Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplrd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: erinxp 8538 fpwwe2lem5 10322 fpwwe2lem6 10323 fpwwe2lem8 10325 lejoin2 18018 lemeet2 18032 dirdm 18233 dirref 18234 lmhmlmod2 20209 pi1cpbl 24113 pntlemr 26655 oppne2 27007 dfcgra2 27095 mgcf2 31169 mgccole2 31171 mgcmnt1 31172 mgcmnt2 31173 mgcf1olem1 31181 mgcf1olem2 31182 mgcf1o 31183 mtyf2 33413 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 fourierdlem48 43585 fourierdlem76 43613 fourierdlem80 43617 fourierdlem93 43630 fourierdlem94 43631 fourierdlem104 43641 fourierdlem113 43650 mea0 43882 meaiunlelem 43896 meaiuninclem 43908 omessle 43926 omedm 43927 carageniuncllem2 43950 hspmbllem3 44056 |
Copyright terms: Public domain | W3C validator |