| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplrd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8725 fpwwe2lem5 10548 fpwwe2lem6 10549 fpwwe2lem8 10551 lejoin2 18307 lemeet2 18321 dirdm 18524 dirref 18525 lmhmlmod2 20954 pi1cpbl 24960 pntlemr 27529 oppne2 28705 dfcgra2 28793 mgcf2 32944 mgccole2 32946 mgcmnt1 32947 mgcmnt2 32948 mgcf1olem1 32956 mgcf1olem2 32957 mgcf1o 32958 erlcl2 33214 erler 33218 mtyf2 35526 ioodvbdlimc1lem2 45917 ioodvbdlimc2lem 45919 fourierdlem48 46139 fourierdlem76 46167 fourierdlem80 46171 fourierdlem93 46184 fourierdlem94 46185 fourierdlem104 46195 fourierdlem113 46204 mea0 46439 meaiunlelem 46453 meaiuninclem 46465 omessle 46483 omedm 46484 carageniuncllem2 46507 hspmbllem3 46613 sectpropdlem 49025 invpropdlem 49027 isopropdlem 49029 uprcl5 49181 |
| Copyright terms: Public domain | W3C validator |