MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem1 Structured version   Visualization version   GIF version

Theorem opphllem1 28674
Description: Lemma for opphl 28681. (Contributed by Thierry Arnoux, 20-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphllem1.s 𝑆 = ((pInvG‘𝐺)‘𝑀)
opphllem1.a (𝜑𝐴𝑃)
opphllem1.b (𝜑𝐵𝑃)
opphllem1.c (𝜑𝐶𝑃)
opphllem1.r (𝜑𝑅𝐷)
opphllem1.o (𝜑𝐴𝑂𝐶)
opphllem1.m (𝜑𝑀𝐷)
opphllem1.n (𝜑𝐴 = (𝑆𝐶))
opphllem1.x (𝜑𝐴𝑅)
opphllem1.y (𝜑𝐵𝑅)
opphllem1.z (𝜑𝐵 ∈ (𝑅𝐼𝐴))
Assertion
Ref Expression
opphllem1 (𝜑𝐵𝑂𝐶)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑀   𝑡,𝑂   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem1
StepHypRef Expression
1 hpg.p . . . . 5 𝑃 = (Base‘𝐺)
2 hpg.d . . . . 5 = (dist‘𝐺)
3 hpg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 hpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . . . . 5 𝐿 = (LineG‘𝐺)
6 opphl.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
7 opphl.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
8 opphllem1.a . . . . 5 (𝜑𝐴𝑃)
9 opphllem1.c . . . . 5 (𝜑𝐶𝑃)
10 opphllem1.o . . . . 5 (𝜑𝐴𝑂𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10oppne1 28668 . . . 4 (𝜑 → ¬ 𝐴𝐷)
12 simpr 483 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
13 simplr 767 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐵𝐷)
1412, 13eqeltrd 2826 . . . . 5 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴𝐷)
157ad2antrr 724 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐺 ∈ TarskiG)
16 opphllem1.b . . . . . . . 8 (𝜑𝐵𝑃)
1716ad2antrr 724 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑃)
18 opphllem1.r . . . . . . . . 9 (𝜑𝑅𝐷)
191, 5, 3, 7, 6, 18tglnpt 28476 . . . . . . . 8 (𝜑𝑅𝑃)
2019ad2antrr 724 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝑃)
218ad2antrr 724 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝑃)
22 opphllem1.y . . . . . . . 8 (𝜑𝐵𝑅)
2322ad2antrr 724 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑅)
2423necomd 2986 . . . . . . . 8 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐵)
25 opphllem1.z . . . . . . . . 9 (𝜑𝐵 ∈ (𝑅𝐼𝐴))
2625ad2antrr 724 . . . . . . . 8 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵 ∈ (𝑅𝐼𝐴))
271, 3, 5, 15, 20, 17, 21, 24, 26btwnlng3 28548 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐿𝐵))
281, 3, 5, 15, 17, 20, 21, 23, 27lncom 28549 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝐵𝐿𝑅))
296ad2antrr 724 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 ∈ ran 𝐿)
30 simplr 767 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝐷)
3118ad2antrr 724 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐷)
321, 3, 5, 15, 17, 20, 23, 23, 29, 30, 31tglinethru 28563 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 = (𝐵𝐿𝑅))
3328, 32eleqtrrd 2829 . . . . 5 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝐷)
3414, 33pm2.61dane 3019 . . . 4 ((𝜑𝐵𝐷) → 𝐴𝐷)
3511, 34mtand 814 . . 3 (𝜑 → ¬ 𝐵𝐷)
361, 2, 3, 4, 5, 6, 7, 8, 9, 10oppne2 28669 . . 3 (𝜑 → ¬ 𝐶𝐷)
37 opphllem1.m . . . . . 6 (𝜑𝑀𝐷)
381, 5, 3, 7, 6, 37tglnpt 28476 . . . . 5 (𝜑𝑀𝑃)
39 eqid 2726 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
40 opphllem1.s . . . . . . 7 𝑆 = ((pInvG‘𝐺)‘𝑀)
411, 2, 3, 5, 39, 7, 38, 40, 8mirbtwn 28585 . . . . . 6 (𝜑𝑀 ∈ ((𝑆𝐴)𝐼𝐴))
42 opphllem1.n . . . . . . . . 9 (𝜑𝐴 = (𝑆𝐶))
4342eqcomd 2732 . . . . . . . 8 (𝜑 → (𝑆𝐶) = 𝐴)
441, 2, 3, 5, 39, 7, 38, 40, 9, 43mircom 28590 . . . . . . 7 (𝜑 → (𝑆𝐴) = 𝐶)
4544oveq1d 7439 . . . . . 6 (𝜑 → ((𝑆𝐴)𝐼𝐴) = (𝐶𝐼𝐴))
4641, 45eleqtrd 2828 . . . . 5 (𝜑𝑀 ∈ (𝐶𝐼𝐴))
