MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppne2 Structured version   Visualization version   GIF version

Theorem oppne2 26245
Description: Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
oppcom.a (𝜑𝐴𝑃)
oppcom.b (𝜑𝐵𝑃)
oppcom.o (𝜑𝐴𝑂𝐵)
Assertion
Ref Expression
oppne2 (𝜑 → ¬ 𝐵𝐷)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑂   𝑡,𝑃   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem oppne2
StepHypRef Expression
1 oppcom.o . . 3 (𝜑𝐴𝑂𝐵)
2 hpg.p . . . 4 𝑃 = (Base‘𝐺)
3 hpg.d . . . 4 = (dist‘𝐺)
4 hpg.i . . . 4 𝐼 = (Itv‘𝐺)
5 hpg.o . . . 4 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
6 oppcom.a . . . 4 (𝜑𝐴𝑃)
7 oppcom.b . . . 4 (𝜑𝐵𝑃)
82, 3, 4, 5, 6, 7islnopp 26242 . . 3 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
91, 8mpbid 224 . 2 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)))
109simplrd 758 1 (𝜑 → ¬ 𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1508  wcel 2051  wrex 3091  cdif 3828   class class class wbr 4934  {copab 4996  ran crn 5412  cfv 6193  (class class class)co 6982  Basecbs 16345  distcds 16436  TarskiGcstrkg 25933  Itvcitv 25939  LineGclng 25940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pr 5190
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-rex 3096  df-rab 3099  df-v 3419  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-br 4935  df-opab 4997  df-iota 6157  df-fv 6201  df-ov 6985
This theorem is referenced by:  opphllem1  26250  opphllem2  26251  opphl  26257  lnopp2hpgb  26266  lnperpex  26306
  Copyright terms: Public domain W3C validator