Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2lem2 Structured version   Visualization version   GIF version

Theorem unbdqndv2lem2 33844
Description: Lemma for unbdqndv2 33845. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2lem2.g 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
unbdqndv2lem2.w 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉)
unbdqndv2lem2.x (𝜑𝑋 ⊆ ℝ)
unbdqndv2lem2.f (𝜑𝐹:𝑋⟶ℂ)
unbdqndv2lem2.a (𝜑𝐴𝑋)
unbdqndv2lem2.b (𝜑𝐵 ∈ ℝ+)
unbdqndv2lem2.d (𝜑𝐷 ∈ ℝ+)
unbdqndv2lem2.u (𝜑𝑈𝑋)
unbdqndv2lem2.v (𝜑𝑉𝑋)
unbdqndv2lem2.1 (𝜑𝑈𝑉)
unbdqndv2lem2.2 (𝜑𝑈𝐴)
unbdqndv2lem2.3 (𝜑𝐴𝑉)
unbdqndv2lem2.4 (𝜑 → (𝑉𝑈) < 𝐷)
unbdqndv2lem2.5 (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
Assertion
Ref Expression
unbdqndv2lem2 (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐺(𝑧)   𝑊(𝑧)

Proof of Theorem unbdqndv2lem2
StepHypRef Expression
1 unbdqndv2lem2.w . . . . . 6 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉)
21a1i 11 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉))
3 iftrue 4473 . . . . . 6 ((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) → if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉) = 𝑈)
43adantl 484 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉) = 𝑈)
52, 4eqtrd 2856 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = 𝑈)
6 unbdqndv2lem2.u . . . . . . 7 (𝜑𝑈𝑋)
76adantr 483 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈𝑋)
8 simplr 767 . . . . . . . . 9 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
9 fveq2 6665 . . . . . . . . . . . . . . 15 (𝑈 = 𝐴 → (𝐹𝑈) = (𝐹𝐴))
109eqcomd 2827 . . . . . . . . . . . . . 14 (𝑈 = 𝐴 → (𝐹𝐴) = (𝐹𝑈))
1110oveq2d 7166 . . . . . . . . . . . . 13 (𝑈 = 𝐴 → ((𝐹𝑈) − (𝐹𝐴)) = ((𝐹𝑈) − (𝐹𝑈)))
1211fveq2d 6669 . . . . . . . . . . . 12 (𝑈 = 𝐴 → (abs‘((𝐹𝑈) − (𝐹𝐴))) = (abs‘((𝐹𝑈) − (𝐹𝑈))))
1312adantl 484 . . . . . . . . . . 11 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝐴))) = (abs‘((𝐹𝑈) − (𝐹𝑈))))
14 unbdqndv2lem2.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋⟶ℂ)
1514, 6ffvelrnd 6847 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑈) ∈ ℂ)
1615subidd 10979 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑈) − (𝐹𝑈)) = 0)
1716fveq2d 6669 . . . . . . . . . . . . 13 (𝜑 → (abs‘((𝐹𝑈) − (𝐹𝑈))) = (abs‘0))
1817adantr 483 . . . . . . . . . . . 12 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝑈))) = (abs‘0))
19 abs0 14639 . . . . . . . . . . . . 13 (abs‘0) = 0
2019a1i 11 . . . . . . . . . . . 12 ((𝜑𝑈 = 𝐴) → (abs‘0) = 0)
2118, 20eqtrd 2856 . . . . . . . . . . 11 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝑈))) = 0)
2213, 21eqtrd 2856 . . . . . . . . . 10 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝐴))) = 0)
2322adantlr 713 . . . . . . . . 9 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝐴))) = 0)
248, 23breqtrd 5085 . . . . . . . 8 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → (𝐵 · (𝑉𝑈)) ≤ 0)
25 unbdqndv2lem2.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
2625rpred 12425 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
27 unbdqndv2lem2.x . . . . . . . . . . . . . 14 (𝜑𝑋 ⊆ ℝ)
28 unbdqndv2lem2.v . . . . . . . . . . . . . 14 (𝜑𝑉𝑋)
2927, 28sseldd 3968 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℝ)
3027, 6sseldd 3968 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ)
3129, 30resubcld 11062 . . . . . . . . . . . 12 (𝜑 → (𝑉𝑈) ∈ ℝ)
3225rpgt0d 12428 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐵)
33 unbdqndv2lem2.a . . . . . . . . . . . . . . . 16 (𝜑𝐴𝑋)
3427, 33sseldd 3968 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
35 unbdqndv2lem2.2 . . . . . . . . . . . . . . 15 (𝜑𝑈𝐴)
36 unbdqndv2lem2.3 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑉)
3730, 34, 29, 35, 36letrd 10791 . . . . . . . . . . . . . 14 (𝜑𝑈𝑉)
38 unbdqndv2lem2.1 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
3938necomd 3071 . . . . . . . . . . . . . 14 (𝜑𝑉𝑈)