471, 2, 3, 7, 19, 9, 8, 16, 38, 25, 46axtgpasch 28394 . . . 4 (𝜑 → ∃𝑡𝑃 (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
487ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝐺 ∈ TarskiG)
4919ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅𝑃)
50 simplrl 775 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡𝑃)
51 simplrr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
5251simprd 494 . . . . . . . 8 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑀𝐼𝑅))
53 simpr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑀 = 𝑅)
5453oveq1d 7439 . . . . . . . 8 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑀𝐼𝑅) = (𝑅𝐼𝑅))
5552, 54eleqtrd 2828 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑅𝐼𝑅))
561, 2, 3, 48, 49, 50, 55axtgbtwnid 28393 . . . . . 6 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅 = 𝑡)
5718ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅𝐷)
5856, 57eqeltrrd 2827 . . . . 5 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡𝐷)
597ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝐺 ∈ TarskiG)
6038ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑀𝑃)
6119ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑅𝑃)
62 simplrl 775 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡𝑃)
63 simpr 483 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑀𝑅)
64 simplrr 776 . . . . . . . 8 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
6564simprd 494 . . . . . . 7 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡 ∈ (𝑀𝐼𝑅))
661, 3, 5, 59, 60, 61, 62, 63, 65btwnlng1 28546 . . . . . 6 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡 ∈ (𝑀𝐿𝑅))
677adantr 479 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝐺 ∈ TarskiG)
6838adantr 479 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝑀𝑃)
6919adantr 479 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝑅𝑃)
70 simpr 483 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝑀𝑅)
716adantr 479 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝐷 ∈ ran 𝐿)
7237adantr 479 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝑀𝐷)
7318adantr 479 . . . . . . . 8 ((𝜑𝑀𝑅) → 𝑅𝐷)
741, 3, 5, 67, 68, 69, 70, 70, 71, 72, 73tglinethru 28563 . . . . . . 7 ((𝜑𝑀𝑅) → 𝐷 = (𝑀𝐿𝑅))
7574adantlr 713 . . . . . 6 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝐷 = (𝑀𝐿𝑅))
7666, 75eleqtrrd 2829 . . . . 5 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡𝐷)
7758, 76pm2.61dane 3019 . . . 4 ((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡𝐷)
78 simprrl 779 . . . 4 ((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡 ∈ (𝐵𝐼𝐶))
7947, 77, 78reximssdv 3163 . . 3 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶))
8035, 36, 79jca31 513 . 2 (𝜑 → ((¬ 𝐵𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶)))
811, 2, 3, 4, 16, 9islnopp 28666 . 2 (𝜑 → (𝐵𝑂𝐶 ↔ ((¬ 𝐵𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶))))
8280, 81mpbird 256 1 (𝜑𝐵𝑂𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060  cdif 3944   class class class wbr 5153  {copab 5215  ran crn 5683  cfv 6554  (class class class)co 7424  Basecbs 17213  distcds 17275  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361  pInvGcmir 28579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-oadd 8500  df-er 8734  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-hash 14348  df-word 14523  df-concat 14579  df-s1 14604  df-s2 14857  df-s3 14858  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380  df-cgrg 28438  df-mir 28580
This theorem is referenced by:  opphllem2  28675
  Copyright terms: Public domain W3C validator