MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppne3 Structured version   Visualization version   GIF version

Theorem oppne3 26540
Description: Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
oppcom.a (𝜑𝐴𝑃)
oppcom.b (𝜑𝐵𝑃)
oppcom.o (𝜑𝐴𝑂𝐵)
Assertion
Ref Expression
oppne3 (𝜑𝐴𝐵)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑂   𝑡,𝑃   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem oppne3
StepHypRef Expression
1 hpg.p . . . 4 𝑃 = (Base‘𝐺)
2 hpg.d . . . 4 = (dist‘𝐺)
3 hpg.i . . . 4 𝐼 = (Itv‘𝐺)
4 hpg.o . . . 4 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . . . 4 𝐿 = (LineG‘𝐺)
6 opphl.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
7 opphl.g . . . 4 (𝜑𝐺 ∈ TarskiG)
8 oppcom.a . . . 4 (𝜑𝐴𝑃)
9 oppcom.b . . . 4 (𝜑𝐵𝑃)
10 oppcom.o . . . 4 (𝜑𝐴𝑂𝐵)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10oppne1 26538 . . 3 (𝜑 → ¬ 𝐴𝐷)
127ad3antrrr 729 . . . . . 6 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
138ad3antrrr 729 . . . . . 6 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
146ad3antrrr 729 . . . . . . 7 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
15 simplr 768 . . . . . . 7 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡𝐷)
161, 5, 3, 12, 14, 15tglnpt 26346 . . . . . 6 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡𝑃)
17 simpr 488 . . . . . . 7 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ (𝐴𝐼𝐵))
18 simpllr 775 . . . . . . . 8 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 = 𝐵)
1918oveq2d 7165 . . . . . . 7 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → (𝐴𝐼𝐴) = (𝐴𝐼𝐵))
2017, 19eleqtrrd 2919 . . . . . 6 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ (𝐴𝐼𝐴))
211, 2, 3, 12, 13, 16, 20axtgbtwnid 26263 . . . . 5 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 = 𝑡)
2221, 15eqeltrd 2916 . . . 4 ((((𝜑𝐴 = 𝐵) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴𝐷)
231, 2, 3, 4, 8, 9islnopp 26536 . . . . . . 7 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
2410, 23mpbid 235 . . . . . 6 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)))
2524simprd 499 . . . . 5 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
2625adantr 484 . . . 4 ((𝜑𝐴 = 𝐵) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))
2722, 26r19.29a 3281 . . 3 ((𝜑𝐴 = 𝐵) → 𝐴𝐷)
2811, 27mtand 815 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
2928neqned 3021 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3014  wrex 3134  cdif 3916   class class class wbr 5052  {copab 5114  ran crn 5543  cfv 6343  (class class class)co 7149  Basecbs 16483  distcds 16574  TarskiGcstrkg 26227  Itvcitv 26233  LineGclng 26234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-cnv 5550  df-dm 5552  df-rn 5553  df-iota 6302  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-trkgb 26246  df-trkg 26250
This theorem is referenced by:  colopp  26566  trgcopyeulem  26602
  Copyright terms: Public domain W3C validator