| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplrd | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplrd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplrd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrd.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simprd 495 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8715 fpwwe2lem5 10526 fpwwe2lem6 10527 fpwwe2lem8 10529 lejoin2 18289 lemeet2 18303 dirdm 18506 dirref 18507 lmhmlmod2 20967 pi1cpbl 24972 pntlemr 27541 oppne2 28721 dfcgra2 28809 mgcf2 32968 mgccole2 32970 mgcmnt1 32971 mgcmnt2 32972 mgcf1olem1 32980 mgcf1olem2 32981 mgcf1o 32982 erlcl2 33226 erler 33230 mtyf2 35593 ioodvbdlimc1lem2 45976 ioodvbdlimc2lem 45978 fourierdlem48 46198 fourierdlem76 46226 fourierdlem80 46230 fourierdlem93 46243 fourierdlem94 46244 fourierdlem104 46254 fourierdlem113 46263 mea0 46498 meaiunlelem 46512 meaiuninclem 46524 omessle 46542 omedm 46543 carageniuncllem2 46566 hspmbllem3 46672 sectpropdlem 49074 invpropdlem 49076 isopropdlem 49078 uprcl5 49230 |
| Copyright terms: Public domain | W3C validator |