Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem3 Structured version   Visualization version   GIF version

Theorem pellexlem3 40569
Description: Lemma for pellex 40573. To each good rational approximation of (√‘𝐷), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
Distinct variable group:   𝑥,𝐷,𝑦,𝑧

Proof of Theorem pellexlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 11909 . . . 4 ℕ ∈ V
21, 1xpex 7581 . . 3 (ℕ × ℕ) ∈ V
3 opabssxp 5669 . . 3 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ⊆ (ℕ × ℕ)
42, 3ssexi 5241 . 2 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∈ V
5 simprl 767 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 𝑎 ∈ ℚ)
6 simprrl 777 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 0 < 𝑎)
7 qgt0numnn 16383 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ 0 < 𝑎) → (numer‘𝑎) ∈ ℕ)
85, 6, 7syl2anc 583 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (numer‘𝑎) ∈ ℕ)
9 qdencl 16373 . . . . . . . 8 (𝑎 ∈ ℚ → (denom‘𝑎) ∈ ℕ)
105, 9syl 17 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (denom‘𝑎) ∈ ℕ)
118, 10jca 511 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ))
12 simpll 763 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 𝐷 ∈ ℕ)
13 simplr 765 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ¬ (√‘𝐷) ∈ ℚ)
14 pellexlem1 40567 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0)
1512, 8, 10, 13, 14syl31anc 1371 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0)
16 simprrr 778 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))
17 qeqnumdivden 16378 . . . . . . . . . . . 12 (𝑎 ∈ ℚ → 𝑎 = ((numer‘𝑎) / (denom‘𝑎)))
1817oveq1d 7270 . . . . . . . . . . 11 (𝑎 ∈ ℚ → (𝑎 − (√‘𝐷)) = (((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷)))
1918fveq2d 6760 . . . . . . . . . 10 (𝑎 ∈ ℚ → (abs‘(𝑎 − (√‘𝐷))) = (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))))
2019breq1d 5080 . . . . . . . . 9 (𝑎 ∈ ℚ → ((abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2) ↔ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
215, 20syl 17 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ((abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2) ↔ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
2216, 21mpbid 231 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2))
23 pellexlem2 40568 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))
2412, 8, 10, 22, 23syl31anc 1371 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))
2511, 15, 24jca32 515 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
2625ex 412 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))) → (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))))
27 breq2 5074 . . . . . 6 (𝑥 = 𝑎 → (0 < 𝑥 ↔ 0 < 𝑎))
28 fvoveq1 7278 . . . . . . 7 (𝑥 = 𝑎 → (abs‘(𝑥 − (√‘𝐷))) = (abs‘(𝑎 − (√‘𝐷))))
29 fveq2 6756 . . . . . . . 8 (𝑥 = 𝑎 → (denom‘𝑥) = (denom‘𝑎))
3029oveq1d 7270 . . . . . . 7 (𝑥 = 𝑎 → ((denom‘𝑥)↑-2) = ((denom‘𝑎)↑-2))
3128, 30breq12d 5083 . . . . . 6 (𝑥 = 𝑎 → ((abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2) ↔ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
3227, 31anbi12d 630 . . . . 5 (𝑥 = 𝑎 → ((0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))))
3332elrab 3617 . . . 4 (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))))
34 fvex 6769 . . . . 5 (numer‘𝑎) ∈ V
35 fvex 6769 . . . . 5 (denom‘𝑎) ∈ V
36 eleq1 2826 . . . . . . 7 (𝑦 = (numer‘𝑎) → (𝑦 ∈ ℕ ↔ (numer‘𝑎) ∈ ℕ))
3736anbi1d 629 . . . . . 6 (𝑦 = (numer‘𝑎) → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ↔ ((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ)))
38 oveq1 7262 . . . . . . . . 9 (𝑦 = (numer‘𝑎) → (𝑦↑2) = ((numer‘𝑎)↑2))
3938oveq1d 7270 . . . . . . . 8 (𝑦 = (numer‘𝑎) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))))
4039neeq1d 3002 . . . . . . 7 (𝑦 = (numer‘𝑎) → (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ↔ (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0))
4139fveq2d 6760 . . . . . . . 8 (𝑦 = (numer‘𝑎) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) = (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))))
4241breq1d 5080 . . . . . . 7 (𝑦 = (numer‘𝑎) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))) ↔ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))
4340, 42anbi12d 630 . . . . . 6 (𝑦 = (numer‘𝑎) → ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))) ↔ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))
