| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppne2 | Structured version Visualization version GIF version | ||
| Description: Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
| Ref | Expression |
|---|---|
| hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
| hpg.d | ⊢ − = (dist‘𝐺) |
| hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| opphl.l | ⊢ 𝐿 = (LineG‘𝐺) |
| opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| oppcom.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| oppcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| oppcom.o | ⊢ (𝜑 → 𝐴𝑂𝐵) |
| Ref | Expression |
|---|---|
| oppne2 | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcom.o | . . 3 ⊢ (𝜑 → 𝐴𝑂𝐵) | |
| 2 | hpg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | hpg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 4 | hpg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | hpg.o | . . . 4 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 6 | oppcom.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | oppcom.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | 2, 3, 4, 5, 6, 7 | islnopp 28673 | . . 3 ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) |
| 10 | 9 | simplrd 769 | 1 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3055 ∖ cdif 3919 class class class wbr 5115 {copab 5177 ran crn 5647 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 distcds 17235 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-iota 6472 df-fv 6527 df-ov 7397 |
| This theorem is referenced by: opphllem1 28681 opphllem2 28682 opphl 28688 lnopp2hpgb 28697 lnperpex 28737 |
| Copyright terms: Public domain | W3C validator |