Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicopelval | Structured version Visualization version GIF version |
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Feb-2014.) |
Ref | Expression |
---|---|
dicval.l | ⊢ ≤ = (le‘𝐾) |
dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
dicelval.f | ⊢ 𝐹 ∈ V |
dicelval.s | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
dicopelval | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | dicval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicval.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
5 | dicval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | dicval.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
7 | dicval.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dicval 38802 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)}) |
9 | 8 | eleq2d 2818 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ 〈𝐹, 𝑆〉 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})) |
10 | dicelval.f | . . 3 ⊢ 𝐹 ∈ V | |
11 | dicelval.s | . . 3 ⊢ 𝑆 ∈ V | |
12 | eqeq1 2742 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ↔ 𝐹 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)))) | |
13 | 12 | anbi1d 633 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸) ↔ (𝐹 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸))) |
14 | fveq1 6667 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) | |
15 | 14 | eqeq2d 2749 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝐹 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ↔ 𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)))) |
16 | eleq1 2820 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝐸 ↔ 𝑆 ∈ 𝐸)) | |
17 | 15, 16 | anbi12d 634 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝐹 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸) ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸))) |
18 | 10, 11, 13, 17 | opelopab 5394 | . 2 ⊢ (〈𝐹, 𝑆〉 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)} ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸)) |
19 | 9, 18 | bitrdi 290 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑄) ↔ (𝐹 = (𝑆‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑆 ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 Vcvv 3397 〈cop 4519 class class class wbr 5027 {copab 5089 ‘cfv 6333 ℩crio 7120 lecple 16668 occoc 16669 Atomscatm 36889 LHypclh 37610 LTrncltrn 37727 TEndoctendo 38378 DIsoCcdic 38798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-dic 38799 |
This theorem is referenced by: dicopelval2 38807 dicvaddcl 38816 dicvscacl 38817 dicn0 38818 |
Copyright terms: Public domain | W3C validator |