| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dicopelval | Structured version Visualization version GIF version | ||
| Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Feb-2014.) |
| Ref | Expression |
|---|---|
| dicval.l | ⊢ ≤ = (le‘𝐾) |
| dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| dicelval.f | ⊢ 𝐹 ∈ V |
| dicelval.s | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| dicopelval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dicval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | dicval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | dicval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dicval.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 5 | dicval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | dicval.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 7 | dicval.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dicval 41195 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)}) |
| 9 | 8 | eleq2d 2820 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ 〈𝐹, 𝑆〉 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})) |
| 10 | dicelval.f | . . 3 ⊢ 𝐹 ∈ V | |
| 11 | dicelval.s | . . 3 ⊢ 𝑆 ∈ V | |
| 12 | eqeq1 2739 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ↔ 𝐹 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)))) | |
| 13 | 12 | anbi1d 631 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸) ↔ (𝐹 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸))) |
| 14 | fveq1 6875 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) | |
| 15 | 14 | eqeq2d 2746 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝐹 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ↔ 𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)))) |
| 16 | eleq1 2822 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝐸 ↔ 𝑆 ∈ 𝐸)) | |
| 17 | 15, 16 | anbi12d 632 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝐹 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸) ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸))) |
| 18 | 10, 11, 13, 17 | opelopab 5517 | . 2 ⊢ (〈𝐹, 𝑆〉 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)} ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸)) |
| 19 | 9, 18 | bitrdi 287 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 class class class wbr 5119 {copab 5181 ‘cfv 6531 ℩crio 7361 lecple 17278 occoc 17279 Atomscatm 39281 LHypclh 40003 LTrncltrn 40120 TEndoctendo 40771 DIsoCcdic 41191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-dic 41192 |
| This theorem is referenced by: dicopelval2 41200 dicvaddcl 41209 dicvscacl 41210 dicn0 41211 |
| Copyright terms: Public domain | W3C validator |