MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppne3 Structured version   Visualization version   GIF version

Theorem oppne3 28249
Description: Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Baseβ€˜πΊ)
hpg.d βˆ’ = (distβ€˜πΊ)
hpg.i 𝐼 = (Itvβ€˜πΊ)
hpg.o 𝑂 = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (𝑃 βˆ– 𝐷) ∧ 𝑏 ∈ (𝑃 βˆ– 𝐷)) ∧ βˆƒπ‘‘ ∈ 𝐷 𝑑 ∈ (π‘ŽπΌπ‘))}
opphl.l 𝐿 = (LineGβ€˜πΊ)
opphl.d (πœ‘ β†’ 𝐷 ∈ ran 𝐿)
opphl.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
oppcom.a (πœ‘ β†’ 𝐴 ∈ 𝑃)
oppcom.b (πœ‘ β†’ 𝐡 ∈ 𝑃)
oppcom.o (πœ‘ β†’ 𝐴𝑂𝐡)
Assertion
Ref Expression
oppne3 (πœ‘ β†’ 𝐴 β‰  𝐡)
Distinct variable groups:   𝐷,π‘Ž,𝑏   𝐼,π‘Ž,𝑏   𝑃,π‘Ž,𝑏   𝑑,𝐴   𝑑,𝐡   𝑑,𝐷   𝑑,𝐺   𝑑,𝐿   𝑑,𝐼   𝑑,𝑂   𝑑,𝑃   πœ‘,𝑑   𝑑, βˆ’   𝑑,π‘Ž,𝑏
Allowed substitution hints:   πœ‘(π‘Ž,𝑏)   𝐴(π‘Ž,𝑏)   𝐡(π‘Ž,𝑏)   𝐺(π‘Ž,𝑏)   𝐿(π‘Ž,𝑏)   βˆ’ (π‘Ž,𝑏)   𝑂(π‘Ž,𝑏)

Proof of Theorem oppne3
StepHypRef Expression
1 hpg.p . . . 4 𝑃 = (Baseβ€˜πΊ)
2 hpg.d . . . 4 βˆ’ = (distβ€˜πΊ)
3 hpg.i . . . 4 𝐼 = (Itvβ€˜πΊ)
4 hpg.o . . . 4 𝑂 = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ (𝑃 βˆ– 𝐷) ∧ 𝑏 ∈ (𝑃 βˆ– 𝐷)) ∧ βˆƒπ‘‘ ∈ 𝐷 𝑑 ∈ (π‘ŽπΌπ‘))}
5 opphl.l . . . 4 𝐿 = (LineGβ€˜πΊ)
6 opphl.d . . . 4 (πœ‘ β†’ 𝐷 ∈ ran 𝐿)
7 opphl.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
8 oppcom.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑃)
9 oppcom.b . . . 4 (πœ‘ β†’ 𝐡 ∈ 𝑃)
10 oppcom.o . . . 4 (πœ‘ β†’ 𝐴𝑂𝐡)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10oppne1 28247 . . 3 (πœ‘ β†’ Β¬ 𝐴 ∈ 𝐷)
127ad3antrrr 728 . . . . . 6 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ 𝐺 ∈ TarskiG)
138ad3antrrr 728 . . . . . 6 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ 𝐴 ∈ 𝑃)
146ad3antrrr 728 . . . . . . 7 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ 𝐷 ∈ ran 𝐿)
15 simplr 767 . . . . . . 7 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ 𝑑 ∈ 𝐷)
161, 5, 3, 12, 14, 15tglnpt 28055 . . . . . 6 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ 𝑑 ∈ 𝑃)
17 simpr 485 . . . . . . 7 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ 𝑑 ∈ (𝐴𝐼𝐡))
18 simpllr 774 . . . . . . . 8 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ 𝐴 = 𝐡)
1918oveq2d 7427 . . . . . . 7 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ (𝐴𝐼𝐴) = (𝐴𝐼𝐡))
2017, 19eleqtrrd 2836 . . . . . 6 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ 𝑑 ∈ (𝐴𝐼𝐴))
211, 2, 3, 12, 13, 16, 20axtgbtwnid 27972 . . . . 5 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ 𝐴 = 𝑑)
2221, 15eqeltrd 2833 . . . 4 ((((πœ‘ ∧ 𝐴 = 𝐡) ∧ 𝑑 ∈ 𝐷) ∧ 𝑑 ∈ (𝐴𝐼𝐡)) β†’ 𝐴 ∈ 𝐷)
231, 2, 3, 4, 8, 9islnopp 28245 . . . . . . 7 (πœ‘ β†’ (𝐴𝑂𝐡 ↔ ((Β¬ 𝐴 ∈ 𝐷 ∧ Β¬ 𝐡 ∈ 𝐷) ∧ βˆƒπ‘‘ ∈ 𝐷 𝑑 ∈ (𝐴𝐼𝐡))))
2410, 23mpbid 231 . . . . . 6 (πœ‘ β†’ ((Β¬ 𝐴 ∈ 𝐷 ∧ Β¬ 𝐡 ∈ 𝐷) ∧ βˆƒπ‘‘ ∈ 𝐷 𝑑 ∈ (𝐴𝐼𝐡)))
2524simprd 496 . . . . 5 (πœ‘ β†’ βˆƒπ‘‘ ∈ 𝐷 𝑑 ∈ (𝐴𝐼𝐡))
2625adantr 481 . . . 4 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ βˆƒπ‘‘ ∈ 𝐷 𝑑 ∈ (𝐴𝐼𝐡))
2722, 26r19.29a 3162 . . 3 ((πœ‘ ∧ 𝐴 = 𝐡) β†’ 𝐴 ∈ 𝐷)
2811, 27mtand 814 . 2 (πœ‘ β†’ Β¬ 𝐴 = 𝐡)
2928neqned 2947 1 (πœ‘ β†’ 𝐴 β‰  𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   βˆ– cdif 3945   class class class wbr 5148  {copab 5210  ran crn 5677  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  distcds 17210  TarskiGcstrkg 27933  Itvcitv 27939  LineGclng 27940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687  df-iota 6495  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-trkgb 27955  df-trkg 27959
This theorem is referenced by:  colopp  28275  trgcopyeulem  28311
  Copyright terms: Public domain W3C validator