4437, 43anbi12d 630 . . . . 5 (𝑦 = (numer‘𝑎) → (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) ↔ (((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
45 eleq1 2826 . . . . . . 7 (𝑧 = (denom‘𝑎) → (𝑧 ∈ ℕ ↔ (denom‘𝑎) ∈ ℕ))
4645anbi2d 628 . . . . . 6 (𝑧 = (denom‘𝑎) → (((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ↔ ((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ)))
47 oveq1 7262 . . . . . . . . . 10 (𝑧 = (denom‘𝑎) → (𝑧↑2) = ((denom‘𝑎)↑2))
4847oveq2d 7271 . . . . . . . . 9 (𝑧 = (denom‘𝑎) → (𝐷 · (𝑧↑2)) = (𝐷 · ((denom‘𝑎)↑2)))
4948oveq2d 7271 . . . . . . . 8 (𝑧 = (denom‘𝑎) → (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) = (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))))
5049neeq1d 3002 . . . . . . 7 (𝑧 = (denom‘𝑎) → ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ↔ (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0))
5149fveq2d 6760 . . . . . . . 8 (𝑧 = (denom‘𝑎) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) = (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))))
5251breq1d 5080 . . . . . . 7 (𝑧 = (denom‘𝑎) → ((abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))) ↔ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))
5350, 52anbi12d 630 . . . . . 6 (𝑧 = (denom‘𝑎) → (((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))) ↔ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
5446, 53anbi12d 630 . . . . 5 (𝑧 = (denom‘𝑎) → ((((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) ↔ (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))))
5534, 35, 44, 54opelopab 5448 . . . 4 (⟨(numer‘𝑎), (denom‘𝑎)⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
5626, 33, 553imtr4g 295 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} → ⟨(numer‘𝑎), (denom‘𝑎)⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}))
57 ssrab2 4009 . . . . . 6 {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ⊆ ℚ
58 simprl 767 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})
5957, 58sselid 3915 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑎 ∈ ℚ)
60 simprr 769 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})
6157, 60sselid 3915 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑏 ∈ ℚ)
6234, 35opth 5385 . . . . . . 7 (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏)))
63 simprl 767 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → (numer‘𝑎) = (numer‘𝑏))
64 simprr 769 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → (denom‘𝑎) = (denom‘𝑏))
6563, 64oveq12d 7273 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → ((numer‘𝑎) / (denom‘𝑎)) = ((numer‘𝑏) / (denom‘𝑏)))
66 simpll 763 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 ∈ ℚ)
6766, 17syl 17 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 = ((numer‘𝑎) / (denom‘𝑎)))
68 simplr 765 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑏 ∈ ℚ)
69 qeqnumdivden 16378 . . . . . . . . . 10 (𝑏 ∈ ℚ → 𝑏 = ((numer‘𝑏) / (denom‘𝑏)))
7068, 69syl 17 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑏 = ((numer‘𝑏) / (denom‘𝑏)))
7165, 67, 703eqtr4d 2788 . . . . . . . 8 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 = 𝑏)
7271ex 412 . . . . . . 7 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏)) → 𝑎 = 𝑏))
7362, 72syl5bi 241 . . . . . 6 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ → 𝑎 = 𝑏))
74 fveq2 6756 . . . . . . 7 (𝑎 = 𝑏 → (numer‘𝑎) = (numer‘𝑏))
75 fveq2 6756 . . . . . . 7 (𝑎 = 𝑏 → (denom‘𝑎) = (denom‘𝑏))
7674, 75opeq12d 4809 . . . . . 6 (𝑎 = 𝑏 → ⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩)
7773, 76impbid1 224 . . . . 5 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏))
7859, 61, 77syl2anc 583 . . . 4 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏))
7978ex 412 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))}) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏)))
8056, 79dom2d 8736 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∈ V → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}))
814, 80mpi 20 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  cop 4564   class class class wbr 5070  {copab 5132   × cxp 5578  cfv 6418  (class class class)co 7255  cdom 8689  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  cq 12617  cexp 13710  csqrt 14872  abscabs 14873  numercnumer 16365  denomcdenom 16366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368
This theorem is referenced by:  pellexlem4  40570
  Copyright terms: Public domain W3C validator