((denom‘𝑥)↑-2) = ((denom‘𝑎)↑-2))
3128, 30breq12d 5105 . . . . . 6 (𝑥 = 𝑎 → ((abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2) ↔ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
3227, 31anbi12d 632 . . . . 5 (𝑥 = 𝑎 → ((0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))))
3332elrab 3648 . . . 4 (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))))
34 fvex 6835 . . . . 5 (numer‘𝑎) ∈ V
35 fvex 6835 . . . . 5 (denom‘𝑎) ∈ V
36 eleq1 2816 . . . . . . 7 (𝑦 = (numer‘𝑎) → (𝑦 ∈ ℕ ↔ (numer‘𝑎) ∈ ℕ))
3736anbi1d 631 . . . . . 6 (𝑦 = (numer‘𝑎) → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ↔ ((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ)))
38 oveq1 7356 . . . . . . . . 9 (𝑦 = (numer‘𝑎) → (𝑦↑2) = ((numer‘𝑎)↑2))
3938oveq1d 7364 . . . . . . . 8 (𝑦 = (numer‘𝑎) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))))
4039neeq1d 2984 . . . . . . 7 (𝑦 = (numer‘𝑎) → (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ↔ (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0))
4139fveq2d 6826 . . . . . . . 8 (𝑦 = (numer‘𝑎) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) = (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))))
4241breq1d 5102 . . . . . . 7 (𝑦 = (numer‘𝑎) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))) ↔ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))
4340, 42anbi12d 632 . . . . . 6 (𝑦 = (numer‘𝑎) → ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))) ↔ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))
4437, 43anbi12d 632 . . . . 5 (𝑦 = (numer‘𝑎) → (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) ↔ (((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
45 eleq1 2816 . . . . . . 7 (𝑧 = (denom‘𝑎) → (𝑧 ∈ ℕ ↔ (denom‘𝑎) ∈ ℕ))
4645anbi2d 630 . . . . . 6 (𝑧 = (denom‘𝑎) → (((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ↔ ((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ)))
47 oveq1 7356 . . . . . . . . . 10 (𝑧 = (denom‘𝑎) → (𝑧↑2) = ((denom‘𝑎)↑2))
4847oveq2d 7365 . . . . . . . . 9 (𝑧 = (denom‘𝑎) → (𝐷 · (𝑧↑2)) = (𝐷 · ((denom‘𝑎)↑2)))
4948oveq2d 7365 . . . . . . . 8 (𝑧 = (denom‘𝑎) → (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) = (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))))
5049neeq1d 2984 . . . . . . 7 (𝑧 = (denom‘𝑎) → ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ↔ (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0))
5149fveq2d 6826 . . . . . . . 8 (𝑧 = (denom‘𝑎) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) = (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))))
5251breq1d 5102 . . . . . . 7 (𝑧 = (denom‘𝑎) → ((abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))) ↔ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))
5350, 52anbi12d 632 . . . . . 6 (𝑧 = (denom‘𝑎) → (((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))) ↔ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
5446, 53anbi12d 632 . . . . 5 (𝑧 = (denom‘𝑎) → ((((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) ↔ (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))))
5534, 35, 44, 54opelopab 5485 . . . 4 (⟨(numer‘𝑎), (denom‘𝑎)⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
5626, 33, 553imtr4g 296 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} → ⟨(numer‘𝑎), (denom‘𝑎)⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}))
57 ssrab2 4031 . . . . . 6 {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ⊆ ℚ
58 simprl 770 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})
5957, 58sselid 3933 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑎 ∈ ℚ)
60 simprr 772 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})
6157, 60sselid 3933 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑏 ∈ ℚ)
6234, 35opth 5419 . . . . . . 7 (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏)))
63 simprl 770 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → (numer‘𝑎) = (numer‘𝑏))
64 simprr 772 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → (denom‘𝑎) = (denom‘𝑏))
6563, 64oveq12d 7367 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → ((numer‘𝑎) / (denom‘𝑎)) = ((numer‘𝑏) / (denom‘𝑏)))
66 simpll 766 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 ∈ ℚ)
6766, 17syl 17 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 = ((numer‘𝑎) / (denom‘𝑎)))
68 simplr 768 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑏 ∈ ℚ)
69 qeqnumdivden 16657 . . . . . . . . . 10 (𝑏 ∈ ℚ → 𝑏 = ((numer‘𝑏) / (denom‘𝑏)))
7068, 69syl 17 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑏 = ((numer‘𝑏) / (denom‘𝑏)))
7165, 67, 703eqtr4d 2774 . . . . . . . 8 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 = 𝑏)
7271ex 412 . . . . . . 7 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏)) → 𝑎 = 𝑏))
7362, 72biimtrid 242 . . . . . 6 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ → 𝑎 = 𝑏))
74 fveq2 6822 . . . . . . 7 (𝑎 = 𝑏 → (numer‘𝑎) = (numer‘𝑏))
75 fveq2 6822 . . . . . . 7 (𝑎 = 𝑏 → (denom‘𝑎) = (denom‘𝑏))
7674, 75opeq12d 4832 . . . . . 6 (𝑎 = 𝑏 → ⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩)
7773, 76impbid1 225 . . . . 5 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏))
7859, 61, 77syl2anc 584 . . . 4 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏))
7978ex 412 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))}) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏)))
8056, 79dom2d 8918 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∈ V → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}))
814, 80mpi 20 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3394  Vcvv 3436  cop 4583   class class class wbr 5092  {copab 5154   × cxp 5617  cfv 6482  (class class class)co 7349  cdom 8870  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  cq 12849  cexp 13968  csqrt 15140  abscabs 15141  numercnumer 16644  denomcdenom 16645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647
This theorem is referenced by:  pellexlem4  42825
  Copyright terms: Public domain W3C validator