Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unbdqndv2lem2 Structured version   Visualization version   GIF version

Theorem unbdqndv2lem2 34690
Description: Lemma for unbdqndv2 34691. (Contributed by Asger C. Ipsen, 12-May-2021.)
Hypotheses
Ref Expression
unbdqndv2lem2.g 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
unbdqndv2lem2.w 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉)
unbdqndv2lem2.x (𝜑𝑋 ⊆ ℝ)
unbdqndv2lem2.f (𝜑𝐹:𝑋⟶ℂ)
unbdqndv2lem2.a (𝜑𝐴𝑋)
unbdqndv2lem2.b (𝜑𝐵 ∈ ℝ+)
unbdqndv2lem2.d (𝜑𝐷 ∈ ℝ+)
unbdqndv2lem2.u (𝜑𝑈𝑋)
unbdqndv2lem2.v (𝜑𝑉𝑋)
unbdqndv2lem2.1 (𝜑𝑈𝑉)
unbdqndv2lem2.2 (𝜑𝑈𝐴)
unbdqndv2lem2.3 (𝜑𝐴𝑉)
unbdqndv2lem2.4 (𝜑 → (𝑉𝑈) < 𝐷)
unbdqndv2lem2.5 (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
Assertion
Ref Expression
unbdqndv2lem2 (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑧,𝑈   𝑧,𝑉   𝑧,𝑋   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐺(𝑧)   𝑊(𝑧)

Proof of Theorem unbdqndv2lem2
StepHypRef Expression
1 unbdqndv2lem2.w . . . . . 6 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉)
21a1i 11 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉))
3 iftrue 4465 . . . . . 6 ((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) → if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉) = 𝑈)
43adantl 482 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉) = 𝑈)
52, 4eqtrd 2778 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = 𝑈)
6 unbdqndv2lem2.u . . . . . . 7 (𝜑𝑈𝑋)
76adantr 481 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈𝑋)
8 simplr 766 . . . . . . . . 9 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
9 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑈 = 𝐴 → (𝐹𝑈) = (𝐹𝐴))
109eqcomd 2744 . . . . . . . . . . . . . 14 (𝑈 = 𝐴 → (𝐹𝐴) = (𝐹𝑈))
1110oveq2d 7291 . . . . . . . . . . . . 13 (𝑈 = 𝐴 → ((𝐹𝑈) − (𝐹𝐴)) = ((𝐹𝑈) − (𝐹𝑈)))
1211fveq2d 6778 . . . . . . . . . . . 12 (𝑈 = 𝐴 → (abs‘((𝐹𝑈) − (𝐹𝐴))) = (abs‘((𝐹𝑈) − (𝐹𝑈))))
1312adantl 482 . . . . . . . . . . 11 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝐴))) = (abs‘((𝐹𝑈) − (𝐹𝑈))))
14 unbdqndv2lem2.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋⟶ℂ)
1514, 6ffvelrnd 6962 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑈) ∈ ℂ)
1615subidd 11320 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑈) − (𝐹𝑈)) = 0)
1716fveq2d 6778 . . . . . . . . . . . . 13 (𝜑 → (abs‘((𝐹𝑈) − (𝐹𝑈))) = (abs‘0))
1817adantr 481 . . . . . . . . . . . 12 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝑈))) = (abs‘0))
19 abs0 14997 . . . . . . . . . . . . 13 (abs‘0) = 0
2019a1i 11 . . . . . . . . . . . 12 ((𝜑𝑈 = 𝐴) → (abs‘0) = 0)
2118, 20eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝑈))) = 0)
2213, 21eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝐴))) = 0)
2322adantlr 712 . . . . . . . . 9 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → (abs‘((𝐹𝑈) − (𝐹𝐴))) = 0)
248, 23breqtrd 5100 . . . . . . . 8 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → (𝐵 · (𝑉𝑈)) ≤ 0)
25 unbdqndv2lem2.b . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ+)
2625rpred 12772 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
27 unbdqndv2lem2.x . . . . . . . . . . . . . 14 (𝜑𝑋 ⊆ ℝ)
28 unbdqndv2lem2.v . . . . . . . . . . . . . 14 (𝜑𝑉𝑋)
2927, 28sseldd 3922 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℝ)
3027, 6sseldd 3922 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ)
