MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnperpex Structured version   Visualization version   GIF version

Theorem lnperpex 28737
Description: Existence of a perpendicular to a line 𝐿 at a given point 𝐴. Theorem 10.15 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
Hypotheses
Ref Expression
lmiopp.p 𝑃 = (Base‘𝐺)
lmiopp.m = (dist‘𝐺)
lmiopp.i 𝐼 = (Itv‘𝐺)
lmiopp.l 𝐿 = (LineG‘𝐺)
lmiopp.g (𝜑𝐺 ∈ TarskiG)
lmiopp.h (𝜑𝐺DimTarskiG≥2)
lmiopp.d (𝜑𝐷 ∈ ran 𝐿)
lmiopp.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
lnperpex.a (𝜑𝐴𝐷)
lnperpex.q (𝜑𝑄𝑃)
lnperpex.1 (𝜑 → ¬ 𝑄𝐷)
Assertion
Ref Expression
lnperpex (𝜑 → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
Distinct variable groups:   ,𝑎,𝑏,𝑝,𝑡   𝐴,𝑎,𝑏,𝑝,𝑡   𝐷,𝑎,𝑏,𝑝,𝑡   𝐺,𝑎,𝑏,𝑝,𝑡   𝐼,𝑎,𝑏,𝑝,𝑡   𝐿,𝑎,𝑏,𝑝,𝑡   𝑂,𝑎,𝑏,𝑝,𝑡   𝑃,𝑎,𝑏,𝑝,𝑡   𝑄,𝑎,𝑏,𝑝,𝑡   𝜑,𝑎,𝑏,𝑝,𝑡

Proof of Theorem lnperpex
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmiopp.p . . . . . 6 𝑃 = (Base‘𝐺)
2 lmiopp.m . . . . . 6 = (dist‘𝐺)
3 lmiopp.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 lmiopp.l . . . . . 6 𝐿 = (LineG‘𝐺)
5 lmiopp.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
65ad4antr 732 . . . . . . 7 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐺 ∈ TarskiG)
76adantr 480 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐺 ∈ TarskiG)
8 simprl 770 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝𝑃)
9 lmiopp.d . . . . . . . . . 10 (𝜑𝐷 ∈ ran 𝐿)
10 lnperpex.a . . . . . . . . . 10 (𝜑𝐴𝐷)
111, 4, 3, 5, 9, 10tglnpt 28483 . . . . . . . . 9 (𝜑𝐴𝑃)
1211ad2antrr 726 . . . . . . . 8 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → 𝐴𝑃)
1312ad3antrrr 730 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐴𝑃)
14 simprrl 780 . . . . . . . . . 10 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝐴𝐿𝑝)(⟂G‘𝐺)𝐷)
154, 7, 14perpln1 28644 . . . . . . . . 9 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝐴𝐿𝑝) ∈ ran 𝐿)
161, 3, 4, 7, 13, 8, 15tglnne 28562 . . . . . . . 8 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐴𝑝)
1716necomd 2981 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝𝐴)
181, 3, 4, 7, 8, 13, 17tgelrnln 28564 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑝𝐿𝐴) ∈ ran 𝐿)
199ad4antr 732 . . . . . . 7 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐷 ∈ ran 𝐿)
2019adantr 480 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐷 ∈ ran 𝐿)
211, 3, 4, 7, 8, 13, 17tglinecom 28569 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑝𝐿𝐴) = (𝐴𝐿𝑝))
2221, 14eqbrtrd 5132 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑝𝐿𝐴)(⟂G‘𝐺)𝐷)
231, 2, 3, 4, 7, 18, 20, 22perpcom 28647 . . . . 5 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝐷(⟂G‘𝐺)(𝑝𝐿𝐴))
24 simplr 768 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑄𝑂𝑐)
25 lmiopp.o . . . . . . 7 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
26 lnperpex.q . . . . . . . . 9 (𝜑𝑄𝑃)
2726ad4antr 732 . . . . . . . 8 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝑄𝑃)
2827adantr 480 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑄𝑃)
29 simplr 768 . . . . . . . 8 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝑐𝑃)
3029adantr 480 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑐𝑃)
31 simprrr 781 . . . . . . . 8 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑐𝑂𝑝)
321, 2, 3, 25, 4, 20, 7, 30, 8, 31oppcom 28678 . . . . . . 7 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝𝑂𝑐)
331, 3, 4, 25, 7, 20, 8, 28, 30, 32lnopp2hpgb 28697 . . . . . 6 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝑄𝑂𝑐𝑝((hpG‘𝐺)‘𝐷)𝑄))
3424, 33mpbid 232 . . . . 5 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → 𝑝((hpG‘𝐺)‘𝐷)𝑄)
3523, 34jca 511 . . . 4 ((((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) ∧ (𝑝𝑃 ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))) → (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
36 eqid 2730 . . . . 5 (hlG‘𝐺) = (hlG‘𝐺)
3710ad4antr 732 . . . . 5 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐴𝐷)
38 simpr 484 . . . . . 6 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝑄𝑂𝑐)
391, 2, 3, 25, 4, 19, 6, 27, 29, 38oppne2 28676 . . . . 5 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → ¬ 𝑐𝐷)
40 lmiopp.h . . . . . 6 (𝜑𝐺DimTarskiG≥2)
4140ad4antr 732 . . . . 5 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → 𝐺DimTarskiG≥2)
421, 2, 3, 25, 4, 19, 6, 36, 37, 29, 39, 41oppperpex 28687 . . . 4 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝑐𝑂𝑝))
4335, 42reximddv 3150 . . 3 (((((𝜑𝑑𝐷) ∧ 𝐴𝑑) ∧ 𝑐𝑃) ∧ 𝑄𝑂𝑐) → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
44 lnperpex.1 . . . . 5 (𝜑 → ¬ 𝑄𝐷)
451, 3, 4, 5, 9, 26, 25, 44hpgerlem 28699 . . . 4 (𝜑 → ∃𝑐𝑃 𝑄𝑂𝑐)
4645ad2antrr 726 . . 3 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → ∃𝑐𝑃 𝑄𝑂𝑐)
4743, 46r19.29a 3142 . 2 (((𝜑𝑑𝐷) ∧ 𝐴𝑑) → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
481, 3, 4, 5, 9, 10tglnpt2 28575 . 2 (𝜑 → ∃𝑑𝐷 𝐴𝑑)
4947, 48r19.29a 3142 1 (𝜑 → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914   class class class wbr 5110  {copab 5172  ran crn 5642  cfv 6514  (class class class)co 7390  2c2 12248  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  DimTarskiGcstrkgld 28365  Itvcitv 28367  LineGclng 28368  hlGchlg 28534  ⟂Gcperpg 28629  hpGchpg 28691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkgld 28386  df-trkg 28387  df-cgrg 28445  df-leg 28517  df-hlg 28535  df-mir 28587  df-rag 28628  df-perpg 28630  df-hpg 28692
This theorem is referenced by:  trgcopy  28738
  Copyright terms: Public domain W3C validator