Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicopelval Structured version   Visualization version   GIF version

Theorem dicopelval 39170
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Feb-2014.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicelval.f 𝐹 ∈ V
dicelval.s 𝑆 ∈ V
Assertion
Ref Expression
dicopelval (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,𝑊   𝑄,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝑆(𝑔)   𝐸(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)

Proof of Theorem dicopelval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4 = (le‘𝐾)
2 dicval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 dicval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dicval.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . . 4 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicval 39169 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
98eleq2d 2825 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ ⟨𝐹, 𝑆⟩ ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)}))
10 dicelval.f . . 3 𝐹 ∈ V
11 dicelval.s . . 3 𝑆 ∈ V
12 eqeq1 2743 . . . 4 (𝑓 = 𝐹 → (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ 𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
1312anbi1d 629 . . 3 (𝑓 = 𝐹 → ((𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) ↔ (𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)))
14 fveq1 6767 . . . . 5 (𝑠 = 𝑆 → (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1514eqeq2d 2750 . . . 4 (𝑠 = 𝑆 → (𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ 𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
16 eleq1 2827 . . . 4 (𝑠 = 𝑆 → (𝑠𝐸𝑆𝐸))
1715, 16anbi12d 630 . . 3 (𝑠 = 𝑆 → ((𝐹 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
1810, 11, 13, 17opelopab 5456 . 2 (⟨𝐹, 𝑆⟩ ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸))
199, 18bitrdi 286 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑄) ↔ (𝐹 = (𝑆‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑆𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  cop 4572   class class class wbr 5078  {copab 5140  cfv 6430  crio 7224  lecple 16950  occoc 16951  Atomscatm 37256  LHypclh 37977  LTrncltrn 38094  TEndoctendo 38745  DIsoCcdic 39165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-dic 39166
This theorem is referenced by:  dicopelval2  39174  dicvaddcl  39183  dicvscacl  39184  dicn0  39185
  Copyright terms: Public domain W3C validator