MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1dimelbas Structured version   Visualization version   GIF version

Theorem mat1dimelbas 22387
Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019.)
Hypotheses
Ref Expression
mat1dim.a 𝐴 = ({𝐸} Mat 𝑅)
mat1dim.b 𝐵 = (Base‘𝑅)
mat1dim.o 𝑂 = ⟨𝐸, 𝐸
Assertion
Ref Expression
mat1dimelbas ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
Distinct variable groups:   𝐵,𝑟   𝐸,𝑟   𝑀,𝑟   𝑅,𝑟   𝑉,𝑟
Allowed substitution hints:   𝐴(𝑟)   𝑂(𝑟)

Proof of Theorem mat1dimelbas
StepHypRef Expression
1 snfi 8965 . . . 4 {𝐸} ∈ Fin
2 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
3 mat1dim.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
4 mat1dim.b . . . . . . 7 𝐵 = (Base‘𝑅)
53, 4matbas2 22337 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵m ({𝐸} × {𝐸})) = (Base‘𝐴))
65eqcomd 2737 . . . . 5 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (𝐵m ({𝐸} × {𝐸})))
76eleq2d 2817 . . . 4 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵m ({𝐸} × {𝐸}))))
81, 2, 7sylancr 587 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐵m ({𝐸} × {𝐸}))))
94fvexi 6836 . . . 4 𝐵 ∈ V
10 snex 5374 . . . . . 6 {𝐸} ∈ V
1110, 10pm3.2i 470 . . . . 5 ({𝐸} ∈ V ∧ {𝐸} ∈ V)
12 xpexg 7683 . . . . 5 (({𝐸} ∈ V ∧ {𝐸} ∈ V) → ({𝐸} × {𝐸}) ∈ V)
1311, 12mp1i 13 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) ∈ V)
14 elmapg 8763 . . . 4 ((𝐵 ∈ V ∧ ({𝐸} × {𝐸}) ∈ V) → (𝑀 ∈ (𝐵m ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
159, 13, 14sylancr 587 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (𝐵m ({𝐸} × {𝐸})) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
168, 15bitrd 279 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀:({𝐸} × {𝐸})⟶𝐵))
17 xpsng 7072 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
1817anidms 566 . . . . . . 7 (𝐸𝑉 → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
1918adantl 481 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2019feq2d 6635 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵))
21 opex 5404 . . . . . . 7 𝐸, 𝐸⟩ ∈ V
2221fsn2 7069 . . . . . 6 (𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵 ↔ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}))
23 risset 3207 . . . . . . . . . 10 ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵 ↔ ∃𝑟𝐵 𝑟 = (𝑀‘⟨𝐸, 𝐸⟩))
24 eqcom 2738 . . . . . . . . . . 11 (𝑟 = (𝑀‘⟨𝐸, 𝐸⟩) ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2524rexbii 3079 . . . . . . . . . 10 (∃𝑟𝐵 𝑟 = (𝑀‘⟨𝐸, 𝐸⟩) ↔ ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2623, 25sylbb 219 . . . . . . . . 9 ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵 → ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
2726ad2antrl 728 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
28 eqeq1 2735 . . . . . . . . . . . 12 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
29 opex 5404 . . . . . . . . . . . . . 14 ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ ∈ V
30 sneqbg 4795 . . . . . . . . . . . . . 14 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ ∈ V → ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩)
32 eqid 2731 . . . . . . . . . . . . . 14 𝐸, 𝐸⟩ = ⟨𝐸, 𝐸
33 vex 3440 . . . . . . . . . . . . . . 15 𝑟 ∈ V
3421, 33opth2 5420 . . . . . . . . . . . . . 14 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ ↔ (⟨𝐸, 𝐸⟩ = ⟨𝐸, 𝐸⟩ ∧ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3532, 34mpbiran 709 . . . . . . . . . . . . 13 (⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩ = ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
3631, 35bitri 275 . . . . . . . . . . . 12 ({⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟)
3728, 36bitrdi 287 . . . . . . . . . . 11 (𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩} → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3837adantl 481 . . . . . . . . . 10 (((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
3938adantl 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4039rexbidv 3156 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ∃𝑟𝐵 (𝑀‘⟨𝐸, 𝐸⟩) = 𝑟))
4127, 40mpbird 257 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ ((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩})) → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩})
4241ex 412 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (((𝑀‘⟨𝐸, 𝐸⟩) ∈ 𝐵𝑀 = {⟨⟨𝐸, 𝐸⟩, (𝑀‘⟨𝐸, 𝐸⟩)⟩}) → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
4322, 42biimtrid 242 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:{⟨𝐸, 𝐸⟩}⟶𝐵 → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
4420, 43sylbid 240 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 → ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
45 f1o2sn 7075 . . . . . . . . 9 ((𝐸𝑉𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑟})
46 f1of 6763 . . . . . . . . 9 ({⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})–1-1-onto→{𝑟} → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
4745, 46syl 17 . . . . . . . 8 ((𝐸𝑉𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
4847adantll 714 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶{𝑟})
49 snssi 4760 . . . . . . . 8 (𝑟𝐵 → {𝑟} ⊆ 𝐵)
5049adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {𝑟} ⊆ 𝐵)
5148, 50fssd 6668 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶𝐵)
52 feq1 6629 . . . . . 6 (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}:({𝐸} × {𝐸})⟶𝐵))
5351, 52syl5ibrcom 247 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ 𝑟𝐵) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → 𝑀:({𝐸} × {𝐸})⟶𝐵))
5453rexlimdva 3133 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} → 𝑀:({𝐸} × {𝐸})⟶𝐵))
5544, 54impbid 212 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩}))
56 mat1dim.o . . . . . . . . 9 𝑂 = ⟨𝐸, 𝐸
5756eqcomi 2740 . . . . . . . 8 𝐸, 𝐸⟩ = 𝑂
5857opeq1i 4828 . . . . . . 7 ⟨⟨𝐸, 𝐸⟩, 𝑟⟩ = ⟨𝑂, 𝑟
5958sneqi 4587 . . . . . 6 {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} = {⟨𝑂, 𝑟⟩}
6059eqeq2i 2744 . . . . 5 (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ 𝑀 = {⟨𝑂, 𝑟⟩})
6160a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ 𝑀 = {⟨𝑂, 𝑟⟩}))
6261rexbidv 3156 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∃𝑟𝐵 𝑀 = {⟨⟨𝐸, 𝐸⟩, 𝑟⟩} ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
6355, 62bitrd 279 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀:({𝐸} × {𝐸})⟶𝐵 ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
6416, 63bitrd 279 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ (Base‘𝐴) ↔ ∃𝑟𝐵 𝑀 = {⟨𝑂, 𝑟⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  wss 3902  {csn 4576  cop 4582   × cxp 5614  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  Basecbs 17120  Ringcrg 20152   Mat cmat 22323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-sra 21108  df-rgmod 21109  df-dsmm 21670  df-frlm 21685  df-mat 22324
This theorem is referenced by:  mat1dimbas  22388  mat1dimcrng  22393  mat1scmat  22455
  Copyright terms: Public domain W3C validator