| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1sublt | Structured version Visualization version GIF version | ||
| Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| deg1sublt.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1sublt.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1sublt.b | ⊢ 𝐵 = (Base‘𝑃) |
| deg1sublt.m | ⊢ − = (-g‘𝑃) |
| deg1sublt.l | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| deg1sublt.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| deg1sublt.fb | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| deg1sublt.fd | ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) |
| deg1sublt.gb | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| deg1sublt.gd | ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) |
| deg1sublt.a | ⊢ 𝐴 = (coe1‘𝐹) |
| deg1sublt.c | ⊢ 𝐶 = (coe1‘𝐺) |
| deg1sublt.eq | ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) |
| Ref | Expression |
|---|---|
| deg1sublt | ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1sublt.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 2 | deg1sublt.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | eqid 2731 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 4 | deg1sublt.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | eqid 2731 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | eqid 2731 | . . . 4 ⊢ (coe1‘(𝐹 − 𝐺)) = (coe1‘(𝐹 − 𝐺)) | |
| 7 | deg1sublt.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 8 | 2 | ply1ring 22160 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 9 | ringgrp 20156 | . . . . . 6 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
| 10 | 7, 8, 9 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 11 | deg1sublt.fb | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 12 | deg1sublt.gb | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 13 | deg1sublt.m | . . . . . 6 ⊢ − = (-g‘𝑃) | |
| 14 | 4, 13 | grpsubcl 18933 | . . . . 5 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) ∈ 𝐵) |
| 15 | 10, 11, 12, 14 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐹 − 𝐺) ∈ 𝐵) |
| 16 | deg1sublt.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 17 | eqid 2731 | . . . . . . 7 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 18 | 2, 4, 13, 17 | coe1subfv 22180 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝐿 ∈ ℕ0) → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
| 19 | 7, 11, 12, 16, 18 | syl31anc 1375 | . . . . 5 ⊢ (𝜑 → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
| 20 | deg1sublt.eq | . . . . . 6 ⊢ (𝜑 → ((coe1‘𝐹)‘𝐿) = ((coe1‘𝐺)‘𝐿)) | |
| 21 | 20 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐹)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿))) |
| 22 | ringgrp 20156 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 23 | 7, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 24 | eqid 2731 | . . . . . . . . 9 ⊢ (coe1‘𝐺) = (coe1‘𝐺) | |
| 25 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 26 | 24, 4, 2, 25 | coe1f 22124 | . . . . . . . 8 ⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 28 | 27, 16 | ffvelcdmd 7018 | . . . . . 6 ⊢ (𝜑 → ((coe1‘𝐺)‘𝐿) ∈ (Base‘𝑅)) |
| 29 | 25, 5, 17 | grpsubid 18937 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ ((coe1‘𝐺)‘𝐿) ∈ (Base‘𝑅)) → (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (0g‘𝑅)) |
| 30 | 23, 28, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (((coe1‘𝐺)‘𝐿)(-g‘𝑅)((coe1‘𝐺)‘𝐿)) = (0g‘𝑅)) |
| 31 | 19, 21, 30 | 3eqtrd 2770 | . . . 4 ⊢ (𝜑 → ((coe1‘(𝐹 − 𝐺))‘𝐿) = (0g‘𝑅)) |
| 32 | 1, 2, 3, 4, 5, 6, 7, 15, 16, 31 | deg1ldgn 26025 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≠ 𝐿) |
| 33 | 32 | neneqd 2933 | . 2 ⊢ (𝜑 → ¬ (𝐷‘(𝐹 − 𝐺)) = 𝐿) |
| 34 | 1, 2, 4 | deg1xrcl 26014 | . . . . 5 ⊢ ((𝐹 − 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 − 𝐺)) ∈ ℝ*) |
| 35 | 15, 34 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ∈ ℝ*) |
| 36 | 1, 2, 4 | deg1xrcl 26014 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈ ℝ*) |
| 37 | 12, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ∈ ℝ*) |
| 38 | 1, 2, 4 | deg1xrcl 26014 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈ ℝ*) |
| 39 | 11, 38 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℝ*) |
| 40 | 37, 39 | ifcld 4519 | . . . 4 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ∈ ℝ*) |
| 41 | 16 | nn0red 12443 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 42 | 41 | rexrd 11162 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
| 43 | 2, 1, 7, 4, 13, 11, 12 | deg1suble 26039 | . . . 4 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
| 44 | deg1sublt.fd | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐿) | |
| 45 | deg1sublt.gd | . . . . 5 ⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐿) | |
| 46 | xrmaxle 13082 | . . . . . 6 ⊢ (((𝐷‘𝐹) ∈ ℝ* ∧ (𝐷‘𝐺) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) | |
| 47 | 39, 37, 42, 46 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿 ↔ ((𝐷‘𝐹) ≤ 𝐿 ∧ (𝐷‘𝐺) ≤ 𝐿))) |
| 48 | 44, 45, 47 | mpbir2and 713 | . . . 4 ⊢ (𝜑 → if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹)) ≤ 𝐿) |
| 49 | 35, 40, 42, 43, 48 | xrletrd 13061 | . . 3 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) ≤ 𝐿) |
| 50 | xrleloe 13043 | . . . 4 ⊢ (((𝐷‘(𝐹 − 𝐺)) ∈ ℝ* ∧ 𝐿 ∈ ℝ*) → ((𝐷‘(𝐹 − 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿))) | |
| 51 | 35, 42, 50 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐷‘(𝐹 − 𝐺)) ≤ 𝐿 ↔ ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿))) |
| 52 | 49, 51 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿)) |
| 53 | orel2 890 | . 2 ⊢ (¬ (𝐷‘(𝐹 − 𝐺)) = 𝐿 → (((𝐷‘(𝐹 − 𝐺)) < 𝐿 ∨ (𝐷‘(𝐹 − 𝐺)) = 𝐿) → (𝐷‘(𝐹 − 𝐺)) < 𝐿)) | |
| 54 | 33, 52, 53 | sylc 65 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 − 𝐺)) < 𝐿) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ifcif 4472 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 ℕ0cn0 12381 Basecbs 17120 0gc0g 17343 Grpcgrp 18846 -gcsg 18848 Ringcrg 20151 Poly1cpl1 22089 coe1cco1 22090 deg1cdg1 25986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-lmod 20795 df-lss 20865 df-cnfld 21292 df-psr 21846 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-ply1 22094 df-coe1 22095 df-mdeg 25987 df-deg1 25988 |
| This theorem is referenced by: ply1divex 26069 deg1submon1p 26085 hbtlem5 43231 |
| Copyright terms: Public domain | W3C validator |