MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimelbas Structured version   Visualization version   GIF version

Theorem mat1dimelbas 22194
Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimelbas ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
Distinct variable groups:   𝐵,𝑟   𝐸,𝑟   𝑀,𝑟   𝑅,𝑟   𝑉,𝑟
Allowed substitution hints:   𝐴(𝑟)   𝑂(𝑟)

Proof of Theorem mat1dimelbas
StepHypRef Expression
1 snfi 9048 . . . 4 {𝐸} ∈ Fin
2 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
3 mat1dim.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
4 mat1dim.b . . . . . . 7 𝐵 = (Base‘𝑅)
53, 4matbas2 22144 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵m ({𝐸} × {𝐸})) = (Base‘𝐴))
65eqcomd 2737 . . . . 5 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (𝐵m ({𝐸} × {𝐸})))
76eleq2d 2818 . . . 4 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵m ({𝐸} × {𝐸}))))
81, 2, 7sylancr 586 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵m ({𝐸} × {𝐸}))))
94fvexi 6905 . . . 4 𝐵 ∈ V
10 snex 5431 . . . . . 6 {𝐸} ∈ V
1110, 10pm3.2i 470 . . . . 5 ({𝐸} ∈ V ∧ {𝐸} ∈ V)
12 xpexg 7741 . . . . 5 (({𝐸} ∈ V ∧ {𝐸} ∈ V) → ({𝐸} × {𝐸}) ∈ V)
1311, 12mp1i 13 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) ∈ V)
14 elmapg 8837 . . . 4 ((𝐵 ∈ V ∧ ({𝐸} × {𝐸}) ∈ V) → (𝑀 ∈ (𝐵m ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
159, 13, 14sylancr 586 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (𝐵m ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
168, 15bitrd 279 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
17 xpsng 7139 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
1817anidms 566 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
1918adantl 481 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2019feq2d 6703 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵))
21 opex 5464 . . . . . . 7 𝐸, 𝐸⟩ ∈ V
2221fsn2 7136 . . . . . 6 (𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵 ↔ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}))
23 risset 3229 . . . . . . . . . 10 ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵 ↔ ∃𝑟𝐵 𝑟 = (𝑀‘⟨𝐸, 𝐸⟩))
24 eqcom 2738 . . . . . . . . . . 11 (𝑟 = (𝑀‘⟨𝐸, 𝐸⟩) ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2524rexbii 3093 . . . . . . . . . 10 (∃𝑟𝐵 𝑟 = (𝑀‘⟨𝐸, 𝐸⟩) ↔ ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2623, 25sylbb 218 . . . . . . . . 9 ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵 → ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2726ad2antrl 725 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
28 eqeq1 2735 . . . . . . . . . . . 12 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
29 opex 5464 . . . . . . . . . . . . . 14 ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ ∈ V
30 sneqbg 4844 . . . . . . . . . . . . . 14 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ ∈ V → ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩)
32 eqid 2731 . . . . . . . . . . . . . 14 𝐸, 𝐸⟩ = ⟨𝐸, 𝐸
33 vex 3477 . . . . . . . . . . . . . . 15 𝑟 ∈ V
3421, 33opth2 5480 . . . . . . . . . . . . . 14 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ ↔ (⟨𝐸, 𝐸⟩ = ⟨𝐸, 𝐸⟩ ∧ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3532, 34mpbiran 706 . . . . . . . . . . . . 13 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
3631, 35bitri 275 . . . . . . . . . . . 12 ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
3728, 36bitrdi 287 . . . . . . . . . . 11 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3837adantl 481 . . . . . . . . . 10 (((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3938adantl 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4039rexbidv 3177 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4127, 40mpbird 257 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩})
4241ex 412 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}) → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
4322, 42biimtrid 241 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵 → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
4420, 43sylbid 239 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
45 f1o2sn 7142 . . . . . . . . 9 ((𝐸𝑉𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑟})
46 f1of 6833 . . . . . . . . 9 ({⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑟} → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
4745, 46syl 17 . . . . . . . 8 ((𝐸𝑉𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
4847adantll 711 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
49 snssi 4811 . . . . . . . 8 (𝑟𝐵 → {𝑟} ⊆ 𝐵)
5049adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {𝑟} ⊆ 𝐵)
5148, 50fssd 6735 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶𝐵)
52 feq1 6698 . . . . . 6 (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶𝐵))
5351, 52syl5ibrcom 246 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → 𝑀:({𝐸} × {𝐸})⟶𝐵))
5453rexlimdva 3154 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → 𝑀:({𝐸} × {𝐸})⟶𝐵))
5544, 54impbid 211 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
56 mat1dim.o . . . . . . . . 9 𝑂 = ⟨𝐸, 𝐸
5756eqcomi 2740 . . . . . . . 8 𝐸, 𝐸⟩ = 𝑂
5857opeq1i 4876 . . . . . . 7 ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ = ⟨𝑂, 𝑟
5958sneqi 4639 . . . . . 6 {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} = {⟨𝑂, 𝑟⟩}
6059eqeq2i 2744 . . . . 5 (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ 𝑀 = {⟨𝑂, 𝑟⟩})
6160a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ 𝑀 = {⟨𝑂, 𝑟⟩}))
6261rexbidv 3177 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
6355, 62bitrd 279 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
6416, 63bitrd 279 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wrex 3069  Vcvv 3473  wss 3948  {csn 4628  cop 4634   × cxp 5674  wf 6539  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7412  m cmap 8824  Fincfn 8943  Basecbs 17149  Ringcrg 20128   Mat cmat 22128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-sup 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-hom 17226  df-cco 17227  df-0g 17392  df-prds 17398  df-pws 17400  df-sra 20931  df-rgmod 20932  df-dsmm 21507  df-frlm 21522  df-mat 22129
This theorem is referenced by:  mat1dimbas  22195  mat1dimcrng  22200  mat1scmat  22262
  Copyright terms: Public domain W3C validator