Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem3 Structured version   Visualization version   GIF version

Theorem pellexlem3 41651
Description: Lemma for pellex 41655. To each good rational approximation of (βˆšβ€˜π·), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem3 ((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) β†’ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} β‰Ό {βŸ¨π‘¦, π‘§βŸ© ∣ ((𝑦 ∈ β„• ∧ 𝑧 ∈ β„•) ∧ (((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))})
Distinct variable group:   π‘₯,𝐷,𝑦,𝑧

Proof of Theorem pellexlem3
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 12220 . . . 4 β„• ∈ V
21, 1xpex 7742 . . 3 (β„• Γ— β„•) ∈ V
3 opabssxp 5768 . . 3 {βŸ¨π‘¦, π‘§βŸ© ∣ ((𝑦 ∈ β„• ∧ 𝑧 ∈ β„•) ∧ (((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))} βŠ† (β„• Γ— β„•)
42, 3ssexi 5322 . 2 {βŸ¨π‘¦, π‘§βŸ© ∣ ((𝑦 ∈ β„• ∧ 𝑧 ∈ β„•) ∧ (((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))} ∈ V
5 simprl 769 . . . . . . . 8 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ π‘Ž ∈ β„š)
6 simprrl 779 . . . . . . . 8 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ 0 < π‘Ž)
7 qgt0numnn 16689 . . . . . . . 8 ((π‘Ž ∈ β„š ∧ 0 < π‘Ž) β†’ (numerβ€˜π‘Ž) ∈ β„•)
85, 6, 7syl2anc 584 . . . . . . 7 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ (numerβ€˜π‘Ž) ∈ β„•)
9 qdencl 16679 . . . . . . . 8 (π‘Ž ∈ β„š β†’ (denomβ€˜π‘Ž) ∈ β„•)
105, 9syl 17 . . . . . . 7 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ (denomβ€˜π‘Ž) ∈ β„•)
118, 10jca 512 . . . . . 6 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ ((numerβ€˜π‘Ž) ∈ β„• ∧ (denomβ€˜π‘Ž) ∈ β„•))
12 simpll 765 . . . . . . 7 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ 𝐷 ∈ β„•)
13 simplr 767 . . . . . . 7 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ Β¬ (βˆšβ€˜π·) ∈ β„š)
14 pellexlem1 41649 . . . . . . 7 (((𝐷 ∈ β„• ∧ (numerβ€˜π‘Ž) ∈ β„• ∧ (denomβ€˜π‘Ž) ∈ β„•) ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) β†’ (((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2))) β‰  0)
1512, 8, 10, 13, 14syl31anc 1373 . . . . . 6 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ (((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2))) β‰  0)
16 simprrr 780 . . . . . . . 8 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2))
17 qeqnumdivden 16684 . . . . . . . . . . . 12 (π‘Ž ∈ β„š β†’ π‘Ž = ((numerβ€˜π‘Ž) / (denomβ€˜π‘Ž)))
1817oveq1d 7426 . . . . . . . . . . 11 (π‘Ž ∈ β„š β†’ (π‘Ž βˆ’ (βˆšβ€˜π·)) = (((numerβ€˜π‘Ž) / (denomβ€˜π‘Ž)) βˆ’ (βˆšβ€˜π·)))
1918fveq2d 6895 . . . . . . . . . 10 (π‘Ž ∈ β„š β†’ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) = (absβ€˜(((numerβ€˜π‘Ž) / (denomβ€˜π‘Ž)) βˆ’ (βˆšβ€˜π·))))
2019breq1d 5158 . . . . . . . . 9 (π‘Ž ∈ β„š β†’ ((absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2) ↔ (absβ€˜(((numerβ€˜π‘Ž) / (denomβ€˜π‘Ž)) βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))
