| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihpN | Structured version Visualization version GIF version | ||
| Description: The value of isomorphism H at the fiducial atom 𝑃 is determined by the vector 〈0, 𝑆〉 (the zero translation ltrnid 40136 and a nonzero member of the endomorphism ring). In particular, 𝑆 can be replaced with the ring unity ( I ↾ 𝑇). (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihp.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihp.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| dihp.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dihp.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dihp.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dihp.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihp.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihp.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| dihp.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dihp.s | ⊢ (𝜑 → (𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂)) |
| Ref | Expression |
|---|---|
| dihpN | ⊢ (𝜑 → (𝐼‘𝑃) = (𝑁‘{〈( I ↾ 𝐵), 𝑆〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 2 | dihp.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 3 | eqid 2730 | . 2 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
| 4 | dihp.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | dihp.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | dihp.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | 4, 5, 6 | dvhlvec 41110 | . 2 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 8 | dihp.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 9 | dihp.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 10 | 4, 8, 9, 5, 3, 6 | dihat 41336 | . 2 ⊢ (𝜑 → (𝐼‘𝑃) ∈ (LSAtoms‘𝑈)) |
| 11 | eqid 2730 | . . . . . . . 8 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 12 | eqid 2730 | . . . . . . . 8 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 13 | 11, 12, 4, 8 | lhpocnel2 40020 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
| 14 | dihp.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | dihp.t | . . . . . . . 8 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 16 | eqid 2730 | . . . . . . . 8 ⊢ (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) | |
| 17 | 14, 11, 12, 4, 15, 16 | ltrniotaidvalN 40584 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) = ( I ↾ 𝐵)) |
| 18 | 6, 13, 17 | syl2anc2 585 | . . . . . 6 ⊢ (𝜑 → (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃) = ( I ↾ 𝐵)) |
| 19 | 18 | fveq2d 6865 | . . . . 5 ⊢ (𝜑 → (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) = (𝑆‘( I ↾ 𝐵))) |
| 20 | dihp.s | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂)) | |
| 21 | 20 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝐸) |
| 22 | dihp.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 23 | 14, 4, 22 | tendoid 40774 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
| 24 | 6, 21, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) |
| 25 | 19, 24 | eqtr2d 2766 | . . . 4 ⊢ (𝜑 → ( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃))) |
| 26 | 14 | fvexi 6875 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 27 | resiexg 7891 | . . . . . 6 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 28 | 26, 27 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ( I ↾ 𝐵) ∈ V) |
| 29 | eqeq1 2734 | . . . . . . 7 ⊢ (𝑔 = ( I ↾ 𝐵) → (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ↔ ( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)))) | |
| 30 | 29 | anbi1d 631 | . . . . . 6 ⊢ (𝑔 = ( I ↾ 𝐵) → ((𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸) ↔ (( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸))) |
| 31 | fveq1 6860 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃))) | |
| 32 | 31 | eqeq2d 2741 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ↔ ( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)))) |
