Proof of Theorem opphllem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hpg.p | . . . . 5
⊢ 𝑃 = (Base‘𝐺) | 
| 2 |  | hpg.d | . . . . 5
⊢  − =
(dist‘𝐺) | 
| 3 |  | hpg.i | . . . . 5
⊢ 𝐼 = (Itv‘𝐺) | 
| 4 |  | hpg.o | . . . . 5
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | 
| 5 |  | opphl.l | . . . . 5
⊢ 𝐿 = (LineG‘𝐺) | 
| 6 |  | opphl.d | . . . . 5
⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | 
| 7 |  | opphl.g | . . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| 8 |  | opphllem1.a | . . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| 9 |  | opphllem1.c | . . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| 10 |  | opphllem1.o | . . . . 5
⊢ (𝜑 → 𝐴𝑂𝐶) | 
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | oppne1 28749 | . . . 4
⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) | 
| 12 |  | simpr 484 | . . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | 
| 13 |  | simplr 769 | . . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 = 𝐵) → 𝐵 ∈ 𝐷) | 
| 14 | 12, 13 | eqeltrd 2841 | . . . . 5
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝐷) | 
| 15 | 7 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ TarskiG) | 
| 16 |  | opphllem1.b | . . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| 17 | 16 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑃) | 
| 18 |  | opphllem1.r | . . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ 𝐷) | 
| 19 | 1, 5, 3, 7, 6, 18 | tglnpt 28557 | . . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ 𝑃) | 
| 20 | 19 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝑅 ∈ 𝑃) | 
| 21 | 8 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑃) | 
| 22 |  | opphllem1.y | . . . . . . . 8
⊢ (𝜑 → 𝐵 ≠ 𝑅) | 
| 23 | 22 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐵 ≠ 𝑅) | 
| 24 | 23 | necomd 2996 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝑅 ≠ 𝐵) | 
| 25 |  | opphllem1.z | . . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ (𝑅𝐼𝐴)) | 
| 26 | 25 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ (𝑅𝐼𝐴)) | 
| 27 | 1, 3, 5, 15, 20, 17, 21, 24, 26 | btwnlng3 28629 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ (𝑅𝐿𝐵)) | 
| 28 | 1, 3, 5, 15, 17, 20, 21, 23, 27 | lncom 28630 | . . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ (𝐵𝐿𝑅)) | 
| 29 | 6 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐷 ∈ ran 𝐿) | 
| 30 |  | simplr 769 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝐷) | 
| 31 | 18 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝑅 ∈ 𝐷) | 
| 32 | 1, 3, 5, 15, 17, 20, 23, 23, 29, 30, 31 | tglinethru 28644 | . . . . . 6
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐷 = (𝐵𝐿𝑅)) | 
| 33 | 28, 32 | eleqtrrd 2844 | . . . . 5
⊢ (((𝜑 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝐷) | 
| 34 | 14, 33 | pm2.61dane 3029 | . . . 4
⊢ ((𝜑 ∧ 𝐵 ∈ 𝐷) → 𝐴 ∈ 𝐷) | 
| 35 | 11, 34 | mtand 816 | . . 3
⊢ (𝜑 → ¬ 𝐵 ∈ 𝐷) | 
| 36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | oppne2 28750 | . . 3
⊢ (𝜑 → ¬ 𝐶 ∈ 𝐷) | 
| 37 |  | opphllem1.m | . . . . . 6
⊢ (𝜑 → 𝑀 ∈ 𝐷) | 
| 38 | 1, 5, 3, 7, 6, 37 | tglnpt 28557 | . . . . 5
⊢ (𝜑 → 𝑀 ∈ 𝑃) | 
| 39 |  | eqid 2737 | . . . . . . 7
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) | 
| 40 |  | opphllem1.s | . . . . . . 7
⊢ 𝑆 = ((pInvG‘𝐺)‘𝑀) | 
| 41 | 1, 2, 3, 5, 39, 7,
38, 40, 8 | mirbtwn 28666 | . . . . . 6
⊢ (𝜑 → 𝑀 ∈ ((𝑆‘𝐴)𝐼𝐴)) | 
| 42 |  | opphllem1.n | . . . . . . . . 9
⊢ (𝜑 → 𝐴 = (𝑆‘𝐶)) | 
| 43 | 42 | eqcomd 2743 | . . . . . . . 8
⊢ (𝜑 → (𝑆‘𝐶) = 𝐴) | 
| 44 | 1, 2, 3, 5, 39, 7,
