![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplrd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: erinxp 8829 fpwwe2lem5 10672 fpwwe2lem6 10673 fpwwe2lem8 10675 lejoin2 18442 lemeet2 18456 dirdm 18657 dirref 18658 lmhmlmod2 21048 pi1cpbl 25090 pntlemr 27660 oppne2 28764 dfcgra2 28852 mgcf2 32963 mgccole2 32965 mgcmnt1 32966 mgcmnt2 32967 mgcf1olem1 32975 mgcf1olem2 32976 mgcf1o 32977 erlcl2 33247 erler 33251 mtyf2 35535 ioodvbdlimc1lem2 45887 ioodvbdlimc2lem 45889 fourierdlem48 46109 fourierdlem76 46137 fourierdlem80 46141 fourierdlem93 46154 fourierdlem94 46155 fourierdlem104 46165 fourierdlem113 46174 mea0 46409 meaiunlelem 46423 meaiuninclem 46435 omessle 46453 omedm 46454 carageniuncllem2 46477 hspmbllem3 46583 |
Copyright terms: Public domain | W3C validator |