215, 20syl 17 . . . . . . . 8 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ ((absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2) ↔ (absβ€˜(((numerβ€˜π‘Ž) / (denomβ€˜π‘Ž)) βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))
2216, 21mpbid 231 . . . . . . 7 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ (absβ€˜(((numerβ€˜π‘Ž) / (denomβ€˜π‘Ž)) βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2))
23 pellexlem2 41650 . . . . . . 7 (((𝐷 ∈ β„• ∧ (numerβ€˜π‘Ž) ∈ β„• ∧ (denomβ€˜π‘Ž) ∈ β„•) ∧ (absβ€˜(((numerβ€˜π‘Ž) / (denomβ€˜π‘Ž)) βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)) β†’ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2)))) < (1 + (2 Β· (βˆšβ€˜π·))))
2412, 8, 10, 22, 23syl31anc 1373 . . . . . 6 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2)))) < (1 + (2 Β· (βˆšβ€˜π·))))
2511, 15, 24jca32 516 . . . . 5 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))) β†’ (((numerβ€˜π‘Ž) ∈ β„• ∧ (denomβ€˜π‘Ž) ∈ β„•) ∧ ((((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2))) β‰  0 ∧ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2)))) < (1 + (2 Β· (βˆšβ€˜π·))))))
2625ex 413 . . . 4 ((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) β†’ ((π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2))) β†’ (((numerβ€˜π‘Ž) ∈ β„• ∧ (denomβ€˜π‘Ž) ∈ β„•) ∧ ((((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2))) β‰  0 ∧ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))))
27 breq2 5152 . . . . . 6 (π‘₯ = π‘Ž β†’ (0 < π‘₯ ↔ 0 < π‘Ž))
28 fvoveq1 7434 . . . . . . 7 (π‘₯ = π‘Ž β†’ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) = (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))))
29 fveq2 6891 . . . . . . . 8 (π‘₯ = π‘Ž β†’ (denomβ€˜π‘₯) = (denomβ€˜π‘Ž))
3029oveq1d 7426 . . . . . . 7 (π‘₯ = π‘Ž β†’ ((denomβ€˜π‘₯)↑-2) = ((denomβ€˜π‘Ž)↑-2))
3128, 30breq12d 5161 . . . . . 6 (π‘₯ = π‘Ž β†’ ((absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2) ↔ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2)))
3227, 31anbi12d 631 . . . . 5 (π‘₯ = π‘Ž β†’ ((0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2)) ↔ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2))))
3332elrab 3683 . . . 4 (π‘Ž ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} ↔ (π‘Ž ∈ β„š ∧ (0 < π‘Ž ∧ (absβ€˜(π‘Ž βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘Ž)↑-2))))
34 fvex 6904 . . . . 5 (numerβ€˜π‘Ž) ∈ V
35 fvex 6904 . . . . 5 (denomβ€˜π‘Ž) ∈ V
36 eleq1 2821 . . . . . . 7 (𝑦 = (numerβ€˜π‘Ž) β†’ (𝑦 ∈ β„• ↔ (numerβ€˜π‘Ž) ∈ β„•))
3736anbi1d 630 . . . . . 6 (𝑦 = (numerβ€˜π‘Ž) β†’ ((𝑦 ∈ β„• ∧ 𝑧 ∈ β„•) ↔ ((numerβ€˜π‘Ž) ∈ β„• ∧ 𝑧 ∈ β„•)))
38 oveq1 7418 . . . . . . . . 9 (𝑦 = (numerβ€˜π‘Ž) β†’ (𝑦↑2) = ((numerβ€˜π‘Ž)↑2))
3938oveq1d 7426 . . . . . . . 8 (𝑦 = (numerβ€˜π‘Ž) β†’ ((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) = (((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2))))