3129, 30resubcld 11403 . . . . . . . . . . . 12 (𝜑 → (𝑉𝑈) ∈ ℝ)
3225rpgt0d 12775 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐵)
33 unbdqndv2lem2.a . . . . . . . . . . . . . . . 16 (𝜑𝐴𝑋)
3427, 33sseldd 3922 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
35 unbdqndv2lem2.2 . . . . . . . . . . . . . . 15 (𝜑𝑈𝐴)
36 unbdqndv2lem2.3 . . . . . . . . . . . . . . 15 (𝜑𝐴𝑉)
3730, 34, 29, 35, 36letrd 11132 . . . . . . . . . . . . . 14 (𝜑𝑈𝑉)
38 unbdqndv2lem2.1 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
3938necomd 2999 . . . . . . . . . . . . . 14 (𝜑𝑉𝑈)
4030, 29, 37, 39leneltd 11129 . . . . . . . . . . . . 13 (𝜑𝑈 < 𝑉)
4130, 29posdifd 11562 . . . . . . . . . . . . 13 (𝜑 → (𝑈 < 𝑉 ↔ 0 < (𝑉𝑈)))
4240, 41mpbid 231 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑉𝑈))
4326, 31, 32, 42mulgt0d 11130 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵 · (𝑉𝑈)))
44 0red 10978 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
4526, 31remulcld 11005 . . . . . . . . . . . 12 (𝜑 → (𝐵 · (𝑉𝑈)) ∈ ℝ)
4644, 45ltnled 11122 . . . . . . . . . . 11 (𝜑 → (0 < (𝐵 · (𝑉𝑈)) ↔ ¬ (𝐵 · (𝑉𝑈)) ≤ 0))
4743, 46mpbid 231 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 · (𝑉𝑈)) ≤ 0)
4847adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (𝑉𝑈)) ≤ 0)
4948adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑈 = 𝐴) → ¬ (𝐵 · (𝑉𝑈)) ≤ 0)
5024, 49pm2.65da 814 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ 𝑈 = 𝐴)
5150neqned 2950 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈𝐴)
527, 51jca 512 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝑋𝑈𝐴))
53 eldifsn 4720 . . . . 5 (𝑈 ∈ (𝑋 ∖ {𝐴}) ↔ (𝑈𝑋𝑈𝐴))
5452, 53sylibr 233 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈 ∈ (𝑋 ∖ {𝐴}))
555, 54eqeltrd 2839 . . 3 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 ∈ (𝑋 ∖ {𝐴}))
565oveq1d 7290 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊𝐴) = (𝑈𝐴))
5756fveq2d 6778 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (abs‘(𝑈𝐴)))
5830, 34, 35abssuble0d 15144 . . . . . . 7 (𝜑 → (abs‘(𝑈𝐴)) = (𝐴𝑈))
5958adantr 481 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑈𝐴)) = (𝐴𝑈))
6057, 59eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (𝐴𝑈))
6134, 30resubcld 11403 . . . . . . 7 (𝜑 → (𝐴𝑈) ∈ ℝ)
62 unbdqndv2lem2.d . . . . . . . 8 (𝜑𝐷 ∈ ℝ+)
6362rpred 12772 . . . . . . 7 (𝜑𝐷 ∈ ℝ)
6434, 29, 30, 36lesub1dd 11591 . . . . . . 7 (𝜑 → (𝐴𝑈) ≤ (𝑉𝑈))
65 unbdqndv2lem2.4 . . . . . . 7 (𝜑 → (𝑉𝑈) < 𝐷)
6661, 31, 63, 64, 65lelttrd 11133 . . . . . 6 (𝜑 → (𝐴𝑈) < 𝐷)
6766adantr 481 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐴𝑈) < 𝐷)
6860, 67eqbrtrd 5096 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) < 𝐷)
6926, 61remulcld 11005 . . . . . . . 8 (𝜑 → (𝐵 · (𝐴𝑈)) ∈ ℝ)
7069adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝐴𝑈)) ∈ ℝ)
7145adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝑉𝑈)) ∈ ℝ)
7214, 33ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → (𝐹𝐴) ∈ ℂ)
7315, 72subcld 11332 . . . . . . . . 9 (𝜑 → ((𝐹𝑈) − (𝐹𝐴)) ∈ ℂ)
7473abscld 15148 . . . . . . . 8 (𝜑 → (abs‘((𝐹𝑈) − (𝐹𝐴))) ∈ ℝ)
7574adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘((𝐹𝑈) − (𝐹𝐴))) ∈ ℝ)
7644, 26, 32ltled 11123 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
7761, 31, 26, 76, 64lemul2ad 11915 . . . . . . . 8 (𝜑 → (𝐵 · (𝐴𝑈)) ≤ (𝐵 · (𝑉𝑈)))
