Proof of Theorem mat1dimelbas
Step | Hyp | Ref
| Expression |
1 | | snfi 8788 |
. . . 4
⊢ {𝐸} ∈ Fin |
2 | | simpl 482 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Ring) |
3 | | mat1dim.a |
. . . . . . 7
⊢ 𝐴 = ({𝐸} Mat 𝑅) |
4 | | mat1dim.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
5 | 3, 4 | matbas2 21478 |
. . . . . 6
⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
6 | 5 | eqcomd 2744 |
. . . . 5
⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘𝐴) = (𝐵 ↑m ({𝐸} × {𝐸}))) |
7 | 6 | eleq2d 2824 |
. . . 4
⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵 ↑m ({𝐸} × {𝐸})))) |
8 | 1, 2, 7 | sylancr 586 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵 ↑m ({𝐸} × {𝐸})))) |
9 | 4 | fvexi 6770 |
. . . 4
⊢ 𝐵 ∈ V |
10 | | snex 5349 |
. . . . . 6
⊢ {𝐸} ∈ V |
11 | 10, 10 | pm3.2i 470 |
. . . . 5
⊢ ({𝐸} ∈ V ∧ {𝐸} ∈ V) |
12 | | xpexg 7578 |
. . . . 5
⊢ (({𝐸} ∈ V ∧ {𝐸} ∈ V) → ({𝐸} × {𝐸}) ∈ V) |
13 | 11, 12 | mp1i 13 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) ∈ V) |
14 | | elmapg 8586 |
. . . 4
⊢ ((𝐵 ∈ V ∧ ({𝐸} × {𝐸}) ∈ V) → (𝑀 ∈ (𝐵 ↑m ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵)) |
15 | 9, 13, 14 | sylancr 586 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀 ∈ (𝐵 ↑m ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵)) |
16 | 8, 15 | bitrd 278 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵)) |
17 | | xpsng 6993 |
. . . . . . . 8
⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
18 | 17 | anidms 566 |
. . . . . . 7
⊢ (𝐸 ∈ 𝑉 → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
19 | 18 | adantl 481 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
20 | 19 | feq2d 6570 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ 𝑀:{〈𝐸, 𝐸〉}⟶𝐵)) |
21 | | opex 5373 |
. . . . . . 7
⊢
〈𝐸, 𝐸〉 ∈ V |
22 | 21 | fsn2 6990 |
. . . . . 6
⊢ (𝑀:{〈𝐸, 𝐸〉}⟶𝐵 ↔ ((𝑀‘〈𝐸, 𝐸〉) ∈ 𝐵 ∧ 𝑀 = {〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉})) |
23 | | risset 3193 |
. . . . . . . . . 10
⊢ ((𝑀‘〈𝐸, 𝐸〉) ∈ 𝐵 ↔ ∃𝑟 ∈ 𝐵 𝑟 = (𝑀‘〈𝐸, 𝐸〉)) |
24 | | eqcom 2745 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑀‘〈𝐸, 𝐸〉) ↔ (𝑀‘〈𝐸, 𝐸〉) = 𝑟) |
25 | 24 | rexbii 3177 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
𝐵 𝑟 = (𝑀‘〈𝐸, 𝐸〉) ↔ ∃𝑟 ∈ 𝐵 (𝑀‘〈𝐸, 𝐸〉) = 𝑟) |
26 | 23, 25 | sylbb 218 |
. . . . . . . . 9
⊢ ((𝑀‘〈𝐸, 𝐸〉) ∈ 𝐵 → ∃𝑟 ∈ 𝐵 (𝑀‘〈𝐸, 𝐸〉) = 𝑟) |
27 | 26 | ad2antrl 724 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ ((𝑀‘〈𝐸, 𝐸〉) ∈ 𝐵 ∧ 𝑀 = {〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉})) → ∃𝑟 ∈ 𝐵 (𝑀‘〈𝐸, 𝐸〉) = 𝑟) |
28 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑀 = {〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉} → (𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ {〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉} = {〈〈𝐸, 𝐸〉, 𝑟〉})) |
29 | | opex 5373 |
. . . . . . . . . . . . . 14
⊢
〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉 ∈ V |
30 | | sneqbg 4771 |
. . . . . . . . . . . . . 14
⊢
(〈〈𝐸,
𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉 ∈ V →
({〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉} = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ 〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉 = 〈〈𝐸, 𝐸〉, 𝑟〉)) |
31 | 29, 30 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
({〈〈𝐸,
𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉} = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ 〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉 = 〈〈𝐸, 𝐸〉, 𝑟〉) |
32 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
〈𝐸, 𝐸〉 = 〈𝐸, 𝐸〉 |
33 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑟 ∈ V |
34 | 21, 33 | opth2 5389 |
. . . . . . . . . . . . . 14
⊢
(〈〈𝐸,
𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉 = 〈〈𝐸, 𝐸〉, 𝑟〉 ↔ (〈𝐸, 𝐸〉 = 〈𝐸, 𝐸〉 ∧ (𝑀‘〈𝐸, 𝐸〉) = 𝑟)) |
35 | 32, 34 | mpbiran 705 |
. . . . . . . . . . . . 13
⊢
(〈〈𝐸,
𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉 = 〈〈𝐸, 𝐸〉, 𝑟〉 ↔ (𝑀‘〈𝐸, 𝐸〉) = 𝑟) |
