Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppne3 | Structured version Visualization version GIF version |
Description: Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020.) |
Ref | Expression |
---|---|
hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
hpg.d | ⊢ − = (dist‘𝐺) |
hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
opphl.l | ⊢ 𝐿 = (LineG‘𝐺) |
opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
oppcom.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
oppcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
oppcom.o | ⊢ (𝜑 → 𝐴𝑂𝐵) |
Ref | Expression |
---|---|
oppne3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpg.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | hpg.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | hpg.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | hpg.o | . . . 4 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
5 | opphl.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | opphl.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
7 | opphl.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
8 | oppcom.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | oppcom.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | oppcom.o | . . . 4 ⊢ (𝜑 → 𝐴𝑂𝐵) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | oppne1 27006 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
12 | 7 | ad3antrrr 726 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG) |
13 | 8 | ad3antrrr 726 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ 𝑃) |
14 | 6 | ad3antrrr 726 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐷 ∈ ran 𝐿) |
15 | simplr 765 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ 𝐷) | |
16 | 1, 5, 3, 12, 14, 15 | tglnpt 26814 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ 𝑃) |
17 | simpr 484 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ (𝐴𝐼𝐵)) | |
18 | simpllr 772 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 = 𝐵) | |
19 | 18 | oveq2d 7271 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → (𝐴𝐼𝐴) = (𝐴𝐼𝐵)) |
20 | 17, 19 | eleqtrrd 2842 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝑡 ∈ (𝐴𝐼𝐴)) |
21 | 1, 2, 3, 12, 13, 16, 20 | axtgbtwnid 26731 | . . . . 5 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 = 𝑡) |
22 | 21, 15 | eqeltrd 2839 | . . . 4 ⊢ ((((𝜑 ∧ 𝐴 = 𝐵) ∧ 𝑡 ∈ 𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ 𝐷) |
23 | 1, 2, 3, 4, 8, 9 | islnopp 27004 | . . . . . . 7 ⊢ (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)))) |
24 | 10, 23 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → ((¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵))) |
25 | 24 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐴𝐼𝐵)) |
27 | 22, 26 | r19.29a 3217 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐷) |
28 | 11, 27 | mtand 812 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
29 | 28 | neqned 2949 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ∖ cdif 3880 class class class wbr 5070 {copab 5132 ran crn 5581 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-trkgb 26714 df-trkg 26718 |
This theorem is referenced by: colopp 27034 trgcopyeulem 27070 |
Copyright terms: Public domain | W3C validator |