Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicopelval Structured version   Visualization version   GIF version

Theorem dicopelval 40561
Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Feb-2014.)
Hypotheses
Ref Expression
dicval.l ≀ = (leβ€˜πΎ)
dicval.a 𝐴 = (Atomsβ€˜πΎ)
dicval.h 𝐻 = (LHypβ€˜πΎ)
dicval.p 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
dicval.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dicval.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dicval.i 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dicelval.f 𝐹 ∈ V
dicelval.s 𝑆 ∈ V
Assertion
Ref Expression
dicopelval (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘„) ↔ (𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑆 ∈ 𝐸)))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,π‘Š   𝑄,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝑆(𝑔)   𝐸(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   ≀ (𝑔)   𝑉(𝑔)

Proof of Theorem dicopelval
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4 ≀ = (leβ€˜πΎ)
2 dicval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
3 dicval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 dicval.p . . . 4 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
5 dicval.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
6 dicval.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
7 dicval.i . . . 4 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7dicval 40560 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})
98eleq2d 2813 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘„) ↔ ⟨𝐹, π‘†βŸ© ∈ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)}))
10 dicelval.f . . 3 𝐹 ∈ V
11 dicelval.s . . 3 𝑆 ∈ V
12 eqeq1 2730 . . . 4 (𝑓 = 𝐹 β†’ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ↔ 𝐹 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄))))
1312anbi1d 629 . . 3 (𝑓 = 𝐹 β†’ ((𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) ↔ (𝐹 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)))
14 fveq1 6884 . . . . 5 (𝑠 = 𝑆 β†’ (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)))
1514eqeq2d 2737 . . . 4 (𝑠 = 𝑆 β†’ (𝐹 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ↔ 𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄))))
16 eleq1 2815 . . . 4 (𝑠 = 𝑆 β†’ (𝑠 ∈ 𝐸 ↔ 𝑆 ∈ 𝐸))
1715, 16anbi12d 630 . . 3 (𝑠 = 𝑆 β†’ ((𝐹 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸) ↔ (𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑆 ∈ 𝐸)))
1810, 11, 13, 17opelopab 5535 . 2 (⟨𝐹, π‘†βŸ© ∈ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)} ↔ (𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑆 ∈ 𝐸))
199, 18bitrdi 287 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘„) ↔ (𝐹 = (π‘†β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑆 ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3468  βŸ¨cop 4629   class class class wbr 5141  {copab 5203  β€˜cfv 6537  β„©crio 7360  lecple 17213  occoc 17214  Atomscatm 38646  LHypclh 39368  LTrncltrn 39485  TEndoctendo 40136  DIsoCcdic 40556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-dic 40557
This theorem is referenced by:  dicopelval2  40565  dicvaddcl  40574  dicvscacl  40575  dicn0  40576
  Copyright terms: Public domain W3C validator