MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmucndlem Structured version   Visualization version   GIF version

Theorem fmucndlem 24300
Description: Lemma for fmucnd 24301. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Assertion
Ref Expression
fmucndlem ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ((𝐹𝐴) × (𝐹𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦

Proof of Theorem fmucndlem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5698 . . 3 ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ran ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴))
2 simpr 484 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → 𝐴𝑋)
3 resmpo 7553 . . . . 5 ((𝐴𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
42, 3sylancom 588 . . . 4 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
54rneqd 5949 . . 3 ((𝐹 Fn 𝑋𝐴𝑋) → ran ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
61, 5eqtrid 2789 . 2 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
7 vex 3484 . . . . . . . . . . . . 13 𝑥 ∈ V
8 vex 3484 . . . . . . . . . . . . 13 𝑦 ∈ V
97, 8op1std 8024 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (1st𝑝) = 𝑥)
109fveq2d 6910 . . . . . . . . . . 11 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑝)) = (𝐹𝑥))
117, 8op2ndd 8025 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (2nd𝑝) = 𝑦)
1211fveq2d 6910 . . . . . . . . . . 11 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑝)) = (𝐹𝑦))
1310, 12opeq12d 4881 . . . . . . . . . 10 (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
1413mpompt 7547 . . . . . . . . 9 (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
1514eqcomi 2746 . . . . . . . 8 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
1615rneqi 5948 . . . . . . 7 ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = ran (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
17 fvexd 6921 . . . . . . 7 ((⊤ ∧ 𝑝 ∈ (𝐴 × 𝐴)) → (𝐹‘(1st𝑝)) ∈ V)
18 fvexd 6921 . . . . . . 7 ((⊤ ∧ 𝑝 ∈ (𝐴 × 𝐴)) → (𝐹‘(2nd𝑝)) ∈ V)
1916, 17, 18fliftrel 7328 . . . . . 6 (⊤ → ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ⊆ (V × V))
2019mptru 1547 . . . . 5 ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ⊆ (V × V)
2120sseli 3979 . . . 4 (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) → 𝑝 ∈ (V × V))
2221adantl 481 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)) → 𝑝 ∈ (V × V))
23 xpss 5701 . . . . 5 ((𝐹𝐴) × (𝐹𝐴)) ⊆ (V × V)
2423sseli 3979 . . . 4 (𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴)) → 𝑝 ∈ (V × V))
2524adantl 481 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴))) → 𝑝 ∈ (V × V))
26 eqid 2737 . . . . . . . . 9 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
27 opex 5469 . . . . . . . . 9 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
2826, 27elrnmpo 7569 . . . . . . . 8 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ∃𝑥𝐴𝑦𝐴 ⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
29 eqcom 2744 . . . . . . . . . 10 (⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
30 fvex 6919 . . . . . . . . . . 11 (1st𝑝) ∈ V
31 fvex 6919 . . . . . . . . . . 11 (2nd𝑝) ∈ V
3230, 31opth2 5485 . . . . . . . . . 10 (⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩ ↔ ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
3329, 32bitri 275 . . . . . . . . 9 (⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
34332rexbii 3129 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
35 reeanv 3229 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
3628, 34, 353bitri 297 . . . . . . 7 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
37 fvelimab 6981 . . . . . . . 8 ((𝐹 Fn 𝑋𝐴𝑋) → ((1st𝑝) ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 (𝐹𝑥) = (1st𝑝)))
38 fvelimab 6981 . . . . . . . 8 ((𝐹 Fn 𝑋𝐴𝑋) → ((2nd𝑝) ∈ (𝐹𝐴) ↔ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
3937, 38anbi12d 632 . . . . . . 7 ((𝐹 Fn 𝑋𝐴𝑋) → (((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴)) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝))))
4036, 39bitr4id 290 . . . . . 6 ((𝐹 Fn 𝑋𝐴𝑋) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴))))
41 opelxp 5721 . . . . . 6 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴)) ↔ ((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴)))
4240, 41bitr4di 289 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
4342adantr 480 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
44 1st2nd2 8053 . . . . . 6 (𝑝 ∈ (V × V) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4544adantl 481 . . . . 5 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4645eleq1d 2826 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)))
4745eleq1d 2826 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴)) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
4843, 46, 473bitr4d 311 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ 𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴))))
4922, 25, 48eqrdav 2736 . 2 ((𝐹 Fn 𝑋𝐴𝑋) → ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = ((𝐹𝐴) × (𝐹𝐴)))
506, 49eqtrd 2777 1 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ((𝐹𝐴) × (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2108  wrex 3070  Vcvv 3480  wss 3951  cop 4632  cmpt 5225   × cxp 5683  ran crn 5686  cres 5687  cima 5688   Fn wfn 6556  cfv 6561  cmpo 7433  1st c1st 8012  2nd c2nd 8013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015
This theorem is referenced by:  fmucnd  24301
  Copyright terms: Public domain W3C validator