Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1sublt | Structured version Visualization version GIF version |
Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
deg1sublt.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1sublt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1sublt.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1sublt.m | ⊢ − = (-g‘𝑃) |
deg1sublt.l | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
deg1sublt.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1sublt.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1sublt.fd | ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) |
deg1sublt.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
deg1sublt.gd | ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) |
deg1sublt.a | ⊢ 𝐴 = (coe1‘𝐹) |
deg1sublt.c | ⊢ 𝐶 = (coe1‘𝐺) |
deg1sublt.eq | ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) |
Ref | Expression |
---|---|
deg1sublt | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1sublt.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | deg1sublt.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | eqid 2738 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
4 | deg1sublt.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
5 | eqid 2738 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | eqid 2738 | . . . 4 ⊢ (coe1‘(𝐹 − 𝐺)) = (coe1‘(𝐹 − 𝐺)) | |
7 | deg1sublt.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | 2 | ply1ring 21329 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
9 | ringgrp 19703 | . . . . . 6 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
10 | 7, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Grp) |
11 | deg1sublt.fb | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
12 | deg1sublt.gb | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
13 | deg1sublt.m | . . . . . 6 ⊢ − = (-g‘𝑃) | |
14 | 4, 13 | grpsubcl 18570 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) ∈ 𝐵) |
15 | 10, 11, 12, 14 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝐹 − 𝐺) ∈ 𝐵) |
16 | deg1sublt.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
17 | eqid 2738 | . . . . . . 7 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
18 | 2, 4, 13, 17 | coe1subfv 21347 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝐿 ∈ ℕ0) → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
19 | 7, 11, 12, 16, 18 | syl31anc 1371 | . . . . 5 ⊢ (𝜑 → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
20 | deg1sublt.eq | . . . . . 6 ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) | |
21 | 20 | oveq1d 7270 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
22 | ringgrp 19703 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
23 | 7, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
24 | eqid 2738 | . . . . . . . . 9 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
25 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
26 | 24, 4, 2, 25 | coe1f 21292 | . . . . . . . 8 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
28 | 27, 16 | ffvelrnd 6944 | . . . . . 6 ⊢ (𝜑 → ((coe1‘𝐺)‘𝐿) ∈ (Base‘𝑅)) |
29 | 25, 5, 17 | grpsubid 18574 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ ((coe1‘𝐺)‘𝐿) ∈ (Base‘𝑅)) → (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (0g‘𝑅)) |
30 | 23, 28, 29 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (0g‘𝑅)) |
31 | 19, 21, 30 | 3eqtrd 2782 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (0g‘𝑅)) |
32 | 1, 2, 3, 4, 5, 6, 7, 15, 16, 31 | deg1ldgn 25163 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≠ 𝐿) |
33 | 32 | neneqd 2947 | . 2 ⊢ (𝜑 → ¬ (𝐷‘(𝐹 − 𝐺)) = 𝐿) |
34 | 1, 2, 4 | deg1xrcl 25152 | . . . . 5 ⊢ ((𝐹 − 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 − 𝐺)) ∈ ℝ*) |
35 | 15, 34 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ∈ ℝ*) |
36 | 1, 2, 4 | deg1xrcl 25152 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈ ℝ*) |
37 | 12, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ*) |
38 | 1, 2, 4 | deg1xrcl 25152 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) |
39 | 11, 38 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
40 | 37, 39 | ifcld 4502 | . . . 4 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ∈ ℝ*) |
41 | 16 | nn0red 12224 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
42 | 41 | rexrd 10956 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
43 | 2, 1, 7, 4, 13, 11, 12 | deg1suble 25177 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
44 | deg1sublt.fd | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) | |
45 | deg1sublt.gd | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) | |
46 | xrmaxle 12846 | . . . . . 6 ⊢ (((𝐷‘𝐹) ∈ ℝ* ∧ (𝐷‘𝐺) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) | |
47 | 39, 37, 42, 46 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) |
48 | 44, 45, 47 | mpbir2and 709 | . . . 4 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿) |
49 | 35, 40, 42, 43, 48 | xrletrd 12825 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ 𝐿) |
50 | xrleloe 12807 | . . . 4 ⊢ (((𝐷‘(𝐹 − 𝐺)) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → ((𝐷‘(𝐹 − 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿))) | |
51 | 35, 42, 50 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝐷‘(𝐹 − 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿))) |
52 | 49, 51 | mpbid 231 | . 2 ⊢ (𝜑 → ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿)) |
53 | orel2 887 | . 2 ⊢ (¬ (𝐷‘(𝐹 − 𝐺)) = 𝐿 → (((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿) → (𝐷‘(𝐹 − 𝐺)) < 𝐿)) | |
54 | 33, 52, 53 | sylc 65 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 ℕ0cn0 12163 Basecbs 16840 0gc0g 17067 Grpcgrp 18492 -gcsg 18494 Ringcrg 19698 Poly1cpl1 21258 coe1cco1 21259 deg1 cdg1 25121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-subrg 19937 df-lmod 20040 df-lss 20109 df-rlreg 20467 df-cnfld 20511 df-psr 21022 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-ply1 21263 df-coe1 21264 df-mdeg 25122 df-deg1 25123 |
This theorem is referenced by: ply1divex 25206 deg1submon1p 25222 hbtlem5 40869 |
Copyright terms: Public domain | W3C validator |