| 33 | eleq1 2817 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠 ∈ 𝐸 ↔ 𝑆 ∈ 𝐸)) | |
| 34 | 32, 33 | anbi12d 632 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((( I ↾ 𝐵) = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸) ↔ (( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑆 ∈ 𝐸))) |
| 35 | 30, 34 | opelopabg 5501 | . . . . 5 ⊢ ((( I ↾ 𝐵) ∈ V ∧ 𝑆 ∈ 𝐸) → (〈( I ↾ 𝐵), 𝑆〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)} ↔ (( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑆 ∈ 𝐸))) |
| 36 | 28, 21, 35 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (〈( I ↾ 𝐵), 𝑆〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)} ↔ (( I ↾ 𝐵) = (𝑆‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑆 ∈ 𝐸))) |
| 37 | 25, 21, 36 | mpbir2and 713 | . . 3 ⊢ (𝜑 → 〈( I ↾ 𝐵), 𝑆〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)}) |
| 38 | eqid 2730 | . . . . . 6 ⊢ ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊) | |
| 39 | 11, 12, 4, 38, 9 | dihvalcqat 41240 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (𝐼‘𝑃) = (((DIsoC‘𝐾)‘𝑊)‘𝑃)) |
| 40 | 6, 13, 39 | syl2anc2 585 | . . . 4 ⊢ (𝜑 → (𝐼‘𝑃) = (((DIsoC‘𝐾)‘𝑊)‘𝑃)) |
| 41 | 11, 12, 4, 8, 15, 22, 38 | dicval 41177 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Atoms‘𝐾) ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘𝑃) = {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)}) |
| 42 | 6, 13, 41 | syl2anc2 585 | . . . 4 ⊢ (𝜑 → (((DIsoC‘𝐾)‘𝑊)‘𝑃) = {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)}) |
| 43 | 40, 42 | eqtr2d 2766 | . . 3 ⊢ (𝜑 → {〈𝑔, 𝑠〉 ∣ (𝑔 = (𝑠‘(℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑃)) ∧ 𝑠 ∈ 𝐸)} = (𝐼‘𝑃)) |
| 44 | 37, 43 | eleqtrd 2831 | . 2 ⊢ (𝜑 → 〈( I ↾ 𝐵), 𝑆〉 ∈ (𝐼‘𝑃)) |
| 45 | 20 | simprd 495 | . . 3 ⊢ (𝜑 → 𝑆 ≠ 𝑂) |
| 46 | dihp.o | . . . . . . . 8 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 47 | 14, 4, 15, 5, 1, 46 | dvh0g 41112 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝑈) = 〈( I ↾ 𝐵), 𝑂〉) |
| 48 | 6, 47 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑈) = 〈( I ↾ 𝐵), 𝑂〉) |
| 49 | 48 | eqeq2d 2741 | . . . . 5 ⊢ (𝜑 → (〈( I ↾ 𝐵), 𝑆〉 = (0g‘𝑈) ↔ 〈( I ↾ 𝐵), 𝑆〉 = 〈( I ↾ 𝐵), 𝑂〉)) |
| 50 | 26, 27 | ax-mp 5 | . . . . . . 7 ⊢ ( I ↾ 𝐵) ∈ V |
| 51 | 15 | fvexi 6875 | . . . . . . . . 9 ⊢ 𝑇 ∈ V |
| 52 | 51 | mptex 7200 | . . . . . . . 8 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
| 53 | 46, 52 | eqeltri 2825 | . . . . . . 7 ⊢ 𝑂 ∈ V |
| 54 | 50, 53 | opth2 5443 | . . . . . 6 ⊢ (〈( I ↾ 𝐵), 𝑆〉 = 〈( I ↾ 𝐵), 𝑂〉 ↔ (( I ↾ 𝐵) = ( I ↾ 𝐵) ∧ 𝑆 = 𝑂)) |
| 55 | 54 | simprbi 496 | . . . . 5 ⊢ (〈( I ↾ 𝐵), 𝑆〉 = 〈( I ↾ 𝐵), 𝑂〉 → 𝑆 = 𝑂) |
| 56 | 49, 55 | biimtrdi 253 | . . . 4 ⊢ (𝜑 → (〈( I ↾ 𝐵), 𝑆〉 = (0g‘𝑈) → 𝑆 = 𝑂)) |
| 57 | 56 | necon3d 2947 | . . 3 ⊢ (𝜑 → (𝑆 ≠ 𝑂 → 〈( I ↾ 𝐵), 𝑆〉 ≠ (0g‘𝑈))) |
| 58 | 45, 57 | mpd 15 | . 2 ⊢ (𝜑 → 〈( I ↾ 𝐵), 𝑆〉 ≠ (0g‘𝑈)) |
| 59 | 1, 2, 3, 7, 10, 44, 58 | lsatel 39005 | 1 ⊢ (𝜑 → (𝐼‘𝑃) = (𝑁‘{〈( I ↾ 𝐵), 𝑆〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 {csn 4592 〈cop 4598 class class class wbr 5110 {copab 5172 ↦ cmpt 5191 I cid 5535 ↾ cres 5643 ‘cfv 6514 ℩crio 7346 Basecbs 17186 lecple 17234 occoc 17235 0gc0g 17409 LSpanclspn 20884 LSAtomsclsa 38974 Atomscatm 39263 HLchlt 39350 LHypclh 39985 LTrncltrn 40102 TEndoctendo 40753 DVecHcdvh 41079 DIsoCcdic 41173 DIsoHcdih 41229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-undef 8255 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-0g 17411 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cntz 19256 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lvec 21017 df-lsatoms 38976 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 df-tendo 40756 df-edring 40758 df-disoa 41030 df-dvech 41080 df-dib 41140 df-dic 41174 df-dih 41230 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |