| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplrd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8805 fpwwe2lem5 10649 fpwwe2lem6 10650 fpwwe2lem8 10652 lejoin2 18395 lemeet2 18409 dirdm 18610 dirref 18611 lmhmlmod2 20990 pi1cpbl 24995 pntlemr 27565 oppne2 28721 dfcgra2 28809 mgcf2 32969 mgccole2 32971 mgcmnt1 32972 mgcmnt2 32973 mgcf1olem1 32981 mgcf1olem2 32982 mgcf1o 32983 erlcl2 33256 erler 33260 mtyf2 35573 ioodvbdlimc1lem2 45961 ioodvbdlimc2lem 45963 fourierdlem48 46183 fourierdlem76 46211 fourierdlem80 46215 fourierdlem93 46228 fourierdlem94 46229 fourierdlem104 46239 fourierdlem113 46248 mea0 46483 meaiunlelem 46497 meaiuninclem 46509 omessle 46527 omedm 46528 carageniuncllem2 46551 hspmbllem3 46657 sectpropdlem 49003 invpropdlem 49005 isopropdlem 49007 uprcl5 49126 |
| Copyright terms: Public domain | W3C validator |