Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicopelval Structured version   Visualization version   GIF version

Theorem dicopelval 40043
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Feb-2014.)
Hypotheses
Ref Expression
dicval.l ≀ = (leβ€˜πΎ)
dicval.a 𝐴 = (Atomsβ€˜πΎ)
dicval.h 𝐻 = (LHypβ€˜πΎ)
dicval.p 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
dicval.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dicval.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dicval.i 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dicelval.f 𝐹 ∈ V
dicelval.s 𝑆 ∈ V
Assertion
Ref Expression
dicopelval (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘„) ↔ (𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑆 ∈ 𝐸)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,π‘Š   𝑄,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝑆(𝑔)   𝐸(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   ≀ (𝑔)   𝑉(𝑔)

Proof of Theorem dicopelval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4 ≀ = (leβ€˜πΎ)
2 dicval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
3 dicval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 dicval.p . . . 4 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
5 dicval.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
6 dicval.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
7 dicval.i . . . 4 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7dicval 40042 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})
98eleq2d 2819 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘„) ↔ ⟨𝐹, π‘†βŸ© ∈ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)}))
10 dicelval.f . . 3 𝐹 ∈ V
11 dicelval.s . . 3 𝑆 ∈ V
12 eqeq1 2736 . . . 4 (𝑓 = 𝐹 β†’ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ↔ 𝐹 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄))))
1312anbi1d 630 . . 3 (𝑓 = 𝐹 β†’ ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) ↔ (𝐹 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)))
14 fveq1 6890 . . . . 5 (𝑠 = 𝑆 β†’ (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)))
1514eqeq2d 2743 . . . 4 (𝑠 = 𝑆 β†’ (𝐹 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ↔ 𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄))))
16 eleq1 2821 . . . 4 (𝑠 = 𝑆 β†’ (𝑠 ∈ 𝐸 ↔ 𝑆 ∈ 𝐸))
1715, 16anbi12d 631 . . 3 (𝑠 = 𝑆 β†’ ((𝐹 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) ↔ (𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑆 ∈ 𝐸)))
1810, 11, 13, 17opelopab 5542 . 2 (⟨𝐹, π‘†βŸ© ∈ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)} ↔ (𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑆 ∈ 𝐸))
199, 18bitrdi 286 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘„) ↔ (𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑆 ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4634   class class class wbr 5148  {copab 5210  β€˜cfv 6543  β„©crio 7363  lecple 17203  occoc 17204  Atomscatm 38128  LHypclh 38850  LTrncltrn 38967  TEndoctendo 39618  DIsoCcdic 40038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-dic 40039
This theorem is referenced by:  dicopelval2  40047  dicvaddcl  40056  dicvscacl  40057  dicn0  40058
  Copyright terms: Public domain W3C validator