Step | Hyp | Ref
| Expression |
1 | | dicval.l |
. . . 4
β’ β€ =
(leβπΎ) |
2 | | dicval.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
3 | | dicval.h |
. . . 4
β’ π» = (LHypβπΎ) |
4 | | dicval.p |
. . . 4
β’ π = ((ocβπΎ)βπ) |
5 | | dicval.t |
. . . 4
β’ π = ((LTrnβπΎ)βπ) |
6 | | dicval.e |
. . . 4
β’ πΈ = ((TEndoβπΎ)βπ) |
7 | | dicval.i |
. . . 4
β’ πΌ = ((DIsoCβπΎ)βπ) |
8 | 1, 2, 3, 4, 5, 6, 7 | dicval 40042 |
. . 3
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β πΈ)}) |
9 | 8 | eleq2d 2819 |
. 2
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β β¨πΉ, πβ© β {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β πΈ)})) |
10 | | dicelval.f |
. . 3
β’ πΉ β V |
11 | | dicelval.s |
. . 3
β’ π β V |
12 | | eqeq1 2736 |
. . . 4
β’ (π = πΉ β (π = (π β(β©π β π (πβπ) = π)) β πΉ = (π β(β©π β π (πβπ) = π)))) |
13 | 12 | anbi1d 630 |
. . 3
β’ (π = πΉ β ((π = (π β(β©π β π (πβπ) = π)) β§ π β πΈ) β (πΉ = (π β(β©π β π (πβπ) = π)) β§ π β πΈ))) |
14 | | fveq1 6890 |
. . . . 5
β’ (π = π β (π β(β©π β π (πβπ) = π)) = (πβ(β©π β π (πβπ) = π))) |
15 | 14 | eqeq2d 2743 |
. . . 4
β’ (π = π β (πΉ = (π β(β©π β π (πβπ) = π)) β πΉ = (πβ(β©π β π (πβπ) = π)))) |
16 | | eleq1 2821 |
. . . 4
β’ (π = π β (π β πΈ β π β πΈ)) |
17 | 15, 16 | anbi12d 631 |
. . 3
β’ (π = π β ((πΉ = (π β(β©π β π (πβπ) = π)) β§ π β πΈ) β (πΉ = (πβ(β©π β π (πβπ) = π)) β§ π β πΈ))) |
18 | 10, 11, 13, 17 | opelopab 5542 |
. 2
β’
(β¨πΉ, πβ© β {β¨π, π β© β£ (π = (π β(β©π β π (πβπ) = π)) β§ π β πΈ)} β (πΉ = (πβ(β©π β π (πβπ) = π)) β§ π β πΈ)) |
19 | 9, 18 | bitrdi 286 |
1
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (β¨πΉ, πβ© β (πΌβπ) β (πΉ = (πβ(β©π β π (πβπ) = π)) β§ π β πΈ))) |