4030, 29, 37, 39leneltd 10788 . . . . . . . . . . . . 13 (𝜑𝑈 < 𝑉)
4130, 29posdifd 11221 . . . . . . . . . . . . 13 (𝜑 → (𝑈 < 𝑉 ↔ 0 < (𝑉𝑈)))
4240, 41mpbid 234 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑉𝑈))
4326, 31, 32, 42mulgt0d 10789 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵 · (𝑉𝑈)))
44 0red 10638 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
4526, 31remulcld 10665 . . . . . . . . . . . 12 (𝜑 → (𝐵 · (𝑉𝑈)) ∈ ℝ)
4644, 45ltnled 10781 . . . . . . . . . . 11 (𝜑 → (0 < (𝐵 · (𝑉𝑈)) ↔ ¬ (𝐵 · (𝑉𝑈)) ≤ 0))
4743, 46mpbid 234 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 · (𝑉𝑈)) ≤ 0)
4847adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (𝑉𝑈)) ≤ 0)
4948adantr 483 . . . . . . . 8 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → ¬ (𝐵 · (𝑉𝑈)) ≤ 0)
5024, 49pm2.65da 815 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ 𝑈 = 𝐴)
5150neqned 3023 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈𝐴)
527, 51jca 514 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝑋𝑈𝐴))
53 eldifsn 4713 . . . . 5 (𝑈 ∈ (𝑋 ∖ {𝐴}) ↔ (𝑈𝑋𝑈𝐴))
5452, 53sylibr 236 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈 ∈ (𝑋 ∖ {𝐴}))
555, 54eqeltrd 2913 . . 3 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 ∈ (𝑋 ∖ {𝐴}))
565oveq1d 7165 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊𝐴) = (𝑈𝐴))
5756fveq2d 6669 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (abs‘(𝑈𝐴)))
5830, 34, 35abssuble0d 14786 . . . . . . 7 (𝜑 → (abs‘(𝑈𝐴)) = (𝐴𝑈))
5958adantr 483 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑈𝐴)) = (𝐴𝑈))
6057, 59eqtrd 2856 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (𝐴𝑈))
6134, 30resubcld 11062 . . . . . . 7 (𝜑 → (𝐴𝑈) ∈ ℝ)
62 unbdqndv2lem2.d . . . . . . . 8 (𝜑𝐷 ∈ ℝ+)
6362rpred 12425 . . . . . . 7 (𝜑𝐷 ∈ ℝ)
6434, 29, 30, 36lesub1dd 11250 . . . . . . 7 (𝜑 → (𝐴𝑈) ≤ (𝑉𝑈))
65 unbdqndv2lem2.4 . . . . . . 7 (𝜑 → (𝑉𝑈) < 𝐷)
6661, 31, 63, 64, 65lelttrd 10792 . . . . . 6 (𝜑 → (𝐴𝑈) < 𝐷)
6766adantr 483 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐴𝑈) < 𝐷)
6860, 67eqbrtrd 5081 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) < 𝐷)
6926, 61remulcld 10665 . . . . . . . 8 (𝜑 → (𝐵 · (𝐴𝑈)) ∈ ℝ)
7069adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝐴𝑈)) ∈ ℝ)
7145adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝑉𝑈)) ∈ ℝ)
7214, 33ffvelrnd 6847 . . . . . . . . . 10 (𝜑 → (𝐹𝐴) ∈ ℂ)
7315, 72subcld 10991 . . . . . . . . 9 (𝜑 → ((𝐹𝑈) − (𝐹𝐴)) ∈ ℂ)
7473abscld 14790 . . . . . . . 8 (𝜑 → (abs‘((𝐹𝑈) − (𝐹𝐴))) ∈ ℝ)
7574adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘((𝐹𝑈) − (𝐹𝐴))) ∈ ℝ)
7644, 26, 32ltled 10782 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
7761, 31, 26, 76, 64lemul2ad 11574 . . . . . . . 8 (𝜑 → (𝐵 · (𝐴𝑈)) ≤ (𝐵 · (𝑉𝑈)))
7877adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝐴𝑈)) ≤ (𝐵 · (𝑉𝑈)))
79 simpr 487 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
8070, 71, 75, 78, 79letrd 10791 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝐴𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
8126adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ∈ ℝ)
8261adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐴𝑈) ∈ ℝ)
8335adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈𝐴)
8451necomd 3071 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐴𝑈)
8583, 84jca 514 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝐴𝐴𝑈))
8630, 34ltlend 10779 . . . . . . . . . . . 12 (𝜑 → (𝑈 < 𝐴 ↔ (𝑈𝐴𝐴𝑈)))
8786adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈 < 𝐴 ↔ (𝑈𝐴𝐴𝑈)))
8885, 87mpbird 259 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈 < 𝐴)
8930, 34posdifd 11221 . . . . . . . . . . 11 (𝜑 → (𝑈 < 𝐴 ↔ 0 < (𝐴𝑈)))
9089adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈 < 𝐴 ↔ 0 < (𝐴𝑈)))
9188, 90mpbid 234 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 0 < (𝐴𝑈))
9282, 91jca 514 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐴𝑈) ∈ ℝ ∧ 0 < (𝐴𝑈)))
