MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplrd Structured version   Visualization version   GIF version

Theorem simplrd 770
Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simplrd.1 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
Assertion
Ref Expression
simplrd (𝜑𝜒)

Proof of Theorem simplrd
StepHypRef Expression
1 simplrd.1 . . 3 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
21simpld 494 . 2 (𝜑 → (𝜓𝜒))
32simprd 495 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  erinxp  8829  fpwwe2lem5  10672  fpwwe2lem6  10673  fpwwe2lem8  10675  lejoin2  18442  lemeet2  18456  dirdm  18657  dirref  18658  lmhmlmod2  21048  pi1cpbl  25090  pntlemr  27660  oppne2  28764  dfcgra2  28852  mgcf2  32963  mgccole2  32965  mgcmnt1  32966  mgcmnt2  32967  mgcf1olem1  32975  mgcf1olem2  32976  mgcf1o  32977  erlcl2  33247  erler  33251  mtyf2  35535  ioodvbdlimc1lem2  45887  ioodvbdlimc2lem  45889  fourierdlem48  46109  fourierdlem76  46137  fourierdlem80  46141  fourierdlem93  46154  fourierdlem94  46155  fourierdlem104  46165  fourierdlem113  46174  mea0  46409  meaiunlelem  46423  meaiuninclem  46435  omessle  46453  omedm  46454  carageniuncllem2  46477  hspmbllem3  46583
  Copyright terms: Public domain W3C validator