MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem1 Structured version   Visualization version   GIF version

Theorem opphllem1 28696
Description: Lemma for opphl 28703. (Contributed by Thierry Arnoux, 20-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphllem1.s 𝑆 = ((pInvG‘𝐺)‘𝑀)
opphllem1.a (𝜑𝐴𝑃)
opphllem1.b (𝜑𝐵𝑃)
opphllem1.c (𝜑𝐶𝑃)
opphllem1.r (𝜑𝑅𝐷)
opphllem1.o (𝜑𝐴𝑂𝐶)
opphllem1.m (𝜑𝑀𝐷)
opphllem1.n (𝜑𝐴 = (𝑆𝐶))
opphllem1.x (𝜑𝐴𝑅)
opphllem1.y (𝜑𝐵𝑅)
opphllem1.z (𝜑𝐵 ∈ (𝑅𝐼𝐴))
Assertion
Ref Expression
opphllem1 (𝜑𝐵𝑂𝐶)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑀   𝑡,𝑂   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem1
StepHypRef Expression
1 hpg.p . . . . 5 𝑃 = (Base‘𝐺)
2 hpg.d . . . . 5 = (dist‘𝐺)
3 hpg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 hpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . . . . 5 𝐿 = (LineG‘𝐺)
6 opphl.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
7 opphl.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
8 opphllem1.a . . . . 5 (𝜑𝐴𝑃)
9 opphllem1.c . . . . 5 (𝜑𝐶𝑃)
10 opphllem1.o . . . . 5 (𝜑𝐴𝑂𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10oppne1 28690 . . . 4 (𝜑 → ¬ 𝐴𝐷)
12 simpr 484 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
13 simplr 768 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐵𝐷)
1412, 13eqeltrd 2828 . . . . 5 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴𝐷)
157ad2antrr 726 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐺 ∈ TarskiG)
16 opphllem1.b . . . . . . . 8 (𝜑𝐵𝑃)
1716ad2antrr 726 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑃)
18 opphllem1.r . . . . . . . . 9 (𝜑𝑅𝐷)
191, 5, 3, 7, 6, 18tglnpt 28498 . . . . . . . 8 (𝜑𝑅𝑃)
2019ad2antrr 726 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝑃)
218ad2antrr 726 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝑃)
22 opphllem1.y . . . . . . . 8 (𝜑𝐵𝑅)
2322ad2antrr 726 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑅)
2423necomd 2980 . . . . . . . 8 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐵)
25 opphllem1.z . . . . . . . . 9 (𝜑𝐵 ∈ (𝑅𝐼𝐴))
2625ad2antrr 726 . . . . . . . 8 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵 ∈ (𝑅𝐼𝐴))
271, 3, 5, 15, 20, 17, 21, 24, 26btwnlng3 28570 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐿𝐵))
281, 3, 5, 15, 17, 20, 21, 23, 27lncom 28571 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝐵𝐿𝑅))
296ad2antrr 726 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 ∈ ran 𝐿)
30 simplr 768 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝐷)
3118ad2antrr 726 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐷)
321, 3, 5, 15, 17, 20, 23, 23, 29, 30, 31tglinethru 28585 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 = (𝐵𝐿𝑅))
3328, 32eleqtrrd 2831 . . . . 5 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝐷)
3414, 33pm2.61dane 3012 . . . 4 ((𝜑𝐵𝐷) → 𝐴𝐷)
3511, 34mtand 815 . . 3 (𝜑 → ¬ 𝐵𝐷)
361, 2, 3, 4, 5, 6, 7, 8, 9, 10oppne2 28691 . . 3 (𝜑 → ¬ 𝐶𝐷)
37 opphllem1.m . . . . . 6 (𝜑𝑀𝐷)
381, 5, 3, 7, 6, 37tglnpt 28498 . . . . 5 (𝜑𝑀𝑃)
39 eqid 2729 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
40 opphllem1.s . . . . . . 7 𝑆 = ((pInvG‘𝐺)‘𝑀)
411, 2, 3, 5, 39, 7, 38, 40, 8mirbtwn 28607 . . . . . 6 (𝜑𝑀 ∈ ((𝑆𝐴)𝐼𝐴))
42 opphllem1.n . . . . . . . . 9 (𝜑𝐴 = (𝑆𝐶))
4342eqcomd 2735 . . . . . . . 8 (𝜑 → (𝑆𝐶) = 𝐴)
441, 2, 3, 5, 39, 7, 38, 40, 9, 43mircom 28612 . . . . . . 7 (𝜑 → (𝑆𝐴) = 𝐶)
4544oveq1d 7364 . . . . . 6 (𝜑 → ((𝑆𝐴)𝐼𝐴) = (𝐶𝐼𝐴))
4641, 45eleqtrd 2830 . . . . 5 (𝜑𝑀 ∈ (𝐶𝐼𝐴))
471, 2, 3, 7, 19, 9, 8, 16, 38, 25, 46axtgpasch 28416 . . . 4 (𝜑 → ∃𝑡𝑃 (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
487ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝐺 ∈ TarskiG)
4919ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅𝑃)
50 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡𝑃)
51 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
5251simprd 495 . . . . . . . 8 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑀𝐼𝑅))
53 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑀 = 𝑅)
5453oveq1d 7364 . . . . . . . 8 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑀𝐼𝑅) = (𝑅𝐼𝑅))
5552, 54eleqtrd 2830 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑅𝐼𝑅))
561, 2, 3, 48, 49, 50, 55axtgbtwnid 28415 . . . . . 6 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅 = 𝑡)
5718ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅𝐷)
5856, 57eqeltrrd 2829 . . . . 5 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡𝐷)
597ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝐺 ∈ TarskiG)
6038ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑀𝑃)
6119ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑅𝑃)
62 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡𝑃)
63 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑀𝑅)
64 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
6564simprd 495 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡 ∈ (𝑀𝐼𝑅))
661, 3, 5, 59, 60, 61, 62, 63, 65btwnlng1 28568 . . . . . 6 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡 ∈ (𝑀𝐿𝑅))
677adantr 480 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝐺 ∈ TarskiG)
6838adantr 480 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝑀𝑃)
6919adantr 480 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝑅𝑃)
70 simpr 484 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝑀𝑅)
716adantr 480 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝐷 ∈ ran 𝐿)
7237adantr 480 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝑀𝐷)
7318adantr 480 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝑅𝐷)
741, 3, 5, 67, 68, 69, 70, 70, 71, 72, 73tglinethru 28585 . . . . . . 7 ((𝜑𝑀𝑅) → 𝐷 = (𝑀𝐿𝑅))
7574adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝐷 = (𝑀𝐿𝑅))
7666, 75eleqtrrd 2831 . . . . 5 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡𝐷)
7758, 76pm2.61dane 3012 . . . 4 ((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡𝐷)
78 simprrl 780 . . . 4 ((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡 ∈ (𝐵𝐼𝐶))
7947, 77, 78reximssdv 3147 . . 3 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶))
8035, 36, 79jca31 514 . 2 (𝜑 → ((¬ 𝐵𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶)))
811, 2, 3, 4, 16, 9islnopp 28688 . 2 (𝜑 → (𝐵𝑂𝐶 ↔ ((¬ 𝐵𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶))))
8280, 81mpbird 257 1 (𝜑𝐵𝑂𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3900   class class class wbr 5092  {copab 5154  ran crn 5620  cfv 6482  (class class class)co 7349  Basecbs 17120  distcds 17170  TarskiGcstrkg 28376  Itvcitv 28382  LineGclng 28383  pInvGcmir 28601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-trkgc 28397  df-trkgb 28398  df-trkgcb 28399  df-trkg 28402  df-cgrg 28460  df-mir 28602
This theorem is referenced by:  opphllem2  28697
  Copyright terms: Public domain W3C validator