93 elrp 12385 . . . . . . . 8 ((𝐴𝑈) ∈ ℝ+ ↔ ((𝐴𝑈) ∈ ℝ ∧ 0 < (𝐴𝑈)))
9492, 93sylibr 236 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐴𝑈) ∈ ℝ+)
9581, 75, 94lemuldivd 12474 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (𝐴𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) ↔ 𝐵 ≤ ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈))))
9680, 95mpbid 234 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
975fveq2d 6669 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (𝐺𝑈))
98 unbdqndv2lem2.g . . . . . . . . . 10 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
99 fveq2 6665 . . . . . . . . . . . 12 (𝑧 = 𝑈 → (𝐹𝑧) = (𝐹𝑈))
10099oveq1d 7165 . . . . . . . . . . 11 (𝑧 = 𝑈 → ((𝐹𝑧) − (𝐹𝐴)) = ((𝐹𝑈) − (𝐹𝐴)))
101 oveq1 7157 . . . . . . . . . . 11 (𝑧 = 𝑈 → (𝑧𝐴) = (𝑈𝐴))
102100, 101oveq12d 7168 . . . . . . . . . 10 (𝑧 = 𝑈 → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) = (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)))
103 ovexd 7185 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)) ∈ V)
10498, 102, 54, 103fvmptd3 6786 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑈) = (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)))
10597, 104eqtrd 2856 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)))
106105fveq2d 6669 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = (abs‘(((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴))))
10773adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐹𝑈) − (𝐹𝐴)) ∈ ℂ)
10830recnd 10663 . . . . . . . . . . 11 (𝜑𝑈 ∈ ℂ)
10934recnd 10663 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
110108, 109subcld 10991 . . . . . . . . . 10 (𝜑 → (𝑈𝐴) ∈ ℂ)
111110adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝐴) ∈ ℂ)
112108adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈 ∈ ℂ)
113109adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐴 ∈ ℂ)
114112, 113, 51subne0d 11000 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝐴) ≠ 0)
115107, 111, 114absdivd 14809 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴))) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (abs‘(𝑈𝐴))))
11659oveq2d 7166 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (abs‘(𝑈𝐴))) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
117115, 116eqtrd 2856 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴))) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
118106, 117eqtrd 2856 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
119118eqcomd 2827 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)) = (abs‘(𝐺𝑊)))
12096, 119breqtrd 5085 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ (abs‘(𝐺𝑊)))
12168, 120jca 514 . . 3 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊))))
12255, 121jca 514 . 2 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
1231a1i 11 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉))
124 simpr 487 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
125124iffalsed 4478 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉) = 𝑉)
126123, 125eqtrd 2856 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = 𝑉)
12728adantr 483 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉𝑋)
12830, 29, 37abssubge0d 14785 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑉𝑈)) = (𝑉𝑈))
129128oveq2d 7166 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · (abs‘(𝑉𝑈))) = (𝐵 · (𝑉𝑈)))
130129breq1d 5069 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) ↔ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
131130adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) ↔ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
132124, 131mtbird 327 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
13314, 28ffvelrnd 6847 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑉) ∈ ℂ)
13431recnd 10663 . . . . . . . . . . . . 13 (𝜑 → (𝑉𝑈) ∈ ℂ)
13544, 42gtned 10769 . . . . . . . . . . . . 13 (𝜑 → (𝑉𝑈) ≠ 0)
136 unbdqndv2lem2.5 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
137133, 15subcld 10991 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐹𝑉) − (𝐹𝑈)) ∈ ℂ)
138137, 134, 135absdivd 14809 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))) = ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (abs‘(𝑉𝑈))))
139128oveq2d 7166 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (abs‘(𝑉𝑈))) = ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
140138, 139eqtrd 2856 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))) = ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
141140eqcomd 2827 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)) = (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))))
142136, 141breqtrd 5085 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝐵) ≤ (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))))
143133, 15, 72, 134, 25, 135, 142unbdqndv2lem1 33843 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ∨ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
144143adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ∨ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
145 orel2 887 . . . . . . . . . . 11 (¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) → (((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ∨ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴)))))
146132, 144, 145sylc 65 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))))
147146adantr 483 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))))
148 fveq2 6665 . . . . . . . . . . . . . . 15 (𝑉 = 𝐴 → (𝐹𝑉) = (𝐹𝐴))
149148oveq1d 7165 . . . . . . . . . . . . . 14 (𝑉 = 𝐴 → ((𝐹𝑉) − (𝐹𝐴)) = ((𝐹𝐴) − (𝐹𝐴)))
150149adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑉 = 𝐴) → ((𝐹𝑉) − (𝐹𝐴)) = ((𝐹𝐴) − (𝐹𝐴)))
15172subidd 10979 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐴) − (𝐹𝐴)) = 0)
152151adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑉 = 𝐴) → ((𝐹𝐴) − (𝐹𝐴)) = 0)
153150, 152eqtrd 2856 . . . . . . . . . . . 12 ((𝜑𝑉 = 𝐴) → ((𝐹𝑉) − (𝐹𝐴)) = 0)
154153fveq2d 6669 . . . . . . . . . . 11 ((𝜑𝑉 = 𝐴) → (abs‘((𝐹𝑉) − (𝐹𝐴))) = (abs‘0))
15519a1i 11 . . . . . . . . . . 11 ((𝜑𝑉 = 𝐴) → (abs‘0) = 0)
156154, 155eqtrd 2856 . . . . . . . . . 10 ((𝜑𝑉 = 𝐴) → (abs‘((𝐹𝑉) − (𝐹𝐴))) = 0)
157156adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → (abs‘((𝐹𝑉) − (𝐹𝐴))) = 0)
158147, 157breqtrd 5085 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
159129breq1d 5069 . . . . . . . . . . 11 (𝜑 → ((𝐵 · (abs‘(𝑉𝑈))) ≤ 0 ↔ (𝐵 · (𝑉𝑈)) ≤ 0))
16047, 159mtbird 327 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
161160adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
162161adantr 483 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
163158, 162pm2.65da 815 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ 𝑉 = 𝐴)
164163neqned 3023 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉𝐴)
165127, 164jca 514 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝑋𝑉𝐴))
166 eldifsn 4713 . . . . 5 (𝑉 ∈ (𝑋 ∖ {𝐴}) ↔ (𝑉𝑋𝑉𝐴))
167165, 166sylibr 236 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉 ∈ (𝑋 ∖ {𝐴}))
168126, 167eqeltrd 2913 . . 3 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 ∈ (𝑋 ∖ {𝐴}))
169126oveq1d 7165 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊𝐴) = (𝑉𝐴))
170169fveq2d 6669 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (abs‘(𝑉𝐴)))
17134, 29, 36abssubge0d 14785 . . . . . . 7 (𝜑 → (abs‘(𝑉𝐴)) = (𝑉𝐴))
172171adantr 483 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑉𝐴)) = (𝑉𝐴))
173170, 172eqtrd 2856 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (𝑉𝐴))
17429, 34resubcld 11062 . . . . . . 7 (𝜑 → (𝑉𝐴) ∈ ℝ)
17530, 34, 29, 35lesub2dd 11251 . . . . . . 7 (𝜑 → (𝑉𝐴) ≤ (𝑉𝑈))
176174, 31, 63, 175, 65lelttrd 10792 . . . . . 6 (𝜑 → (𝑉𝐴) < 𝐷)
177176adantr 483 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝐴) < 𝐷)
178173, 177eqbrtrd 5081 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) < 𝐷)
179171, 174eqeltrd 2913 . . . . . . . . 9 (𝜑 → (abs‘(𝑉𝐴)) ∈ ℝ)
18026, 179remulcld 10665 . . . . . . . 8 (𝜑 → (𝐵 · (abs‘(𝑉𝐴))) ∈ ℝ)
181180adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝐴))) ∈ ℝ)
182129, 45eqeltrd 2913 . . . . . . . 8 (𝜑 → (𝐵 · (abs‘(𝑉𝑈))) ∈ ℝ)
183182adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝑈))) ∈ ℝ)
184133, 72subcld 10991 . . . . . . . . 9 (𝜑 → ((𝐹𝑉) − (𝐹𝐴)) ∈ ℂ)
185184abscld 14790 . . . . . . . 8 (𝜑 → (abs‘((𝐹𝑉) − (𝐹𝐴))) ∈ ℝ)
186185adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘((𝐹𝑉) − (𝐹𝐴))) ∈ ℝ)
187128, 31eqeltrd 2913 . . . . . . . . 9 (𝜑 → (abs‘(𝑉𝑈)) ∈ ℝ)
188175, 171, 1283brtr4d 5091 . . . . . . . . 9 (𝜑 → (abs‘(𝑉𝐴)) ≤ (abs‘(𝑉𝑈)))
189179, 187, 26, 76, 188lemul2ad 11574 . . . . . . . 8 (𝜑 → (𝐵 · (abs‘(𝑉𝐴))) ≤ (𝐵 · (abs‘(𝑉𝑈))))
190189adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝐴))) ≤ (𝐵 · (abs‘(𝑉𝑈))))
191181, 183, 186, 190, 146letrd 10791 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝐴))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))))
19226adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ∈ ℝ)
193174recnd 10663 . . . . . . . . 9 (𝜑 → (𝑉𝐴) ∈ ℂ)
194193adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝐴) ∈ ℂ)
19529recnd 10663 . . . . . . . . . 10 (𝜑𝑉 ∈ ℂ)
196195adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉 ∈ ℂ)
197109adantr 483 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐴 ∈ ℂ)
198196, 197, 164subne0d 11000 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝐴) ≠ 0)
199194, 198absrpcld 14802 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑉𝐴)) ∈ ℝ+)
200192, 186, 199lemuldivd 12474 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (abs‘(𝑉𝐴))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ↔ 𝐵 ≤ ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴)))))
201191, 200mpbid 234 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))))
202126fveq2d 6669 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (𝐺𝑉))
203 fveq2 6665 . . . . . . . . . . . 12 (𝑧 = 𝑉 → (𝐹𝑧) = (𝐹𝑉))
204203oveq1d 7165 . . . . . . . . . . 11 (𝑧 = 𝑉 → ((𝐹𝑧) − (𝐹𝐴)) = ((𝐹𝑉) − (𝐹𝐴)))
205 oveq1 7157 . . . . . . . . . . 11 (𝑧 = 𝑉 → (𝑧𝐴) = (𝑉𝐴))
206204, 205oveq12d 7168 . . . . . . . . . 10 (𝑧 = 𝑉 → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) = (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)))
207 ovexd 7185 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)) ∈ V)
20898, 206, 167, 207fvmptd3 6786 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑉) = (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)))
209202, 208eqtrd 2856 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)))
210209fveq2d 6669 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = (abs‘(((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴))))
211184adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐹𝑉) − (𝐹𝐴)) ∈ ℂ)
212211, 194, 198absdivd 14809 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴))) = ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))))
213210, 212eqtrd 2856 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))))
214213eqcomd 2827 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))) = (abs‘(𝐺𝑊)))
215201, 214breqtrd 5085 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ (abs‘(𝐺𝑊)))
216178, 215jca 514 . . 3 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊))))
217168, 216jca 514 . 2 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
218122, 217pm2.61dan 811 1 (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  Vcvv 3495  cdif 3933  wss 3936  ifcif 4467  {csn 4561   class class class wbr 5059  cmpt 5139  wf 6346  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  2c2 11686  +crp 12383  abscabs 14587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589
This theorem is referenced by:  unbdqndv2  33845
  Copyright terms: Public domain W3C validator