| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppne3 | Structured version Visualization version GIF version | ||
| Description: Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020.) |
| Ref | Expression |
|---|---|
| hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
| hpg.d | ⊢ − = (dist‘𝐺) |
| hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| opphl.l | ⊢ 𝐿 = (LineG‘𝐺) |
| opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| oppcom.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| oppcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| oppcom.o | ⊢ (𝜑 → 𝐴𝑂𝐵) |
| Ref | Expression |
|---|---|
| oppne3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hpg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | hpg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 3 | hpg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | hpg.o | . . . 4 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 5 | opphl.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | opphl.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 7 | opphl.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 8 | oppcom.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | oppcom.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | oppcom.o | . . . 4 ⊢ (𝜑 → 𝐴𝑂𝐵) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | oppne1 28725 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
| 12 | 7 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG) |
| 13 | 8 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ 𝑃) |
| 14 | 6 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿) |
| 15 | simplr 768 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ 𝐷) | |
| 16 | 1, 5, 3, 12, 14, 15 | tglnpt 28533 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ 𝑃) |
| 17 | simpr 484 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ (𝐴𝐼𝐵)) | |
| 18 | simpllr 775 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 = 𝐵) | |
| 19 | 18 | oveq2d 7426 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → (𝐴𝐼𝐴) = (𝐴𝐼𝐵)) |
| 20 | 17, 19 | eleqtrrd 2838 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ (𝐴𝐼𝐴)) |
| 21 | 1, 2, 3, 12, 13, 16, 20 | axtgbtwnid 28450 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 = 𝑡) |
| 22 | 21, 15 | eqeltrd 2835 | . . . 4 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ 𝐷) |
| 23 | 1, 2, 3, 4, 8, 9 | islnopp 28723 | . . . . . . 7 ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
| 24 | 10, 23 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) |
| 25 | 24 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
| 26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
| 27 | 22, 26 | r19.29a 3149 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐷) |
| 28 | 11, 27 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 29 | 28 | neqned 2940 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 ∖ cdif 3928 class class class wbr 5124 {copab 5186 ran crn 5660 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 df-iota 6489 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-trkgb 28433 df-trkg 28437 |
| This theorem is referenced by: colopp 28753 trgcopyeulem 28789 |
| Copyright terms: Public domain | W3C validator |