MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnperpex Structured version   Visualization version   GIF version

Theorem lnperpex 27068
Description: Existence of a perpendicular to a line 𝐿 at a given point 𝐴. Theorem 10.15 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
lmiopp.p 𝑃 = (Base‘𝐺)
lmiopp.m = (dist‘𝐺)
lmiopp.i 𝐼 = (Itv‘𝐺)
lmiopp.l 𝐿 = (LineG‘𝐺)
lmiopp.g (𝜑𝐺 ∈ TarskiG)
lmiopp.h (𝜑𝐺DimTarskiG≥2)
lmiopp.d (𝜑𝐷 ∈ ran 𝐿)
lmiopp.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
lnperpex.a (𝜑𝐴𝐷)
lnperpex.q (𝜑𝑄𝑃)
lnperpex.1 (𝜑 → ¬ 𝑄𝐷)
Assertion
Ref Expression
lnperpex (𝜑 → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
Distinct variable groups:   ,𝑎,𝑏,𝑝,𝑡   𝐴,𝑎,𝑏,𝑝,𝑡   𝐷,𝑎,𝑏,𝑝,𝑡   𝐺,𝑎,𝑏,𝑝,𝑡   𝐼,𝑎,𝑏,𝑝,𝑡   𝐿,𝑎,𝑏,𝑝,𝑡   𝑂,𝑎,𝑏,𝑝,𝑡   𝑃,𝑎,𝑏,𝑝,𝑡   𝑄,𝑎,𝑏,𝑝,𝑡   𝜑,𝑎,𝑏,𝑝,𝑡

Proof of Theorem lnperpex
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmiopp.p . . . . . 6 𝑃 = (Base‘𝐺)
2 lmiopp.m . . . . . 6 = (dist‘𝐺)
3 lmiopp.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 lmiopp.l . . . . . 6 𝐿 = (LineG‘𝐺)
5 lmiopp.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
65ad4antr 728 . . . . . . 7 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐺 ∈ TarskiG)
76adantr 480 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐺 ∈ TarskiG)
8 simprl 767 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝𝑃)
9 lmiopp.d . . . . . . . . . 10 (𝜑𝐷 ∈ ran 𝐿)
10 lnperpex.a . . . . . . . . . 10 (𝜑𝐴𝐷)
111, 4, 3, 5, 9, 10tglnpt 26814 . . . . . . . . 9 (𝜑𝐴𝑃)
1211ad2antrr 722 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → 𝐴𝑃)
1312ad3antrrr 726 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐴𝑃)
14 simprrl 777 . . . . . . . . . 10 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝐴𝐿𝑝)(⟂G‘𝐺)𝐷)
154, 7, 14perpln1 26975 . . . . . . . . 9 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝐴𝐿𝑝) ∈ ran 𝐿)
161, 3, 4, 7, 13, 8, 15tglnne 26893 . . . . . . . 8 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐴𝑝)
1716necomd 2998 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝𝐴)
181, 3, 4, 7, 8, 13, 17tgelrnln 26895 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑝𝐿𝐴) ∈ ran 𝐿)
199ad4antr 728 . . . . . . 7 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐷 ∈ ran 𝐿)
2019adantr 480 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐷 ∈ ran 𝐿)
211, 3, 4, 7, 8, 13, 17tglinecom 26900 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑝𝐿𝐴) = (𝐴𝐿𝑝))
2221, 14eqbrtrd 5092 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑝𝐿𝐴)(⟂G‘𝐺)𝐷)
231, 2, 3, 4, 7, 18, 20, 22perpcom 26978 . . . . 5 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐷(⟂G‘𝐺)(𝑝𝐿𝐴))
24 simplr 765 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑄𝑂𝑐)
25 lmiopp.o . . . . . . 7 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
26 lnperpex.q . . . . . . . . 9 (𝜑𝑄𝑃)
2726ad4antr 728 . . . . . . . 8 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝑄𝑃)
2827adantr 480 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑄𝑃)
29 simplr 765 . . . . . . . 8 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝑐𝑃)
3029adantr 480 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑐𝑃)
31 simprrr 778 . . . . . . . 8 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑐𝑂𝑝)
321, 2, 3, 25, 4, 20, 7, 30, 8, 31oppcom 27009 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝𝑂𝑐)
331, 3, 4, 25, 7, 20, 8, 28, 30, 32lnopp2hpgb 27028 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑄𝑂𝑐𝑝((hpG‘𝐺)‘𝐷)𝑄))
3424, 33mpbid 231 . . . . 5 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝((hpG‘𝐺)‘𝐷)𝑄)
3523, 34jca 511 . . . 4 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
36 eqid 2738 . . . . 5 (hlG‘𝐺) = (hlG‘𝐺)
3710ad4antr 728 . . . . 5 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐴𝐷)
38 simpr 484 . . . . . 6 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝑄𝑂𝑐)
391, 2, 3, 25, 4, 19, 6, 27, 29, 38oppne2 27007 . . . . 5 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → ¬ 𝑐𝐷)
40 lmiopp.h . . . . . 6 (𝜑𝐺DimTarskiG≥2)
4140ad4antr 728 . . . . 5 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐺DimTarskiG≥2)
421, 2, 3, 25, 4, 19, 6, 36, 37, 29, 39, 41oppperpex 27018 . . . 4 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))
4335, 42reximddv 3203 . . 3 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
44 lnperpex.1 . . . . 5 (𝜑 → ¬ 𝑄𝐷)
451, 3, 4, 5, 9, 26, 25, 44hpgerlem 27030 . . . 4 (𝜑 → ∃𝑐𝑃 𝑄𝑂𝑐)
4645ad2antrr 722 . . 3 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → ∃𝑐𝑃 𝑄𝑂𝑐)
4743, 46r19.29a 3217 . 2 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
481, 3, 4, 5, 9, 10tglnpt2 26906 . 2 (𝜑 → ∃𝑑𝐷 𝐴𝑑)
4947, 48r19.29a 3217 1 (𝜑 → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880   class class class wbr 5070  {copab 5132  ran crn 5581  cfv 6418  (class class class)co 7255  2c2 11958  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  DimTarskiGcstrkgld 26697  Itvcitv 26699  LineGclng 26700  hlGchlg 26865  ⟂Gcperpg 26960  hpGchpg 27022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkgld 26717  df-trkg 26718  df-cgrg 26776  df-leg 26848  df-hlg 26866  df-mir 26918  df-rag 26959  df-perpg 26961  df-hpg 27023
This theorem is referenced by:  trgcopy  27069
  Copyright terms: Public domain W3C validator