4039neeq1d 3000 . . . . . . 7 (𝑦 = (numerβ€˜π‘Ž) β†’ (((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ↔ (((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0))
4139fveq2d 6895 . . . . . . . 8 (𝑦 = (numerβ€˜π‘Ž) β†’ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) = (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2)))))
4241breq1d 5158 . . . . . . 7 (𝑦 = (numerβ€˜π‘Ž) β†’ ((absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·))) ↔ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))
4340, 42anbi12d 631 . . . . . 6 (𝑦 = (numerβ€˜π‘Ž) β†’ ((((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))) ↔ ((((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·))))))
4437, 43anbi12d 631 . . . . 5 (𝑦 = (numerβ€˜π‘Ž) β†’ (((𝑦 ∈ β„• ∧ 𝑧 ∈ β„•) ∧ (((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·))))) ↔ (((numerβ€˜π‘Ž) ∈ β„• ∧ 𝑧 ∈ β„•) ∧ ((((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))))
45 eleq1 2821 . . . . . . 7 (𝑧 = (denomβ€˜π‘Ž) β†’ (𝑧 ∈ β„• ↔ (denomβ€˜π‘Ž) ∈ β„•))
4645anbi2d 629 . . . . . 6 (𝑧 = (denomβ€˜π‘Ž) β†’ (((numerβ€˜π‘Ž) ∈ β„• ∧ 𝑧 ∈ β„•) ↔ ((numerβ€˜π‘Ž) ∈ β„• ∧ (denomβ€˜π‘Ž) ∈ β„•)))
47 oveq1 7418 . . . . . . . . . 10 (𝑧 = (denomβ€˜π‘Ž) β†’ (𝑧↑2) = ((denomβ€˜π‘Ž)↑2))
4847oveq2d 7427 . . . . . . . . 9 (𝑧 = (denomβ€˜π‘Ž) β†’ (𝐷 Β· (𝑧↑2)) = (𝐷 Β· ((denomβ€˜π‘Ž)↑2)))
4948oveq2d 7427 . . . . . . . 8 (𝑧 = (denomβ€˜π‘Ž) β†’ (((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2))) = (((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2))))
5049neeq1d 3000 . . . . . . 7 (𝑧 = (denomβ€˜π‘Ž) β†’ ((((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ↔ (((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2))) β‰  0))
5149fveq2d 6895 . . . . . . . 8 (𝑧 = (denomβ€˜π‘Ž) β†’ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) = (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2)))))
5251breq1d 5158 . . . . . . 7 (𝑧 = (denomβ€˜π‘Ž) β†’ ((absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·))) ↔ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))
5350, 52anbi12d 631 . . . . . 6 (𝑧 = (denomβ€˜π‘Ž) β†’ (((((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))) ↔ ((((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2))) β‰  0 ∧ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2)))) < (1 + (2 Β· (βˆšβ€˜π·))))))
5446, 53anbi12d 631 . . . . 5 (𝑧 = (denomβ€˜π‘Ž) β†’ ((((numerβ€˜π‘Ž) ∈ β„• ∧ 𝑧 ∈ β„•) ∧ ((((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·))))) ↔ (((numerβ€˜π‘Ž) ∈ β„• ∧ (denomβ€˜π‘Ž) ∈ β„•) ∧ ((((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2))) β‰  0 ∧ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))))
5534, 35, 44, 54opelopab 5542 . . . 4 (⟨(numerβ€˜π‘Ž), (denomβ€˜π‘Ž)⟩ ∈ {βŸ¨π‘¦, π‘§βŸ© ∣ ((𝑦 ∈ β„• ∧ 𝑧 ∈ β„•) ∧ (((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))} ↔ (((numerβ€˜π‘Ž) ∈ β„• ∧ (denomβ€˜π‘Ž) ∈ β„•) ∧ ((((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2))) β‰  0 ∧ (absβ€˜(((numerβ€˜π‘Ž)↑2) βˆ’ (𝐷 Β· ((denomβ€˜π‘Ž)↑2)))) < (1 + (2 Β· (βˆšβ€˜π·))))))
