Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihpN | Structured version Visualization version GIF version |
Description: The value of isomorphism H at the fiducial atom 𝑃 is determined by the vector 〈0, 𝑆〉 (the zero translation ltrnid 38149 and a nonzero member of the endomorphism ring). In particular, 𝑆 can be replaced with the ring unit ( I ↾ 𝑇). (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihp.b | ⊢ 𝐵 = (Base‘𝐾) |
dihp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihp.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dihp.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihp.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dihp.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dihp.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihp.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dihp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihp.s | ⊢ (𝜑 → (𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂)) |
Ref | Expression |
---|---|
dihpN | ⊢ (𝜑 → (𝐼‘𝑃) = (𝑁‘{〈( I ↾ 𝐵), 𝑆〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
2 | dihp.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
3 | eqid 2738 | . 2 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
4 | dihp.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dihp.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | dihp.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 4, 5, 6 | dvhlvec 39123 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
8 | dihp.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
9 | dihp.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
10 | 4, 8, 9, 5, 3, 6 | dihat 39349 | . 2 ⊢ (𝜑 → (𝐼‘𝑃) ∈ (LSAtoms‘𝑈)) |
11 | eqid 2738 | . . . . . . . 8 ⊢ (le‘𝐾) = (le‘𝐾) | |
12 | eqid 2738 | . . . . . . . 8 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
13 | 11, 12, 4, 8 | lhpocnel2 38033 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
14 | dihp.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
15 | dihp.t | . . . . . . . 8 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
16 | eqid 2738 | . . . . . . . 8 ⊢ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) | |
17 | 14, 11, 12, 4, 15, 16 | ltrniotaidvalN 38597 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) = ( I ↾ 𝐵)) |
18 | 6, 13, 17 | syl2anc2 585 | . . . . . 6 ⊢ (𝜑 → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) = ( I ↾ 𝐵)) |
19 | 18 | fveq2d 6778 | . . . . 5 ⊢ (𝜑 → (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) = (𝑆‘( I ↾ 𝐵))) |
20 | dihp.s | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂)) | |
21 | 20 | simpld 495 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐸) |
22 | dihp.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
23 | 14, 4, 22 | tendoid 38787 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
24 | 6, 21, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
25 | 19, 24 | eqtr2d 2779 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃))) |
26 | 14 | fvexi 6788 | . . . . . 6 ⊢ 𝐵 ∈ V |
27 | resiexg 7761 | . . . . . 6 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
28 | 26, 27 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
29 | eqeq1 2742 | . . . . . . 7 ⊢ (𝑔 = ( I ↾ 𝐵) → (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ↔ ( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)))) | |
30 | 29 | anbi1d 630 | . . . . . 6 ⊢ (𝑔 = ( I ↾ 𝐵) → ((𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸) ↔ (( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸))) |
31 | fveq1 6773 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃))) | |
