| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > oppne2 | Structured version Visualization version GIF version | ||
| Description: Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.) | 
| Ref | Expression | 
|---|---|
| hpg.p | ⊢ 𝑃 = (Base‘𝐺) | 
| hpg.d | ⊢ − = (dist‘𝐺) | 
| hpg.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | 
| opphl.l | ⊢ 𝐿 = (LineG‘𝐺) | 
| opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | 
| opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| oppcom.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| oppcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| oppcom.o | ⊢ (𝜑 → 𝐴𝑂𝐵) | 
| Ref | Expression | 
|---|---|
| oppne2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oppcom.o | . . 3 ⊢ (𝜑 → 𝐴𝑂𝐵) | |
| 2 | hpg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | hpg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 4 | hpg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | hpg.o | . . . 4 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 6 | oppcom.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | oppcom.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | islnopp 28698 | . . 3 ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) | 
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) | 
| 10 | 9 | simplrd 769 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ∖ cdif 3930 class class class wbr 5125 {copab 5187 ran crn 5668 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 distcds 17283 TarskiGcstrkg 28386 Itvcitv 28392 LineGclng 28393 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-iota 6495 df-fv 6550 df-ov 7417 | 
| This theorem is referenced by: opphllem1 28706 opphllem2 28707 opphl 28713 lnopp2hpgb 28722 lnperpex 28762 | 
| Copyright terms: Public domain | W3C validator |