![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplrd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: erinxp 8849 fpwwe2lem5 10704 fpwwe2lem6 10705 fpwwe2lem8 10707 lejoin2 18455 lemeet2 18469 dirdm 18670 dirref 18671 lmhmlmod2 21054 pi1cpbl 25096 pntlemr 27664 oppne2 28768 dfcgra2 28856 mgcf2 32962 mgccole2 32964 mgcmnt1 32965 mgcmnt2 32966 mgcf1olem1 32974 mgcf1olem2 32975 mgcf1o 32976 erlcl2 33233 erler 33237 mtyf2 35519 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 fourierdlem48 46075 fourierdlem76 46103 fourierdlem80 46107 fourierdlem93 46120 fourierdlem94 46121 fourierdlem104 46131 fourierdlem113 46140 mea0 46375 meaiunlelem 46389 meaiuninclem 46401 omessle 46419 omedm 46420 carageniuncllem2 46443 hspmbllem3 46549 |
Copyright terms: Public domain | W3C validator |