32 | 31 | eqeq2d 2749 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ↔ ( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)))) |
33 | eleq1 2826 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝐸 ↔ 𝑆 ∈ 𝐸)) | |
34 | 32, 33 | anbi12d 631 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸) ↔ (( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑆 ∈ 𝐸))) |
35 | 30, 34 | opelopabg 5451 | . . . . 5 ⊢ ((( I ↾ 𝐵) ∈ V ∧ 𝑆 ∈ 𝐸) → (〈( I ↾ 𝐵), 𝑆〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)} ↔ (( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑆 ∈ 𝐸))) |
36 | 28, 21, 35 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (〈( I ↾ 𝐵), 𝑆〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)} ↔ (( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑆 ∈ 𝐸))) |
37 | 25, 21, 36 | mpbir2and 710 | . . 3 ⊢ (𝜑 → 〈( I ↾ 𝐵), 𝑆〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)}) |
38 | eqid 2738 | . . . . . 6 ⊢ ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) | |
39 | 11, 12, 4, 38, 9 | dihvalcqat 39253 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (𝐼‘𝑃) = (((DIsoC‘𝐾)‘𝑊)‘𝑃)) |
40 | 6, 13, 39 | syl2anc2 585 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑃) = (((DIsoC‘𝐾)‘𝑊)‘𝑃)) |
41 | 11, 12, 4, 8, 15, 22, 38 | dicval 39190 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘𝑃) = {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)}) |
42 | 6, 13, 41 | syl2anc2 585 | . . . 4 ⊢ (𝜑 → (((DIsoC‘𝐾)‘𝑊)‘𝑃) = {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)}) |
43 | 40, 42 | eqtr2d 2779 | . . 3 ⊢ (𝜑 → {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)} = (𝐼‘𝑃)) |
44 | 37, 43 | eleqtrd 2841 | . 2 ⊢ (𝜑 → 〈( I ↾ 𝐵), 𝑆〉 ∈ (𝐼‘𝑃)) |
45 | 20 | simprd 496 | . . 3 ⊢ (𝜑 → 𝑆 ≠ 𝑂) |
46 | dihp.o | . . . . . . . 8 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
47 | 14, 4, 15, 5, 1, 46 | dvh0g 39125 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝑈) = 〈( I ↾ 𝐵), 𝑂〉) |
48 | 6, 47 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑈) = 〈( I ↾ 𝐵), 𝑂〉) |
49 | 48 | eqeq2d 2749 | . . . . 5 ⊢ (𝜑 → (〈( I ↾ 𝐵), 𝑆〉 = (0g‘𝑈) ↔ 〈( I ↾ 𝐵), 𝑆〉 = 〈( I ↾ 𝐵), 𝑂〉)) |
50 | 26, 27 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ 𝐵) ∈ V |
51 | 15 | fvexi 6788 | . . . . . . . . 9 ⊢ 𝑇 ∈ V |
52 | 51 | mptex 7099 | . . . . . . . 8 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
53 | 46, 52 | eqeltri 2835 | . . . . . . 7 ⊢ 𝑂 ∈ V |
54 | 50, 53 | opth2 5395 | . . . . . 6 ⊢ (〈( I ↾ 𝐵), 𝑆〉 = 〈( I ↾ 𝐵), 𝑂〉 ↔ (( I ↾ 𝐵) = ( I ↾ 𝐵) ∧ 𝑆 = 𝑂)) |
55 | 54 | simprbi 497 | . . . . 5 ⊢ (〈( I ↾ 𝐵), 𝑆〉 = 〈( I ↾ 𝐵), 𝑂〉 → 𝑆 = 𝑂) |
56 | 49, 55 | syl6bi 252 | . . . 4 ⊢ (𝜑 → (〈( I ↾ 𝐵), 𝑆〉 = (0g‘𝑈) → 𝑆 = 𝑂)) |
57 | 56 | necon3d 2964 | . . 3 ⊢ (𝜑 → (𝑆 ≠ 𝑂 → 〈( I ↾ 𝐵), 𝑆〉 ≠ (0g‘𝑈))) |
58 | 45, 57 | mpd 15 | . 2 ⊢ (𝜑 → 〈( I ↾ 𝐵), 𝑆〉 ≠ (0g‘𝑈)) |
59 | 1, 2, 3, 7, 10, 44, 58 | lsatel 37019 | 1 ⊢ (𝜑 → (𝐼‘𝑃) = (𝑁‘{〈( I ↾ 𝐵), 𝑆〉})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 {csn 4561 〈cop 4567 class class class wbr 5074 {copab 5136 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ‘cfv 6433 ℩crio 7231 Basecbs 16912 lecple 16969 occoc 16970 0gc0g 17150 LSpanclspn 20233 LSAtomsclsa 36988 Atomscatm 37277 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 TEndoctendo 38766 DVecHcdvh 39092 DIsoCcdic 39186 DIsoHcdih 39242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lsatoms 36990 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tendo 38769 df-edring 38771 df-disoa 39043 df-dvech 39093 df-dib 39153 df-dic 39187 df-dih 39243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |