![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1sublt | Structured version Visualization version GIF version |
Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
deg1sublt.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1sublt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1sublt.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1sublt.m | ⊢ − = (-g‘𝑃) |
deg1sublt.l | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
deg1sublt.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1sublt.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1sublt.fd | ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) |
deg1sublt.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1sublt.gd | ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) |
deg1sublt.a | ⊢ 𝐴 = (coe1‘𝐹) |
deg1sublt.c | ⊢ 𝐶 = (coe1‘𝐺) |
deg1sublt.eq | ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) |
Ref | Expression |
---|---|
deg1sublt | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1sublt.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | deg1sublt.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | eqid 2732 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
4 | deg1sublt.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | eqid 2732 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | eqid 2732 | . . . 4 ⊢ (coe1‘(𝐹 − 𝐺)) = (coe1‘(𝐹 − 𝐺)) | |
7 | deg1sublt.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | 2 | ply1ring 21769 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
9 | ringgrp 20060 | . . . . . 6 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
10 | 7, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Grp) |
11 | deg1sublt.fb | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
12 | deg1sublt.gb | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
13 | deg1sublt.m | . . . . . 6 ⊢ − = (-g‘𝑃) | |
14 | 4, 13 | grpsubcl 18902 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) ∈ 𝐵) |
15 | 10, 11, 12, 14 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐹 − 𝐺) ∈ 𝐵) |
16 | deg1sublt.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
17 | eqid 2732 | . . . . . . 7 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
18 | 2, 4, 13, 17 | coe1subfv 21787 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝐿 ∈ ℕ0) → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
19 | 7, 11, 12, 16, 18 | syl31anc 1373 | . . . . 5 ⊢ (𝜑 → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
20 | deg1sublt.eq | . . . . . 6 ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) | |
21 | 20 | oveq1d 7423 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
22 | ringgrp 20060 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
23 | 7, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
24 | eqid 2732 | . . . . . . . . 9 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
25 | eqid 2732 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
26 | 24, 4, 2, 25 | coe1f 21734 | . . . . . . . 8 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
28 | 27, 16 | ffvelcdmd 7087 | . . . . . 6 ⊢ (𝜑 → ((coe1‘𝐺)‘𝐿) ∈ (Base‘𝑅)) |
29 | 25, 5, 17 | grpsubid 18906 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ ((coe1‘𝐺)‘𝐿) ∈ (Base‘𝑅)) → (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (0g‘𝑅)) |
30 | 23, 28, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (0g‘𝑅)) |
31 | 19, 21, 30 | 3eqtrd 2776 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (0g‘𝑅)) |
32 | 1, 2, 3, 4, 5, 6, 7, 15, 16, 31 | deg1ldgn 25610 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≠ 𝐿) |
33 | 32 | neneqd 2945 | . 2 ⊢ (𝜑 → ¬ (𝐷‘(𝐹 − 𝐺)) = 𝐿) |
34 | 1, 2, 4 | deg1xrcl 25599 | . . . . 5 ⊢ ((𝐹 − 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 − 𝐺)) ∈ ℝ*) |
35 | 15, 34 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ∈ ℝ*) |
36 | 1, 2, 4 | deg1xrcl 25599 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈ ℝ*) |
37 | 12, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ*) |
38 | 1, 2, 4 | deg1xrcl 25599 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) |
39 | 11, 38 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
40 | 37, 39 | ifcld 4574 | . . . 4 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ∈ ℝ*) |
41 | 16 | nn0red 12532 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
42 | 41 | rexrd 11263 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
43 | 2, 1, 7, 4, 13, 11, 12 | deg1suble 25624 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
44 | deg1sublt.fd | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) | |
45 | deg1sublt.gd | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) | |
46 | xrmaxle 13161 | . . . . . 6 ⊢ (((𝐷‘𝐹) ∈ ℝ* ∧ (𝐷‘𝐺) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) | |
47 | 39, 37, 42, 46 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) |
48 | 44, 45, 47 | mpbir2and 711 | . . . 4 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿) |
49 | 35, 40, 42, 43, 48 | xrletrd 13140 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ 𝐿) |
50 | xrleloe 13122 | . . . 4 ⊢ (((𝐷‘(𝐹 − 𝐺)) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → ((𝐷‘(𝐹 − 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿))) | |
51 | 35, 42, 50 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐷‘(𝐹 − 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿))) |
52 | 49, 51 | mpbid 231 | . 2 ⊢ (𝜑 → ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿)) |
53 | orel2 889 | . 2 ⊢ (¬ (𝐷‘(𝐹 − 𝐺)) = 𝐿 → (((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿) → (𝐷‘(𝐹 − 𝐺)) < 𝐿)) | |
54 | 33, 52, 53 | sylc 65 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ifcif 4528 class class class wbr 5148 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ℝ*cxr 11246 < clt 11247 ≤ cle 11248 ℕ0cn0 12471 Basecbs 17143 0gc0g 17384 Grpcgrp 18818 -gcsg 18820 Ringcrg 20055 Poly1cpl1 21700 coe1cco1 21701 deg1 cdg1 25568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-ofr 7670 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-ghm 19089 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-subrg 20316 df-lmod 20472 df-lss 20542 df-rlreg 20898 df-cnfld 20944 df-psr 21461 df-mpl 21463 df-opsr 21465 df-psr1 21703 df-ply1 21705 df-coe1 21706 df-mdeg 25569 df-deg1 25570 |
This theorem is referenced by: ply1divex 25653 deg1submon1p 25669 hbtlem5 41860 |
Copyright terms: Public domain | W3C validator |