| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplrd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8767 fpwwe2lem5 10595 fpwwe2lem6 10596 fpwwe2lem8 10598 lejoin2 18351 lemeet2 18365 dirdm 18566 dirref 18567 lmhmlmod2 20946 pi1cpbl 24951 pntlemr 27520 oppne2 28676 dfcgra2 28764 mgcf2 32922 mgccole2 32924 mgcmnt1 32925 mgcmnt2 32926 mgcf1olem1 32934 mgcf1olem2 32935 mgcf1o 32936 erlcl2 33219 erler 33223 mtyf2 35545 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 fourierdlem48 46159 fourierdlem76 46187 fourierdlem80 46191 fourierdlem93 46204 fourierdlem94 46205 fourierdlem104 46215 fourierdlem113 46224 mea0 46459 meaiunlelem 46473 meaiuninclem 46485 omessle 46503 omedm 46504 carageniuncllem2 46527 hspmbllem3 46633 sectpropdlem 49029 invpropdlem 49031 isopropdlem 49033 uprcl5 49185 |
| Copyright terms: Public domain | W3C validator |