MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimelbas Structured version   Visualization version   GIF version

Theorem mat1dimelbas 22366
Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimelbas ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
Distinct variable groups:   𝐵,𝑟   𝐸,𝑟   𝑀,𝑟   𝑅,𝑟   𝑉,𝑟
Allowed substitution hints:   𝐴(𝑟)   𝑂(𝑟)

Proof of Theorem mat1dimelbas
StepHypRef Expression
1 snfi 9062 . . . 4 {𝐸} ∈ Fin
2 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
3 mat1dim.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
4 mat1dim.b . . . . . . 7 𝐵 = (Base‘𝑅)
53, 4matbas2 22316 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵m ({𝐸} × {𝐸})) = (Base‘𝐴))
65eqcomd 2734 . . . . 5 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (𝐵m ({𝐸} × {𝐸})))
76eleq2d 2815 . . . 4 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵m ({𝐸} × {𝐸}))))
81, 2, 7sylancr 586 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵m ({𝐸} × {𝐸}))))
94fvexi 6905 . . . 4 𝐵 ∈ V
10 snex 5427 . . . . . 6 {𝐸} ∈ V
1110, 10pm3.2i 470 . . . . 5 ({𝐸} ∈ V ∧ {𝐸} ∈ V)
12 xpexg 7746 . . . . 5 (({𝐸} ∈ V ∧ {𝐸} ∈ V) → ({𝐸} × {𝐸}) ∈ V)
1311, 12mp1i 13 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) ∈ V)
14 elmapg 8851 . . . 4 ((𝐵 ∈ V ∧ ({𝐸} × {𝐸}) ∈ V) → (𝑀 ∈ (𝐵m ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
159, 13, 14sylancr 586 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (𝐵m ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
168, 15bitrd 279 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
17 xpsng 7142 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
1817anidms 566 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
1918adantl 481 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2019feq2d 6702 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵))
21 opex 5460 . . . . . . 7 𝐸, 𝐸⟩ ∈ V
2221fsn2 7139 . . . . . 6 (𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵 ↔ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}))
23 risset 3226 . . . . . . . . . 10 ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵 ↔ ∃𝑟𝐵 𝑟 = (𝑀‘⟨𝐸, 𝐸⟩))
24 eqcom 2735 . . . . . . . . . . 11 (𝑟 = (𝑀‘⟨𝐸, 𝐸⟩) ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2524rexbii 3090 . . . . . . . . . 10 (∃𝑟𝐵 𝑟 = (𝑀‘⟨𝐸, 𝐸⟩) ↔ ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2623, 25sylbb 218 . . . . . . . . 9 ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵 → ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2726ad2antrl 727 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
28 eqeq1 2732 . . . . . . . . . . . 12 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
29 opex 5460 . . . . . . . . . . . . . 14 ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ ∈ V
30 sneqbg 4840 . . . . . . . . . . . . . 14 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ ∈ V → ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩)
32 eqid 2728 . . . . . . . . . . . . . 14 𝐸, 𝐸⟩ = ⟨𝐸, 𝐸
33 vex 3474 . . . . . . . . . . . . . . 15 𝑟 ∈ V
3421, 33opth2 5476 . . . . . . . . . . . . . 14 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ ↔ (⟨𝐸, 𝐸⟩ = ⟨𝐸, 𝐸⟩ ∧ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3532, 34mpbiran 708 . . . . . . . . . . . . 13 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
3631, 35bitri 275 . . . . . . . . . . . 12 ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
3728, 36bitrdi 287 . . . . . . . . . . 11 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3837adantl 481 . . . . . . . . . 10 (((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3938adantl 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4039rexbidv 3174 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4127, 40mpbird 257 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩})
4241ex 412 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}) → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
4322, 42biimtrid 241 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵 → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
4420, 43sylbid 239 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
45 f1o2sn 7145 . . . . . . . . 9 ((𝐸𝑉𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑟})
46 f1of 6833 . . . . . . . . 9 ({⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑟} → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
4745, 46syl 17 . . . . . . . 8 ((𝐸𝑉𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
4847adantll 713 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
49 snssi 4807 . . . . . . . 8 (𝑟𝐵 → {𝑟} ⊆ 𝐵)
5049adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {𝑟} ⊆ 𝐵)
5148, 50fssd 6734 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶𝐵)
52 feq1 6697 . . . . . 6 (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶𝐵))
5351, 52syl5ibrcom 246 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → 𝑀:({𝐸} × {𝐸})⟶𝐵))
5453rexlimdva 3151 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → 𝑀:({𝐸} × {𝐸})⟶𝐵))
5544, 54impbid 211 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
56 mat1dim.o . . . . . . . . 9 𝑂 = ⟨𝐸, 𝐸
5756eqcomi 2737 . . . . . . . 8 𝐸, 𝐸⟩ = 𝑂
5857opeq1i 4872 . . . . . . 7 ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ = ⟨𝑂, 𝑟
5958sneqi 4635 . . . . . 6 {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} = {⟨𝑂, 𝑟⟩}
6059eqeq2i 2741 . . . . 5 (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ 𝑀 = {⟨𝑂, 𝑟⟩})
6160a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ 𝑀 = {⟨𝑂, 𝑟⟩}))
6261rexbidv 3174 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
6355, 62bitrd 279 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
6416, 63bitrd 279 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wrex 3066  Vcvv 3470  wss 3945  {csn 4624  cop 4630   × cxp 5670  wf 6538  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7414  m cmap 8838  Fincfn 8957  Basecbs 17173  Ringcrg 20166   Mat cmat 22300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17416  df-prds 17422  df-pws 17424  df-sra 21051  df-rgmod 21052  df-dsmm 21659  df-frlm 21674  df-mat 22301
This theorem is referenced by:  mat1dimbas  22367  mat1dimcrng  22372  mat1scmat  22434
  Copyright terms: Public domain W3C validator