MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1sublt Structured version   Visualization version   GIF version

Theorem deg1sublt 26149
Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
deg1sublt.d 𝐷 = (deg1𝑅)
deg1sublt.p 𝑃 = (Poly1𝑅)
deg1sublt.b 𝐵 = (Base‘𝑃)
deg1sublt.m = (-g𝑃)
deg1sublt.l (𝜑𝐿 ∈ ℕ0)
deg1sublt.r (𝜑𝑅 ∈ Ring)
deg1sublt.fb (𝜑𝐹𝐵)
deg1sublt.fd (𝜑 → (𝐷𝐹) ≤ 𝐿)
deg1sublt.gb (𝜑𝐺𝐵)
deg1sublt.gd (𝜑 → (𝐷𝐺) ≤ 𝐿)
deg1sublt.a 𝐴 = (coe1𝐹)
deg1sublt.c 𝐶 = (coe1𝐺)
deg1sublt.eq (𝜑 → ((coe1𝐹)‘𝐿) = ((coe1𝐺)‘𝐿))
Assertion
Ref Expression
deg1sublt (𝜑 → (𝐷‘(𝐹 𝐺)) < 𝐿)

Proof of Theorem deg1sublt
StepHypRef Expression
1 deg1sublt.d . . . 4 𝐷 = (deg1𝑅)
2 deg1sublt.p . . . 4 𝑃 = (Poly1𝑅)
3 eqid 2737 . . . 4 (0g𝑃) = (0g𝑃)
4 deg1sublt.b . . . 4 𝐵 = (Base‘𝑃)
5 eqid 2737 . . . 4 (0g𝑅) = (0g𝑅)
6 eqid 2737 . . . 4 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
7 deg1sublt.r . . . 4 (𝜑𝑅 ∈ Ring)
82ply1ring 22249 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9 ringgrp 20235 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
107, 8, 93syl 18 . . . . 5 (𝜑𝑃 ∈ Grp)
11 deg1sublt.fb . . . . 5 (𝜑𝐹𝐵)
12 deg1sublt.gb . . . . 5 (𝜑𝐺𝐵)
13 deg1sublt.m . . . . . 6 = (-g𝑃)
144, 13grpsubcl 19038 . . . . 5 ((𝑃 ∈ Grp ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
1510, 11, 12, 14syl3anc 1373 . . . 4 (𝜑 → (𝐹 𝐺) ∈ 𝐵)
16 deg1sublt.l . . . 4 (𝜑𝐿 ∈ ℕ0)
17 eqid 2737 . . . . . . 7 (-g𝑅) = (-g𝑅)
182, 4, 13, 17coe1subfv 22269 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝐿 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝐿) = (((coe1𝐹)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)))
197, 11, 12, 16, 18syl31anc 1375 . . . . 5 (𝜑 → ((coe1‘(𝐹 𝐺))‘𝐿) = (((coe1𝐹)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)))
20 deg1sublt.eq . . . . . 6 (𝜑 → ((coe1𝐹)‘𝐿) = ((coe1𝐺)‘𝐿))
2120oveq1d 7446 . . . . 5 (𝜑 → (((coe1𝐹)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)) = (((coe1𝐺)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)))
22 ringgrp 20235 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
237, 22syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
24 eqid 2737 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
25 eqid 2737 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
2624, 4, 2, 25coe1f 22213 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
2712, 26syl 17 . . . . . . 7 (𝜑 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
2827, 16ffvelcdmd 7105 . . . . . 6 (𝜑 → ((coe1𝐺)‘𝐿) ∈ (Base‘𝑅))
2925, 5, 17grpsubid 19042 . . . . . 6 ((𝑅 ∈ Grp ∧ ((coe1𝐺)‘𝐿) ∈ (Base‘𝑅)) → (((coe1𝐺)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)) = (0g𝑅))
3023, 28, 29syl2anc 584 . . . . 5 (𝜑 → (((coe1𝐺)‘𝐿)(-g𝑅)((coe1𝐺)‘𝐿)) = (0g𝑅))
3119, 21, 303eqtrd 2781 . . . 4 (𝜑 → ((coe1‘(𝐹 𝐺))‘𝐿) = (0g𝑅))
321, 2, 3, 4, 5, 6, 7, 15, 16, 31deg1ldgn 26132 . . 3 (𝜑 → (𝐷‘(𝐹 𝐺)) ≠ 𝐿)
3332neneqd 2945 . 2 (𝜑 → ¬ (𝐷‘(𝐹 𝐺)) = 𝐿)
341, 2, 4deg1xrcl 26121 . . . . 5 ((𝐹 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 𝐺)) ∈ ℝ*)
3515, 34syl 17 . . . 4 (𝜑 → (𝐷‘(𝐹 𝐺)) ∈ ℝ*)
361, 2, 4deg1xrcl 26121 . . . . . 6 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
3712, 36syl 17 . . . . 5 (𝜑 → (𝐷𝐺) ∈ ℝ*)
381, 2, 4deg1xrcl 26121 . . . . . 6 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
3911, 38syl 17 . . . . 5 (𝜑 → (𝐷𝐹) ∈ ℝ*)
4037, 39ifcld 4572 . . . 4 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ∈ ℝ*)
4116nn0red 12588 . . . . 5 (𝜑𝐿 ∈ ℝ)
4241rexrd 11311 . . . 4 (𝜑𝐿 ∈ ℝ*)
432, 1, 7, 4, 13, 11, 12deg1suble 26146 . . . 4 (𝜑 → (𝐷‘(𝐹 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
44 deg1sublt.fd . . . . 5 (𝜑 → (𝐷𝐹) ≤ 𝐿)
45 deg1sublt.gd . . . . 5 (𝜑 → (𝐷𝐺) ≤ 𝐿)
46 xrmaxle 13225 . . . . . 6 (((𝐷𝐹) ∈ ℝ* ∧ (𝐷𝐺) ∈ ℝ*𝐿 ∈ ℝ*) → (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ≤ 𝐿 ↔ ((𝐷𝐹) ≤ 𝐿 ∧ (𝐷𝐺) ≤ 𝐿)))
4739, 37, 42, 46syl3anc 1373 . . . . 5 (𝜑 → (if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ≤ 𝐿 ↔ ((𝐷𝐹) ≤ 𝐿 ∧ (𝐷𝐺) ≤ 𝐿)))
4844, 45, 47mpbir2and 713 . . . 4 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) ≤ 𝐿)
4935, 40, 42, 43, 48xrletrd 13204 . . 3 (𝜑 → (𝐷‘(𝐹 𝐺)) ≤ 𝐿)
50 xrleloe 13186 . . . 4 (((𝐷‘(𝐹 𝐺)) ∈ ℝ*𝐿 ∈ ℝ*) → ((𝐷‘(𝐹 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 𝐺)) = 𝐿)))
5135, 42, 50syl2anc 584 . . 3 (𝜑 → ((𝐷‘(𝐹 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 𝐺)) = 𝐿)))
5249, 51mpbid 232 . 2 (𝜑 → ((𝐷‘(𝐹 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 𝐺)) = 𝐿))
53 orel2 891 . 2 (¬ (𝐷‘(𝐹 𝐺)) = 𝐿 → (((𝐷‘(𝐹 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 𝐺)) = 𝐿) → (𝐷‘(𝐹 𝐺)) < 𝐿))
5433, 52, 53sylc 65 1 (𝜑 → (𝐷‘(𝐹 𝐺)) < 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  ifcif 4525   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  *cxr 11294   < clt 11295  cle 11296  0cn0 12526  Basecbs 17247  0gc0g 17484  Grpcgrp 18951  -gcsg 18953  Ringcrg 20230  Poly1cpl1 22178  coe1cco1 22179  deg1cdg1 26093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-lmod 20860  df-lss 20930  df-cnfld 21365  df-psr 21929  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-ply1 22183  df-coe1 22184  df-mdeg 26094  df-deg1 26095
This theorem is referenced by:  ply1divex  26176  deg1submon1p  26192  hbtlem5  43140
  Copyright terms: Public domain W3C validator