| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplrd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8764 fpwwe2lem5 10588 fpwwe2lem6 10589 fpwwe2lem8 10591 lejoin2 18344 lemeet2 18358 dirdm 18559 dirref 18560 lmhmlmod2 20939 pi1cpbl 24944 pntlemr 27513 oppne2 28669 dfcgra2 28757 mgcf2 32915 mgccole2 32917 mgcmnt1 32918 mgcmnt2 32919 mgcf1olem1 32927 mgcf1olem2 32928 mgcf1o 32929 erlcl2 33212 erler 33216 mtyf2 35538 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 fourierdlem48 46152 fourierdlem76 46180 fourierdlem80 46184 fourierdlem93 46197 fourierdlem94 46198 fourierdlem104 46208 fourierdlem113 46217 mea0 46452 meaiunlelem 46466 meaiuninclem 46478 omessle 46496 omedm 46497 carageniuncllem2 46520 hspmbllem3 46626 sectpropdlem 49025 invpropdlem 49027 isopropdlem 49029 uprcl5 49181 |
| Copyright terms: Public domain | W3C validator |