5626, 33, 553imtr4g 295 . . 3 ((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) β†’ (π‘Ž ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} β†’ ⟨(numerβ€˜π‘Ž), (denomβ€˜π‘Ž)⟩ ∈ {βŸ¨π‘¦, π‘§βŸ© ∣ ((𝑦 ∈ β„• ∧ 𝑧 ∈ β„•) ∧ (((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))}))
57 ssrab2 4077 . . . . . 6 {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} βŠ† β„š
58 simprl 769 . . . . . 6 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} ∧ 𝑏 ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))})) β†’ π‘Ž ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))})
5957, 58sselid 3980 . . . . 5 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} ∧ 𝑏 ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))})) β†’ π‘Ž ∈ β„š)
60 simprr 771 . . . . . 6 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} ∧ 𝑏 ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))})) β†’ 𝑏 ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))})
6157, 60sselid 3980 . . . . 5 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} ∧ 𝑏 ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))})) β†’ 𝑏 ∈ β„š)
6234, 35opth 5476 . . . . . . 7 (⟨(numerβ€˜π‘Ž), (denomβ€˜π‘Ž)⟩ = ⟨(numerβ€˜π‘), (denomβ€˜π‘)⟩ ↔ ((numerβ€˜π‘Ž) = (numerβ€˜π‘) ∧ (denomβ€˜π‘Ž) = (denomβ€˜π‘)))
63 simprl 769 . . . . . . . . . 10 (((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) ∧ ((numerβ€˜π‘Ž) = (numerβ€˜π‘) ∧ (denomβ€˜π‘Ž) = (denomβ€˜π‘))) β†’ (numerβ€˜π‘Ž) = (numerβ€˜π‘))
64 simprr 771 . . . . . . . . . 10 (((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) ∧ ((numerβ€˜π‘Ž) = (numerβ€˜π‘) ∧ (denomβ€˜π‘Ž) = (denomβ€˜π‘))) β†’ (denomβ€˜π‘Ž) = (denomβ€˜π‘))
6563, 64oveq12d 7429 . . . . . . . . 9 (((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) ∧ ((numerβ€˜π‘Ž) = (numerβ€˜π‘) ∧ (denomβ€˜π‘Ž) = (denomβ€˜π‘))) β†’ ((numerβ€˜π‘Ž) / (denomβ€˜π‘Ž)) = ((numerβ€˜π‘) / (denomβ€˜π‘)))
66 simpll 765 . . . . . . . . . 10 (((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) ∧ ((numerβ€˜π‘Ž) = (numerβ€˜π‘) ∧ (denomβ€˜π‘Ž) = (denomβ€˜π‘))) β†’ π‘Ž ∈ β„š)
6766, 17syl 17 . . . . . . . . 9 (((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) ∧ ((numerβ€˜π‘Ž) = (numerβ€˜π‘) ∧ (denomβ€˜π‘Ž) = (denomβ€˜π‘))) β†’ π‘Ž = ((numerβ€˜π‘Ž) / (denomβ€˜π‘Ž)))
68 simplr 767 . . . . . . . . . 10 (((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) ∧ ((numerβ€˜π‘Ž) = (numerβ€˜π‘) ∧ (denomβ€˜π‘Ž) = (denomβ€˜π‘))) β†’ 𝑏 ∈ β„š)
69 qeqnumdivden 16684 . . . . . . . . . 10 (𝑏 ∈ β„š β†’ 𝑏 = ((numerβ€˜π‘) / (denomβ€˜π‘)))
7068, 69syl 17 . . . . . . . . 9 (((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) ∧ ((numerβ€˜π‘Ž) = (numerβ€˜π‘) ∧ (denomβ€˜π‘Ž) = (denomβ€˜π‘))) β†’ 𝑏 = ((numerβ€˜π‘) / (denomβ€˜π‘)))
