Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem3 Structured version   Visualization version   GIF version

Theorem pellexlem3 42819
Description: Lemma for pellex 42823. To each good rational approximation of (√‘𝐷), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
Distinct variable group:   𝑥,𝐷,𝑦,𝑧

Proof of Theorem pellexlem3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 12270 . . . 4 ℕ ∈ V
21, 1xpex 7772 . . 3 (ℕ × ℕ) ∈ V
3 opabssxp 5781 . . 3 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ⊆ (ℕ × ℕ)
42, 3ssexi 5328 . 2 {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∈ V
5 simprl 771 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 𝑎 ∈ ℚ)
6 simprrl 781 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 0 < 𝑎)
7 qgt0numnn 16785 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ 0 < 𝑎) → (numer‘𝑎) ∈ ℕ)
85, 6, 7syl2anc 584 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (numer‘𝑎) ∈ ℕ)
9 qdencl 16775 . . . . . . . 8 (𝑎 ∈ ℚ → (denom‘𝑎) ∈ ℕ)
105, 9syl 17 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (denom‘𝑎) ∈ ℕ)
118, 10jca 511 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ))
12 simpll 767 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → 𝐷 ∈ ℕ)
13 simplr 769 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ¬ (√‘𝐷) ∈ ℚ)
14 pellexlem1 42817 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0)
1512, 8, 10, 13, 14syl31anc 1372 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0)
16 simprrr 782 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))
17 qeqnumdivden 16780 . . . . . . . . . . . 12 (𝑎 ∈ ℚ → 𝑎 = ((numer‘𝑎) / (denom‘𝑎)))
1817oveq1d 7446 . . . . . . . . . . 11 (𝑎 ∈ ℚ → (𝑎 − (√‘𝐷)) = (((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷)))
1918fveq2d 6911 . . . . . . . . . 10 (𝑎 ∈ ℚ → (abs‘(𝑎 − (√‘𝐷))) = (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))))
2019breq1d 5158 . . . . . . . . 9 (𝑎 ∈ ℚ → ((abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2) ↔ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
215, 20syl 17 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → ((abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2) ↔ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
2216, 21mpbid 232 . . . . . . 7 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2))
23 pellexlem2 42818 . . . . . . 7 (((𝐷 ∈ ℕ ∧ (numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ (abs‘(((numer‘𝑎) / (denom‘𝑎)) − (√‘𝐷))) < ((denom‘𝑎)↑-2)) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))
2412, 8, 10, 22, 23syl31anc 1372 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))
2511, 15, 24jca32 515 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))) → (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
2625ex 412 . . . 4 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))) → (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))))
27 breq2 5152 . . . . . 6 (𝑥 = 𝑎 → (0 < 𝑥 ↔ 0 < 𝑎))
28 fvoveq1 7454 . . . . . . 7 (𝑥 = 𝑎 → (abs‘(𝑥 − (√‘𝐷))) = (abs‘(𝑎 − (√‘𝐷))))
29 fveq2 6907 . . . . . . . 8 (𝑥 = 𝑎 → (denom‘𝑥) = (denom‘𝑎))
3029oveq1d 7446 . . . . . . 7 (𝑥 = 𝑎 → ((denom‘𝑥)↑-2) = ((denom‘𝑎)↑-2))
3128, 30breq12d 5161 . . . . . 6 (𝑥 = 𝑎 → ((abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2) ↔ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2)))
3227, 31anbi12d 632 . . . . 5 (𝑥 = 𝑎 → ((0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))))
3332elrab 3695 . . . 4 (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − (√‘𝐷))) < ((denom‘𝑎)↑-2))))
34 fvex 6920 . . . . 5 (numer‘𝑎) ∈ V
35 fvex 6920 . . . . 5 (denom‘𝑎) ∈ V
36 eleq1 2827 . . . . . . 7 (𝑦 = (numer‘𝑎) → (𝑦 ∈ ℕ ↔ (numer‘𝑎) ∈ ℕ))
3736anbi1d 631 . . . . . 6 (𝑦 = (numer‘𝑎) → ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ↔ ((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ)))
38 oveq1 7438 . . . . . . . . 9 (𝑦 = (numer‘𝑎) → (𝑦↑2) = ((numer‘𝑎)↑2))
3938oveq1d 7446 . . . . . . . 8 (𝑦 = (numer‘𝑎) → ((𝑦↑2) − (𝐷 · (𝑧↑2))) = (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))))
4039neeq1d 2998 . . . . . . 7 (𝑦 = (numer‘𝑎) → (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ↔ (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0))
4139fveq2d 6911 . . . . . . . 8 (𝑦 = (numer‘𝑎) → (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) = (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))))
4241breq1d 5158 . . . . . . 7 (𝑦 = (numer‘𝑎) → ((abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))) ↔ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))
4340, 42anbi12d 632 . . . . . 6 (𝑦 = (numer‘𝑎) → ((((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))) ↔ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))))
4437, 43anbi12d 632 . . . . 5 (𝑦 = (numer‘𝑎) → (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) ↔ (((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))))
45 eleq1 2827 . . . . . . 7 (𝑧 = (denom‘𝑎) → (𝑧 ∈ ℕ ↔ (denom‘𝑎) ∈ ℕ))
4645anbi2d 630 . . . . . 6 (𝑧 = (denom‘𝑎) → (((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ↔ ((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ)))
47 oveq1 7438 . . . . . . . . . 10 (𝑧 = (denom‘𝑎) → (𝑧↑2) = ((denom‘𝑎)↑2))
4847oveq2d 7447 . . . . . . . . 9 (𝑧 = (denom‘𝑎) → (𝐷 · (𝑧↑2)) = (𝐷 · ((denom‘𝑎)↑2)))
4948oveq2d 7447 . . . . . . . 8 (𝑧 = (denom‘𝑎) → (((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) = (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))))
5049neeq1d 2998 . . . . . . 7 (𝑧 = (denom‘𝑎) → ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ↔ (((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0))
5149fveq2d 6911 . . . . . . . 8 (𝑧 = (denom‘𝑎) → (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) = (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))))
5251breq1d 5158 . . . . . . 7 (𝑧 = (denom‘𝑎) → ((abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))) ↔ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))
5350, 52anbi12d 632 . . . . . 6 (𝑧 = (denom‘𝑎) → (((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))) ↔ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
5446, 53anbi12d 632 . . . . 5 (𝑧 = (denom‘𝑎) → ((((numer‘𝑎) ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷))))) ↔ (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷)))))))
5534, 35, 44, 54opelopab 5552 . . . 4 (⟨(numer‘𝑎), (denom‘𝑎)⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ↔ (((numer‘𝑎) ∈ ℕ ∧ (denom‘𝑎) ∈ ℕ) ∧ ((((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2))) ≠ 0 ∧ (abs‘(((numer‘𝑎)↑2) − (𝐷 · ((denom‘𝑎)↑2)))) < (1 + (2 · (√‘𝐷))))))
5626, 33, 553imtr4g 296 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} → ⟨(numer‘𝑎), (denom‘𝑎)⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}))
57 ssrab2 4090 . . . . . 6 {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ⊆ ℚ
58 simprl 771 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})
5957, 58sselid 3993 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑎 ∈ ℚ)
60 simprr 773 . . . . . 6 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})
6157, 60sselid 3993 . . . . 5 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → 𝑏 ∈ ℚ)
6234, 35opth 5487 . . . . . . 7 (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏)))
63 simprl 771 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → (numer‘𝑎) = (numer‘𝑏))
64 simprr 773 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → (denom‘𝑎) = (denom‘𝑏))
6563, 64oveq12d 7449 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → ((numer‘𝑎) / (denom‘𝑎)) = ((numer‘𝑏) / (denom‘𝑏)))
66 simpll 767 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 ∈ ℚ)
6766, 17syl 17 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 = ((numer‘𝑎) / (denom‘𝑎)))
68 simplr 769 . . . . . . . . . 10 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑏 ∈ ℚ)
69 qeqnumdivden 16780 . . . . . . . . . 10 (𝑏 ∈ ℚ → 𝑏 = ((numer‘𝑏) / (denom‘𝑏)))
7068, 69syl 17 . . . . . . . . 9 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑏 = ((numer‘𝑏) / (denom‘𝑏)))
7165, 67, 703eqtr4d 2785 . . . . . . . 8 (((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) ∧ ((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏))) → 𝑎 = 𝑏)
7271ex 412 . . . . . . 7 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (((numer‘𝑎) = (numer‘𝑏) ∧ (denom‘𝑎) = (denom‘𝑏)) → 𝑎 = 𝑏))
7362, 72biimtrid 242 . . . . . 6 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ → 𝑎 = 𝑏))
74 fveq2 6907 . . . . . . 7 (𝑎 = 𝑏 → (numer‘𝑎) = (numer‘𝑏))
75 fveq2 6907 . . . . . . 7 (𝑎 = 𝑏 → (denom‘𝑎) = (denom‘𝑏))
7674, 75opeq12d 4886 . . . . . 6 (𝑎 = 𝑏 → ⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩)
7773, 76impbid1 225 . . . . 5 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏))
7859, 61, 77syl2anc 584 . . . 4 (((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) ∧ (𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))})) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏))
7978ex 412 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝑎 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ∧ 𝑏 ∈ {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))}) → (⟨(numer‘𝑎), (denom‘𝑎)⟩ = ⟨(numer‘𝑏), (denom‘𝑏)⟩ ↔ 𝑎 = 𝑏)))
8056, 79dom2d 9032 . 2 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ({⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ∈ V → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}))
814, 80mpi 20 1 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {⟨𝑦, 𝑧⟩ ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433  Vcvv 3478  cop 4637   class class class wbr 5148  {copab 5210   × cxp 5687  cfv 6563  (class class class)co 7431  cdom 8982  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  cq 12988  cexp 14099  csqrt 15269  abscabs 15270  numercnumer 16767  denomcdenom 16768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-numer 16769  df-denom 16770
This theorem is referenced by:  pellexlem4  42820
  Copyright terms: Public domain W3C validator