| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplrd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8723 fpwwe2lem5 10535 fpwwe2lem6 10536 fpwwe2lem8 10538 lejoin2 18293 lemeet2 18307 dirdm 18510 dirref 18511 lmhmlmod2 20970 pi1cpbl 24974 pntlemr 27543 oppne2 28723 dfcgra2 28811 mgcf2 32979 mgccole2 32981 mgcmnt1 32982 mgcmnt2 32983 mgcf1olem1 32991 mgcf1olem2 32992 mgcf1o 32993 erlcl2 33237 erler 33241 mtyf2 35618 ioodvbdlimc1lem2 46057 ioodvbdlimc2lem 46059 fourierdlem48 46279 fourierdlem76 46307 fourierdlem80 46311 fourierdlem93 46324 fourierdlem94 46325 fourierdlem104 46335 fourierdlem113 46344 mea0 46579 meaiunlelem 46593 meaiuninclem 46605 omessle 46623 omedm 46624 carageniuncllem2 46647 hspmbllem3 46753 sectpropdlem 49164 invpropdlem 49166 isopropdlem 49168 uprcl5 49320 |
| Copyright terms: Public domain | W3C validator |