Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version |
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplrd | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 495 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simprd 496 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: erinxp 8580 fpwwe2lem5 10391 fpwwe2lem6 10392 fpwwe2lem8 10394 lejoin2 18103 lemeet2 18117 dirdm 18318 dirref 18319 lmhmlmod2 20294 pi1cpbl 24207 pntlemr 26750 oppne2 27103 dfcgra2 27191 mgcf2 31267 mgccole2 31269 mgcmnt1 31270 mgcmnt2 31271 mgcf1olem1 31279 mgcf1olem2 31280 mgcf1o 31281 mtyf2 33513 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 fourierdlem48 43695 fourierdlem76 43723 fourierdlem80 43727 fourierdlem93 43740 fourierdlem94 43741 fourierdlem104 43751 fourierdlem113 43760 mea0 43992 meaiunlelem 44006 meaiuninclem 44018 omessle 44036 omedm 44037 carageniuncllem2 44060 hspmbllem3 44166 |
Copyright terms: Public domain | W3C validator |