| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1sublt | Structured version Visualization version GIF version | ||
| Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| deg1sublt.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1sublt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1sublt.b | ⊢ 𝐵 = (Base‘𝑃) |
| deg1sublt.m | ⊢ − = (-g‘𝑃) |
| deg1sublt.l | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| deg1sublt.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| deg1sublt.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| deg1sublt.fd | ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) |
| deg1sublt.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| deg1sublt.gd | ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) |
| deg1sublt.a | ⊢ 𝐴 = (coe1‘𝐹) |
| deg1sublt.c | ⊢ 𝐶 = (coe1‘𝐺) |
| deg1sublt.eq | ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) |
| Ref | Expression |
|---|---|
| deg1sublt | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1sublt.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 2 | deg1sublt.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | eqid 2729 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 4 | deg1sublt.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | eqid 2729 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | eqid 2729 | . . . 4 ⊢ (coe1‘(𝐹 − 𝐺)) = (coe1‘(𝐹 − 𝐺)) | |
| 7 | deg1sublt.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | 2 | ply1ring 22130 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 9 | ringgrp 20123 | . . . . . 6 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 11 | deg1sublt.fb | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 12 | deg1sublt.gb | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 13 | deg1sublt.m | . . . . . 6 ⊢ − = (-g‘𝑃) | |
| 14 | 4, 13 | grpsubcl 18899 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) ∈ 𝐵) |
| 15 | 10, 11, 12, 14 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐹 − 𝐺) ∈ 𝐵) |
| 16 | deg1sublt.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 17 | eqid 2729 | . . . . . . 7 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 18 | 2, 4, 13, 17 | coe1subfv 22150 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝐿 ∈ ℕ0) → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
| 19 | 7, 11, 12, 16, 18 | syl31anc 1375 | . . . . 5 ⊢ (𝜑 → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
| 20 | deg1sublt.eq | . . . . . 6 ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) | |
| 21 | 20 | oveq1d 7364 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
| 22 | ringgrp 20123 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 23 | 7, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 24 | eqid 2729 | . . . . . . . . 9 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
| 25 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 26 | 24, 4, 2, 25 | coe1f 22094 | . . . . . . . 8 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 28 | 27, 16 | ffvelcdmd 7019 | . . . . . 6 ⊢ (𝜑 → ((coe1‘𝐺)‘𝐿) ∈ (Base‘𝑅)) |
| 29 | 25, 5, 17 | grpsubid 18903 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ ((coe1‘𝐺)‘𝐿) ∈ (Base‘𝑅)) → (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (0g‘𝑅)) |
| 30 | 23, 28, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (0g‘𝑅)) |
| 31 | 19, 21, 30 | 3eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (0g‘𝑅)) |
| 32 | 1, 2, 3, 4, 5, 6, 7, 15, 16, 31 | deg1ldgn 25996 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≠ 𝐿) |
| 33 | 32 | neneqd 2930 | . 2 ⊢ (𝜑 → ¬ (𝐷‘(𝐹 − 𝐺)) = 𝐿) |
| 34 | 1, 2, 4 | deg1xrcl 25985 | . . . . 5 ⊢ ((𝐹 − 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 − 𝐺)) ∈ ℝ*) |
| 35 | 15, 34 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ∈ ℝ*) |
| 36 | 1, 2, 4 | deg1xrcl 25985 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈ ℝ*) |
| 37 | 12, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ*) |
| 38 | 1, 2, 4 | deg1xrcl 25985 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) |
| 39 | 11, 38 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
| 40 | 37, 39 | ifcld 4523 | . . . 4 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ∈ ℝ*) |
| 41 | 16 | nn0red 12446 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 42 | 41 | rexrd 11165 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
| 43 | 2, 1, 7, 4, 13, 11, 12 | deg1suble 26010 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
| 44 | deg1sublt.fd | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) | |
| 45 | deg1sublt.gd | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) | |
| 46 | xrmaxle 13085 | . . . . . 6 ⊢ (((𝐷‘𝐹) ∈ ℝ* ∧ (𝐷‘𝐺) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) | |
| 47 | 39, 37, 42, 46 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) |
| 48 | 44, 45, 47 | mpbir2and 713 | . . . 4 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿) |
| 49 | 35, 40, 42, 43, 48 | xrletrd 13064 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ 𝐿) |
| 50 | xrleloe 13046 | . . . 4 ⊢ (((𝐷‘(𝐹 − 𝐺)) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → ((𝐷‘(𝐹 − 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿))) | |
| 51 | 35, 42, 50 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐷‘(𝐹 − 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿))) |
| 52 | 49, 51 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿)) |
| 53 | orel2 890 | . 2 ⊢ (¬ (𝐷‘(𝐹 − 𝐺)) = 𝐿 → (((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿) → (𝐷‘(𝐹 − 𝐺)) < 𝐿)) | |
| 54 | 33, 52, 53 | sylc 65 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ifcif 4476 class class class wbr 5092 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 ℕ0cn0 12384 Basecbs 17120 0gc0g 17343 Grpcgrp 18812 -gcsg 18814 Ringcrg 20118 Poly1cpl1 22059 coe1cco1 22060 deg1cdg1 25957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-lmod 20765 df-lss 20835 df-cnfld 21262 df-psr 21816 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-ply1 22064 df-coe1 22065 df-mdeg 25958 df-deg1 25959 |
| This theorem is referenced by: ply1divex 26040 deg1submon1p 26056 hbtlem5 43105 |
| Copyright terms: Public domain | W3C validator |