36 | 31, 35 | bitri 274 |
. . . . . . . . . . . 12
⊢
({〈〈𝐸,
𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉} = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ (𝑀‘〈𝐸, 𝐸〉) = 𝑟) |
37 | 28, 36 | bitrdi 286 |
. . . . . . . . . . 11
⊢ (𝑀 = {〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉} → (𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ (𝑀‘〈𝐸, 𝐸〉) = 𝑟)) |
38 | 37 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑀‘〈𝐸, 𝐸〉) ∈ 𝐵 ∧ 𝑀 = {〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉}) → (𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ (𝑀‘〈𝐸, 𝐸〉) = 𝑟)) |
39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ ((𝑀‘〈𝐸, 𝐸〉) ∈ 𝐵 ∧ 𝑀 = {〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉})) → (𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ (𝑀‘〈𝐸, 𝐸〉) = 𝑟)) |
40 | 39 | rexbidv 3225 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ ((𝑀‘〈𝐸, 𝐸〉) ∈ 𝐵 ∧ 𝑀 = {〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉})) → (∃𝑟 ∈ 𝐵 𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ ∃𝑟 ∈ 𝐵 (𝑀‘〈𝐸, 𝐸〉) = 𝑟)) |
41 | 27, 40 | mpbird 256 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ ((𝑀‘〈𝐸, 𝐸〉) ∈ 𝐵 ∧ 𝑀 = {〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉})) → ∃𝑟 ∈ 𝐵 𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉}) |
42 | 41 | ex 412 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (((𝑀‘〈𝐸, 𝐸〉) ∈ 𝐵 ∧ 𝑀 = {〈〈𝐸, 𝐸〉, (𝑀‘〈𝐸, 𝐸〉)〉}) → ∃𝑟 ∈ 𝐵 𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉})) |
43 | 22, 42 | syl5bi 241 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀:{〈𝐸, 𝐸〉}⟶𝐵 → ∃𝑟 ∈ 𝐵 𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉})) |
44 | 20, 43 | sylbid 239 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 → ∃𝑟 ∈ 𝐵 𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉})) |
45 | | f1o2sn 6996 |
. . . . . . . . 9
⊢ ((𝐸 ∈ 𝑉 ∧ 𝑟 ∈ 𝐵) → {〈〈𝐸, 𝐸〉, 𝑟〉}:({𝐸} × {𝐸})–1-1-onto→{𝑟}) |
46 | | f1of 6700 |
. . . . . . . . 9
⊢
({〈〈𝐸,
𝐸〉, 𝑟〉}:({𝐸} × {𝐸})–1-1-onto→{𝑟} → {〈〈𝐸, 𝐸〉, 𝑟〉}:({𝐸} × {𝐸})⟶{𝑟}) |
47 | 45, 46 | syl 17 |
. . . . . . . 8
⊢ ((𝐸 ∈ 𝑉 ∧ 𝑟 ∈ 𝐵) → {〈〈𝐸, 𝐸〉, 𝑟〉}:({𝐸} × {𝐸})⟶{𝑟}) |
48 | 47 | adantll 710 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ 𝑟 ∈ 𝐵) → {〈〈𝐸, 𝐸〉, 𝑟〉}:({𝐸} × {𝐸})⟶{𝑟}) |
49 | | snssi 4738 |
. . . . . . . 8
⊢ (𝑟 ∈ 𝐵 → {𝑟} ⊆ 𝐵) |
50 | 49 | adantl 481 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ 𝑟 ∈ 𝐵) → {𝑟} ⊆ 𝐵) |
51 | 48, 50 | fssd 6602 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ 𝑟 ∈ 𝐵) → {〈〈𝐸, 𝐸〉, 𝑟〉}:({𝐸} × {𝐸})⟶𝐵) |
52 | | feq1 6565 |
. . . . . 6
⊢ (𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ {〈〈𝐸, 𝐸〉, 𝑟〉}:({𝐸} × {𝐸})⟶𝐵)) |
53 | 51, 52 | syl5ibrcom 246 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ 𝑟 ∈ 𝐵) → (𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} → 𝑀:({𝐸} × {𝐸})⟶𝐵)) |
54 | 53 | rexlimdva 3212 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (∃𝑟 ∈ 𝐵 𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} → 𝑀:({𝐸} × {𝐸})⟶𝐵)) |
55 | 44, 54 | impbid 211 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟 ∈ 𝐵 𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉})) |
56 | | mat1dim.o |
. . . . . . . . 9
⊢ 𝑂 = 〈𝐸, 𝐸〉 |
57 | 56 | eqcomi 2747 |
. . . . . . . 8
⊢
〈𝐸, 𝐸〉 = 𝑂 |
58 | 57 | opeq1i 4804 |
. . . . . . 7
⊢
〈〈𝐸, 𝐸〉, 𝑟〉 = 〈𝑂, 𝑟〉 |
59 | 58 | sneqi 4569 |
. . . . . 6
⊢
{〈〈𝐸,
𝐸〉, 𝑟〉} = {〈𝑂, 𝑟〉} |
60 | 59 | eqeq2i 2751 |
. . . . 5
⊢ (𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ 𝑀 = {〈𝑂, 𝑟〉}) |
61 | 60 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ 𝑀 = {〈𝑂, 𝑟〉})) |
62 | 61 | rexbidv 3225 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (∃𝑟 ∈ 𝐵 𝑀 = {〈〈𝐸, 𝐸〉, 𝑟〉} ↔ ∃𝑟 ∈ 𝐵 𝑀 = {〈𝑂, 𝑟〉})) |
63 | 55, 62 | bitrd 278 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟 ∈ 𝐵 𝑀 = {〈𝑂, 𝑟〉})) |
64 | 16, 63 | bitrd 278 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟 ∈ 𝐵 𝑀 = {〈𝑂, 𝑟〉})) |