7165, 67, 703eqtr4d 2782 . . . . . . . 8 (((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) ∧ ((numerβ€˜π‘Ž) = (numerβ€˜π‘) ∧ (denomβ€˜π‘Ž) = (denomβ€˜π‘))) β†’ π‘Ž = 𝑏)
7271ex 413 . . . . . . 7 ((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) β†’ (((numerβ€˜π‘Ž) = (numerβ€˜π‘) ∧ (denomβ€˜π‘Ž) = (denomβ€˜π‘)) β†’ π‘Ž = 𝑏))
7362, 72biimtrid 241 . . . . . 6 ((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) β†’ (⟨(numerβ€˜π‘Ž), (denomβ€˜π‘Ž)⟩ = ⟨(numerβ€˜π‘), (denomβ€˜π‘)⟩ β†’ π‘Ž = 𝑏))
74 fveq2 6891 . . . . . . 7 (π‘Ž = 𝑏 β†’ (numerβ€˜π‘Ž) = (numerβ€˜π‘))
75 fveq2 6891 . . . . . . 7 (π‘Ž = 𝑏 β†’ (denomβ€˜π‘Ž) = (denomβ€˜π‘))
7674, 75opeq12d 4881 . . . . . 6 (π‘Ž = 𝑏 β†’ ⟨(numerβ€˜π‘Ž), (denomβ€˜π‘Ž)⟩ = ⟨(numerβ€˜π‘), (denomβ€˜π‘)⟩)
7773, 76impbid1 224 . . . . 5 ((π‘Ž ∈ β„š ∧ 𝑏 ∈ β„š) β†’ (⟨(numerβ€˜π‘Ž), (denomβ€˜π‘Ž)⟩ = ⟨(numerβ€˜π‘), (denomβ€˜π‘)⟩ ↔ π‘Ž = 𝑏))
7859, 61, 77syl2anc 584 . . . 4 (((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) ∧ (π‘Ž ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} ∧ 𝑏 ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))})) β†’ (⟨(numerβ€˜π‘Ž), (denomβ€˜π‘Ž)⟩ = ⟨(numerβ€˜π‘), (denomβ€˜π‘)⟩ ↔ π‘Ž = 𝑏))
7978ex 413 . . 3 ((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) β†’ ((π‘Ž ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} ∧ 𝑏 ∈ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))}) β†’ (⟨(numerβ€˜π‘Ž), (denomβ€˜π‘Ž)⟩ = ⟨(numerβ€˜π‘), (denomβ€˜π‘)⟩ ↔ π‘Ž = 𝑏)))
8056, 79dom2d 8991 . 2 ((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) β†’ ({βŸ¨π‘¦, π‘§βŸ© ∣ ((𝑦 ∈ β„• ∧ 𝑧 ∈ β„•) ∧ (((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))} ∈ V β†’ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} β‰Ό {βŸ¨π‘¦, π‘§βŸ© ∣ ((𝑦 ∈ β„• ∧ 𝑧 ∈ β„•) ∧ (((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))}))
814, 80mpi 20 1 ((𝐷 ∈ β„• ∧ Β¬ (βˆšβ€˜π·) ∈ β„š) β†’ {π‘₯ ∈ β„š ∣ (0 < π‘₯ ∧ (absβ€˜(π‘₯ βˆ’ (βˆšβ€˜π·))) < ((denomβ€˜π‘₯)↑-2))} β‰Ό {βŸ¨π‘¦, π‘§βŸ© ∣ ((𝑦 ∈ β„• ∧ 𝑧 ∈ β„•) ∧ (((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2))) β‰  0 ∧ (absβ€˜((𝑦↑2) βˆ’ (𝐷 Β· (𝑧↑2)))) < (1 + (2 Β· (βˆšβ€˜π·)))))})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  {crab 3432  Vcvv 3474  βŸ¨cop 4634   class class class wbr 5148  {copab 5210   Γ— cxp 5674  β€˜cfv 6543  (class class class)co 7411   β‰Ό cdom 8939  0cc0 11112  1c1 11113   + caddc 11115   Β· cmul 11117   < clt 11250   βˆ’ cmin 11446  -cneg 11447   / cdiv 11873  β„•cn 12214  2c2 12269  β„šcq 12934  β†‘cexp 14029  βˆšcsqrt 15182  abscabs 15183  numercnumer 16671  denomcdenom 16672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-z 12561  df-uz 12825  df-q 12935  df-rp 12977  df-fl 13759  df-mod 13837  df-seq 13969  df-exp 14030  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-dvds 16200  df-gcd 16438  df-numer 16673  df-denom 16674
This theorem is referenced by:  pellexlem4  41652
  Copyright terms: Public domain W3C validator