38, 40, 9, 43 | mircom 28671 | . . . . . . 7
⊢ (𝜑 → (𝑆‘𝐴) = 𝐶) | 
| 45 | 44 | oveq1d 7446 | . . . . . 6
⊢ (𝜑 → ((𝑆‘𝐴)𝐼𝐴) = (𝐶𝐼𝐴)) | 
| 46 | 41, 45 | eleqtrd 2843 | . . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝐶𝐼𝐴)) | 
| 47 | 1, 2, 3, 7, 19, 9,
8, 16, 38, 25, 46 | axtgpasch 28475 | . . . 4
⊢ (𝜑 → ∃𝑡 ∈ 𝑃 (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅))) | 
| 48 | 7 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝐺 ∈ TarskiG) | 
| 49 | 19 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅 ∈ 𝑃) | 
| 50 |  | simplrl 777 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ 𝑃) | 
| 51 |  | simplrr 778 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅))) | 
| 52 | 51 | simprd 495 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑀𝐼𝑅)) | 
| 53 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑀 = 𝑅) | 
| 54 | 53 | oveq1d 7446 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑀𝐼𝑅) = (𝑅𝐼𝑅)) | 
| 55 | 52, 54 | eleqtrd 2843 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑅𝐼𝑅)) | 
| 56 | 1, 2, 3, 48, 49, 50, 55 | axtgbtwnid 28474 | . . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅 = 𝑡) | 
| 57 | 18 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅 ∈ 𝐷) | 
| 58 | 56, 57 | eqeltrrd 2842 | . . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ 𝐷) | 
| 59 | 7 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝐺 ∈ TarskiG) | 
| 60 | 38 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑀 ∈ 𝑃) | 
| 61 | 19 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑅 ∈ 𝑃) | 
| 62 |  | simplrl 777 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑡 ∈ 𝑃) | 
| 63 |  | simpr 484 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑀 ≠ 𝑅) | 
| 64 |  | simplrr 778 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅))) | 
| 65 | 64 | simprd 495 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑡 ∈ (𝑀𝐼𝑅)) | 
| 66 | 1, 3, 5, 59, 60, 61, 62, 63, 65 | btwnlng1 28627 | . . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑡 ∈ (𝑀𝐿𝑅)) | 
| 67 | 7 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝐺 ∈ TarskiG) | 
| 68 | 38 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝑀 ∈ 𝑃) | 
| 69 | 19 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝑅 ∈ 𝑃) | 
| 70 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝑀 ≠ 𝑅) | 
| 71 | 6 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝐷 ∈ ran 𝐿) | 
| 72 | 37 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝑀 ∈ 𝐷) | 
| 73 | 18 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝑅 ∈ 𝐷) | 
| 74 | 1, 3, 5, 67, 68, 69, 70, 70, 71, 72, 73 | tglinethru 28644 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ≠ 𝑅) → 𝐷 = (𝑀𝐿𝑅)) | 
| 75 | 74 | adantlr 715 | . . . . . 6
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝐷 = (𝑀𝐿𝑅)) | 
| 76 | 66, 75 | eleqtrrd 2844 | . . . . 5
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 ≠ 𝑅) → 𝑡 ∈ 𝐷) | 
| 77 | 58, 76 | pm2.61dane 3029 | . . . 4
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡 ∈ 𝐷) | 
| 78 |  | simprrl 781 | . . . 4
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡 ∈ (𝐵𝐼𝐶)) | 
| 79 | 47, 77, 78 | reximssdv 3173 | . . 3
⊢ (𝜑 → ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐶)) | 
| 80 | 35, 36, 79 | jca31 514 | . 2
⊢ (𝜑 → ((¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐶))) | 
| 81 | 1, 2, 3, 4, 16, 9 | islnopp 28747 | . 2
⊢ (𝜑 → (𝐵𝑂𝐶 ↔ ((¬ 𝐵 ∈ 𝐷 ∧ ¬ 𝐶 ∈ 𝐷) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝐵𝐼𝐶)))) | 
| 82 | 80, 81 | mpbird 257 | 1
⊢ (𝜑 → 𝐵𝑂𝐶) |