Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplrd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 495 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simprd 496 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: erinxp 8630 fpwwe2lem5 10471 fpwwe2lem6 10472 fpwwe2lem8 10474 lejoin2 18180 lemeet2 18194 dirdm 18395 dirref 18396 lmhmlmod2 20377 pi1cpbl 24290 pntlemr 26833 oppne2 27239 dfcgra2 27327 mgcf2 31402 mgccole2 31404 mgcmnt1 31405 mgcmnt2 31406 mgcf1olem1 31414 mgcf1olem2 31415 mgcf1o 31416 mtyf2 33652 ioodvbdlimc1lem2 43723 ioodvbdlimc2lem 43725 fourierdlem48 43945 fourierdlem76 43973 fourierdlem80 43977 fourierdlem93 43990 fourierdlem94 43991 fourierdlem104 44001 fourierdlem113 44010 mea0 44243 meaiunlelem 44257 meaiuninclem 44269 omessle 44287 omedm 44288 carageniuncllem2 44311 hspmbllem3 44417 |
Copyright terms: Public domain | W3C validator |