7877adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝐴𝑈)) ≤ (𝐵 · (𝑉𝑈)))
79 simpr 485 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
8070, 71, 75, 78, 79letrd 11132 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (𝐴𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
8126adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ∈ ℝ)
8261adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐴𝑈) ∈ ℝ)
8335adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈𝐴)
8451necomd 2999 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐴𝑈)
8583, 84jca 512 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝐴𝐴𝑈))
8630, 34ltlend 11120 . . . . . . . . . . . 12 (𝜑 → (𝑈 < 𝐴 ↔ (𝑈𝐴𝐴𝑈)))
8786adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈 < 𝐴 ↔ (𝑈𝐴𝐴𝑈)))
8885, 87mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈 < 𝐴)
8930, 34posdifd 11562 . . . . . . . . . . 11 (𝜑 → (𝑈 < 𝐴 ↔ 0 < (𝐴𝑈)))
9089adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈 < 𝐴 ↔ 0 < (𝐴𝑈)))
9188, 90mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 0 < (𝐴𝑈))
9282, 91jca 512 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐴𝑈) ∈ ℝ ∧ 0 < (𝐴𝑈)))
93 elrp 12732 . . . . . . . 8 ((𝐴𝑈) ∈ ℝ+ ↔ ((𝐴𝑈) ∈ ℝ ∧ 0 < (𝐴𝑈)))
9492, 93sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐴𝑈) ∈ ℝ+)
9581, 75, 94lemuldivd 12821 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (𝐴𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) ↔ 𝐵 ≤ ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈))))
9680, 95mpbid 231 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
975fveq2d 6778 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (𝐺𝑈))
98 unbdqndv2lem2.g . . . . . . . . . 10 𝐺 = (𝑧 ∈ (𝑋 ∖ {𝐴}) ↦ (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)))
99 fveq2 6774 . . . . . . . . . . . 12 (𝑧 = 𝑈 → (𝐹𝑧) = (𝐹𝑈))
10099oveq1d 7290 . . . . . . . . . . 11 (𝑧 = 𝑈 → ((𝐹𝑧) − (𝐹𝐴)) = ((𝐹𝑈) − (𝐹𝐴)))
101 oveq1 7282 . . . . . . . . . . 11 (𝑧 = 𝑈 → (𝑧𝐴) = (𝑈𝐴))
102100, 101oveq12d 7293 . . . . . . . . . 10 (𝑧 = 𝑈 → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) = (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)))
103 ovexd 7310 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)) ∈ V)
10498, 102, 54, 103fvmptd3 6898 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑈) = (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)))
10597, 104eqtrd 2778 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴)))
106105fveq2d 6778 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = (abs‘(((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴))))
10773adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐹𝑈) − (𝐹𝐴)) ∈ ℂ)
10830recnd 11003 . . . . . . . . . . 11 (𝜑𝑈 ∈ ℂ)
10934recnd 11003 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
110108, 109subcld 11332 . . . . . . . . . 10 (𝜑 → (𝑈𝐴) ∈ ℂ)
111110adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝐴) ∈ ℂ)
112108adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑈 ∈ ℂ)
113109adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐴 ∈ ℂ)
114112, 113, 51subne0d 11341 . . . . . . . . 9 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑈𝐴) ≠ 0)
115107, 111, 114absdivd 15167 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴))) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (abs‘(𝑈𝐴))))
11659oveq2d 7291 . . . . . . . 8 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (abs‘(𝑈𝐴))) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
117115, 116eqtrd 2778 . . . . . . 7 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(((𝐹𝑈) − (𝐹𝐴)) / (𝑈𝐴))) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
118106, 117eqtrd 2778 . . . . . 6 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)))
119118eqcomd 2744 . . . . 5 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘((𝐹𝑈) − (𝐹𝐴))) / (𝐴𝑈)) = (abs‘(𝐺𝑊)))
12096, 119breqtrd 5100 . . . 4 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ (abs‘(𝐺𝑊)))
12168, 120jca 512 . . 3 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊))))
12255, 121jca 512 . 2 ((𝜑 ∧ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
1231a1i 11 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉))
124 simpr 485 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
125124iffalsed 4470 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → if((𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))), 𝑈, 𝑉) = 𝑉)
126123, 125eqtrd 2778 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 = 𝑉)
12728adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉𝑋)
12830, 29, 37abssubge0d 15143 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(𝑉𝑈)) = (𝑉𝑈))
129128oveq2d 7291 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · (abs‘(𝑉𝑈))) = (𝐵 · (𝑉𝑈)))
130129breq1d 5084 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) ↔ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
131130adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) ↔ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
132124, 131mtbird 325 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))))
13314, 28ffvelrnd 6962 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑉) ∈ ℂ)
13431recnd 11003 . . . . . . . . . . . . 13 (𝜑 → (𝑉𝑈) ∈ ℂ)
13544, 42gtned 11110 . . . . . . . . . . . . 13 (𝜑 → (𝑉𝑈) ≠ 0)
136 unbdqndv2lem2.5 . . . . . . . . . . . . . 14 (𝜑 → (2 · 𝐵) ≤ ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
137133, 15subcld 11332 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐹𝑉) − (𝐹𝑈)) ∈ ℂ)
138137, 134, 135absdivd 15167 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))) = ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (abs‘(𝑉𝑈))))
139128oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (abs‘(𝑉𝑈))) = ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
140138, 139eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))) = ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)))
141140eqcomd 2744 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘((𝐹𝑉) − (𝐹𝑈))) / (𝑉𝑈)) = (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))))
142136, 141breqtrd 5100 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝐵) ≤ (abs‘(((𝐹𝑉) − (𝐹𝑈)) / (𝑉𝑈))))
143133, 15, 72, 134, 25, 135, 142unbdqndv2lem1 34689 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ∨ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
144143adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ∨ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))))
145 orel2 888 . . . . . . . . . . 11 (¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴))) → (((𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ∨ (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴)))))
146132, 144, 145sylc 65 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))))
147146adantr 481 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → (𝐵 · (abs‘(𝑉𝑈))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))))
148 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑉 = 𝐴 → (𝐹𝑉) = (𝐹𝐴))
149148oveq1d 7290 . . . . . . . . . . . . . 14 (𝑉 = 𝐴 → ((𝐹𝑉) − (𝐹𝐴)) = ((𝐹𝐴) − (𝐹𝐴)))
150149adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑉 = 𝐴) → ((𝐹𝑉) − (𝐹𝐴)) = ((𝐹𝐴) − (𝐹𝐴)))
15172subidd 11320 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝐴) − (𝐹𝐴)) = 0)
152151adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑉 = 𝐴) → ((𝐹𝐴) − (𝐹𝐴)) = 0)
153150, 152eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑉 = 𝐴) → ((𝐹𝑉) − (𝐹𝐴)) = 0)
154153fveq2d 6778 . . . . . . . . . . 11 ((𝜑𝑉 = 𝐴) → (abs‘((𝐹𝑉) − (𝐹𝐴))) = (abs‘0))
15519a1i 11 . . . . . . . . . . 11 ((𝜑𝑉 = 𝐴) → (abs‘0) = 0)
156154, 155eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑉 = 𝐴) → (abs‘((𝐹𝑉) − (𝐹𝐴))) = 0)
157156adantlr 712 . . . . . . . . 9 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → (abs‘((𝐹𝑉) − (𝐹𝐴))) = 0)
158147, 157breqtrd 5100 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
159129breq1d 5084 . . . . . . . . . . 11 (𝜑 → ((𝐵 · (abs‘(𝑉𝑈))) ≤ 0 ↔ (𝐵 · (𝑉𝑈)) ≤ 0))
16047, 159mtbird 325 . . . . . . . . . 10 (𝜑 → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
161160adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
162161adantr 481 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) ∧ 𝑉 = 𝐴) → ¬ (𝐵 · (abs‘(𝑉𝑈))) ≤ 0)
163158, 162pm2.65da 814 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ¬ 𝑉 = 𝐴)
164163neqned 2950 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉𝐴)
165127, 164jca 512 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝑋𝑉𝐴))
166 eldifsn 4720 . . . . 5 (𝑉 ∈ (𝑋 ∖ {𝐴}) ↔ (𝑉𝑋𝑉𝐴))
167165, 166sylibr 233 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉 ∈ (𝑋 ∖ {𝐴}))
168126, 167eqeltrd 2839 . . 3 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑊 ∈ (𝑋 ∖ {𝐴}))
169126oveq1d 7290 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊𝐴) = (𝑉𝐴))
170169fveq2d 6778 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (abs‘(𝑉𝐴)))
17134, 29, 36abssubge0d 15143 . . . . . . 7 (𝜑 → (abs‘(𝑉𝐴)) = (𝑉𝐴))
172171adantr 481 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑉𝐴)) = (𝑉𝐴))
173170, 172eqtrd 2778 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) = (𝑉𝐴))
17429, 34resubcld 11403 . . . . . . 7 (𝜑 → (𝑉𝐴) ∈ ℝ)
17530, 34, 29, 35lesub2dd 11592 . . . . . . 7 (𝜑 → (𝑉𝐴) ≤ (𝑉𝑈))
176174, 31, 63, 175, 65lelttrd 11133 . . . . . 6 (𝜑 → (𝑉𝐴) < 𝐷)
177176adantr 481 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝐴) < 𝐷)
178173, 177eqbrtrd 5096 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑊𝐴)) < 𝐷)
179171, 174eqeltrd 2839 . . . . . . . . 9 (𝜑 → (abs‘(𝑉𝐴)) ∈ ℝ)
18026, 179remulcld 11005 . . . . . . . 8 (𝜑 → (𝐵 · (abs‘(𝑉𝐴))) ∈ ℝ)
181180adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝐴))) ∈ ℝ)
182129, 45eqeltrd 2839 . . . . . . . 8 (𝜑 → (𝐵 · (abs‘(𝑉𝑈))) ∈ ℝ)
183182adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝑈))) ∈ ℝ)
184133, 72subcld 11332 . . . . . . . . 9 (𝜑 → ((𝐹𝑉) − (𝐹𝐴)) ∈ ℂ)
185184abscld 15148 . . . . . . . 8 (𝜑 → (abs‘((𝐹𝑉) − (𝐹𝐴))) ∈ ℝ)
186185adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘((𝐹𝑉) − (𝐹𝐴))) ∈ ℝ)
187128, 31eqeltrd 2839 . . . . . . . . 9 (𝜑 → (abs‘(𝑉𝑈)) ∈ ℝ)
188175, 171, 1283brtr4d 5106 . . . . . . . . 9 (𝜑 → (abs‘(𝑉𝐴)) ≤ (abs‘(𝑉𝑈)))
189179, 187, 26, 76, 188lemul2ad 11915 . . . . . . . 8 (𝜑 → (𝐵 · (abs‘(𝑉𝐴))) ≤ (𝐵 · (abs‘(𝑉𝑈))))
190189adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝐴))) ≤ (𝐵 · (abs‘(𝑉𝑈))))
191181, 183, 186, 190, 146letrd 11132 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐵 · (abs‘(𝑉𝐴))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))))
19226adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ∈ ℝ)
193174recnd 11003 . . . . . . . . 9 (𝜑 → (𝑉𝐴) ∈ ℂ)
194193adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝐴) ∈ ℂ)
19529recnd 11003 . . . . . . . . . 10 (𝜑𝑉 ∈ ℂ)
196195adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝑉 ∈ ℂ)
197109adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐴 ∈ ℂ)
198196, 197, 164subne0d 11341 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑉𝐴) ≠ 0)
199194, 198absrpcld 15160 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝑉𝐴)) ∈ ℝ+)
200192, 186, 199lemuldivd 12821 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐵 · (abs‘(𝑉𝐴))) ≤ (abs‘((𝐹𝑉) − (𝐹𝐴))) ↔ 𝐵 ≤ ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴)))))
201191, 200mpbid 231 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))))
202126fveq2d 6778 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (𝐺𝑉))
203 fveq2 6774 . . . . . . . . . . . 12 (𝑧 = 𝑉 → (𝐹𝑧) = (𝐹𝑉))
204203oveq1d 7290 . . . . . . . . . . 11 (𝑧 = 𝑉 → ((𝐹𝑧) − (𝐹𝐴)) = ((𝐹𝑉) − (𝐹𝐴)))
205 oveq1 7282 . . . . . . . . . . 11 (𝑧 = 𝑉 → (𝑧𝐴) = (𝑉𝐴))
206204, 205oveq12d 7293 . . . . . . . . . 10 (𝑧 = 𝑉 → (((𝐹𝑧) − (𝐹𝐴)) / (𝑧𝐴)) = (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)))
207 ovexd 7310 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)) ∈ V)
20898, 206, 167, 207fvmptd3 6898 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑉) = (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)))
209202, 208eqtrd 2778 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝐺𝑊) = (((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴)))
210209fveq2d 6778 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = (abs‘(((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴))))
211184adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((𝐹𝑉) − (𝐹𝐴)) ∈ ℂ)
212211, 194, 198absdivd 15167 . . . . . . 7 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(((𝐹𝑉) − (𝐹𝐴)) / (𝑉𝐴))) = ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))))
213210, 212eqtrd 2778 . . . . . 6 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (abs‘(𝐺𝑊)) = ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))))
214213eqcomd 2744 . . . . 5 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘((𝐹𝑉) − (𝐹𝐴))) / (abs‘(𝑉𝐴))) = (abs‘(𝐺𝑊)))
215201, 214breqtrd 5100 . . . 4 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → 𝐵 ≤ (abs‘(𝐺𝑊)))
216178, 215jca 512 . . 3 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊))))
217168, 216jca 512 . 2 ((𝜑 ∧ ¬ (𝐵 · (𝑉𝑈)) ≤ (abs‘((𝐹𝑈) − (𝐹𝐴)))) → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
218122, 217pm2.61dan 810 1 (𝜑 → (𝑊 ∈ (𝑋 ∖ {𝐴}) ∧ ((abs‘(𝑊𝐴)) < 𝐷𝐵 ≤ (abs‘(𝐺𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  wss 3887  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  +crp 12730  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  unbdqndv2  34691
  Copyright terms: Public domain W3C validator