MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmucndlem Structured version   Visualization version   GIF version

Theorem fmucndlem 22897
Description: Lemma for fmucnd 22898. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Assertion
Ref Expression
fmucndlem ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ((𝐹𝐴) × (𝐹𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦

Proof of Theorem fmucndlem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5532 . . 3 ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ran ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴))
2 simpr 488 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → 𝐴𝑋)
3 resmpo 7251 . . . . 5 ((𝐴𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
42, 3sylancom 591 . . . 4 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
54rneqd 5772 . . 3 ((𝐹 Fn 𝑋𝐴𝑋) → ran ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
61, 5syl5eq 2845 . 2 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
7 vex 3444 . . . . . . . . . . . . 13 𝑥 ∈ V
8 vex 3444 . . . . . . . . . . . . 13 𝑦 ∈ V
97, 8op1std 7681 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (1st𝑝) = 𝑥)
109fveq2d 6649 . . . . . . . . . . 11 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑝)) = (𝐹𝑥))
117, 8op2ndd 7682 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (2nd𝑝) = 𝑦)
1211fveq2d 6649 . . . . . . . . . . 11 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑝)) = (𝐹𝑦))
1310, 12opeq12d 4773 . . . . . . . . . 10 (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
1413mpompt 7245 . . . . . . . . 9 (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
1514eqcomi 2807 . . . . . . . 8 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
1615rneqi 5771 . . . . . . 7 ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = ran (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
17 fvexd 6660 . . . . . . 7 ((⊤ ∧ 𝑝 ∈ (𝐴 × 𝐴)) → (𝐹‘(1st𝑝)) ∈ V)
18 fvexd 6660 . . . . . . 7 ((⊤ ∧ 𝑝 ∈ (𝐴 × 𝐴)) → (𝐹‘(2nd𝑝)) ∈ V)
1916, 17, 18fliftrel 7040 . . . . . 6 (⊤ → ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ⊆ (V × V))
2019mptru 1545 . . . . 5 ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ⊆ (V × V)
2120sseli 3911 . . . 4 (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) → 𝑝 ∈ (V × V))
2221adantl 485 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)) → 𝑝 ∈ (V × V))
23 xpss 5535 . . . . 5 ((𝐹𝐴) × (𝐹𝐴)) ⊆ (V × V)
2423sseli 3911 . . . 4 (𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴)) → 𝑝 ∈ (V × V))
2524adantl 485 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴))) → 𝑝 ∈ (V × V))
26 eqid 2798 . . . . . . . . 9 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
27 opex 5321 . . . . . . . . 9 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
2826, 27elrnmpo 7266 . . . . . . . 8 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ∃𝑥𝐴𝑦𝐴 ⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
29 eqcom 2805 . . . . . . . . . 10 (⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
30 fvex 6658 . . . . . . . . . . 11 (1st𝑝) ∈ V
31 fvex 6658 . . . . . . . . . . 11 (2nd𝑝) ∈ V
3230, 31opth2 5337 . . . . . . . . . 10 (⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩ ↔ ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
3329, 32bitri 278 . . . . . . . . 9 (⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
34332rexbii 3211 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
35 reeanv 3320 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
3628, 34, 353bitri 300 . . . . . . 7 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
37 fvelimab 6712 . . . . . . . 8 ((𝐹 Fn 𝑋𝐴𝑋) → ((1st𝑝) ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 (𝐹𝑥) = (1st𝑝)))
38 fvelimab 6712 . . . . . . . 8 ((𝐹 Fn 𝑋𝐴𝑋) → ((2nd𝑝) ∈ (𝐹𝐴) ↔ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
3937, 38anbi12d 633 . . . . . . 7 ((𝐹 Fn 𝑋𝐴𝑋) → (((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴)) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝))))
4036, 39bitr4id 293 . . . . . 6 ((𝐹 Fn 𝑋𝐴𝑋) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴))))
41 opelxp 5555 . . . . . 6 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴)) ↔ ((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴)))
4240, 41syl6bbr 292 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
4342adantr 484 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
44 1st2nd2 7710 . . . . . 6 (𝑝 ∈ (V × V) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4544adantl 485 . . . . 5 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4645eleq1d 2874 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)))
4745eleq1d 2874 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴)) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
4843, 46, 473bitr4d 314 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ 𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴))))
4922, 25, 48eqrdav 2797 . 2 ((𝐹 Fn 𝑋𝐴𝑋) → ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = ((𝐹𝐴) × (𝐹𝐴)))
506, 49eqtrd 2833 1 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ((𝐹𝐴) × (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wtru 1539  wcel 2111  wrex 3107  Vcvv 3441  wss 3881  cop 4531  cmpt 5110   × cxp 5517  ran crn 5520  cres 5521  cima 5522   Fn wfn 6319  cfv 6324  cmpo 7137  1st c1st 7669  2nd c2nd 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672
This theorem is referenced by:  fmucnd  22898
  Copyright terms: Public domain W3C validator