| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihordlem7 | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma N of [Crawley] p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014.) |
| Ref | Expression |
|---|---|
| dihordlem8.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihordlem8.l | ⊢ ≤ = (le‘𝐾) |
| dihordlem8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dihordlem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihordlem8.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| dihordlem8.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dihordlem8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dihordlem8.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dihordlem8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihordlem8.s | ⊢ + = (+g‘𝑈) |
| dihordlem8.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) |
| Ref | Expression |
|---|---|
| dihordlem7 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑓 = ((𝑠‘𝐺) ∘ 𝑔) ∧ 𝑂 = 𝑠)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp33 1212 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉)) | |
| 2 | simp1 1136 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 3 | simp2l 1200 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
| 4 | simp2r 1201 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | |
| 5 | simp31 1210 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝑠 ∈ 𝐸) | |
| 6 | simp32 1211 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → 𝑔 ∈ 𝑇) | |
| 7 | dihordlem8.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | dihordlem8.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 9 | dihordlem8.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | dihordlem8.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 11 | dihordlem8.p | . . . . 5 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 12 | dihordlem8.o | . . . . 5 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 13 | dihordlem8.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 14 | dihordlem8.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 15 | dihordlem8.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 16 | dihordlem8.s | . . . . 5 ⊢ + = (+g‘𝑈) | |
| 17 | dihordlem8.g | . . . . 5 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) | |
| 18 | 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | dihordlem6 41201 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐺) ∘ 𝑔), 𝑠〉) |
| 19 | 2, 3, 4, 5, 6, 18 | syl122anc 1381 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐺) ∘ 𝑔), 𝑠〉) |
| 20 | 1, 19 | eqtrd 2764 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → 〈𝑓, 𝑂〉 = 〈((𝑠‘𝐺) ∘ 𝑔), 𝑠〉) |
| 21 | fvex 6853 | . . . 4 ⊢ (𝑠‘𝐺) ∈ V | |
| 22 | vex 3448 | . . . 4 ⊢ 𝑔 ∈ V | |
| 23 | 21, 22 | coex 7886 | . . 3 ⊢ ((𝑠‘𝐺) ∘ 𝑔) ∈ V |
| 24 | vex 3448 | . . 3 ⊢ 𝑠 ∈ V | |
| 25 | 23, 24 | opth2 5435 | . 2 ⊢ (〈𝑓, 𝑂〉 = 〈((𝑠‘𝐺) ∘ 𝑔), 𝑠〉 ↔ (𝑓 = ((𝑠‘𝐺) ∘ 𝑔) ∧ 𝑂 = 𝑠)) |
| 26 | 20, 25 | sylib 218 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈𝑓, 𝑂〉 = (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉))) → (𝑓 = ((𝑠‘𝐺) ∘ 𝑔) ∧ 𝑂 = 𝑠)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 ↦ cmpt 5183 I cid 5525 ↾ cres 5633 ∘ ccom 5635 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 Basecbs 17156 +gcplusg 17197 lecple 17204 occoc 17205 Atomscatm 39250 HLchlt 39337 LHypclh 39972 LTrncltrn 40089 TEndoctendo 40740 DVecHcdvh 41066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-riotaBAD 38940 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 df-struct 17094 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-proset 18236 df-poset 18255 df-plt 18270 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-p0 18365 df-p1 18366 df-lat 18374 df-clat 18441 df-oposet 39163 df-ol 39165 df-oml 39166 df-covers 39253 df-ats 39254 df-atl 39285 df-cvlat 39309 df-hlat 39338 df-llines 39486 df-lplanes 39487 df-lvols 39488 df-lines 39489 df-psubsp 39491 df-pmap 39492 df-padd 39784 df-lhyp 39976 df-laut 39977 df-ldil 40092 df-ltrn 40093 df-trl 40147 df-tendo 40743 df-edring 40745 df-dvech 41067 |
| This theorem is referenced by: dihordlem7b 41203 |
| Copyright terms: Public domain | W3C validator |