MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvply1 Structured version   Visualization version   GIF version

Theorem dvply1 25032
Description: Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvply1.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
dvply1.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
dvply1.a (𝜑𝐴:ℕ0⟶ℂ)
dvply1.b 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
dvply1.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
dvply1 (𝜑 → (ℂ D 𝐹) = 𝐺)
Distinct variable groups:   𝜑,𝑧,𝑘   𝑧,𝐴,𝑘   𝑧,𝐵   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑧,𝑘)   𝐺(𝑧,𝑘)

Proof of Theorem dvply1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 dvply1.f . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
21oveq2d 7186 . 2 (𝜑 → (ℂ D 𝐹) = (ℂ D (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))))
3 eqid 2738 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
43cnfldtopon 23535 . . . 4 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
54toponrestid 21672 . . 3 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
6 cnelprrecn 10708 . . . 4 ℂ ∈ {ℝ, ℂ}
76a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
83cnfldtop 23536 . . . 4 (TopOpen‘ℂfld) ∈ Top
9 unicntop 23538 . . . . 5 ℂ = (TopOpen‘ℂfld)
109topopn 21657 . . . 4 ((TopOpen‘ℂfld) ∈ Top → ℂ ∈ (TopOpen‘ℂfld))
118, 10mp1i 13 . . 3 (𝜑 → ℂ ∈ (TopOpen‘ℂfld))
12 fzfid 13432 . . 3 (𝜑 → (0...𝑁) ∈ Fin)
13 dvply1.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
14 elfznn0 13091 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
15 ffvelrn 6859 . . . . . . 7 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
1613, 14, 15syl2an 599 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
1716adantr 484 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
18 simpr 488 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
1914ad2antlr 727 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
2018, 19expcld 13602 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑘) ∈ ℂ)
2117, 20mulcld 10739 . . . 4 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
22213impa 1111 . . 3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
23163adant3 1133 . . . 4 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → (𝐴𝑘) ∈ ℂ)
24 0cnd 10712 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 = 0) → 0 ∈ ℂ)
25 simpl2 1193 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ (0...𝑁))
2625, 14syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ0)
2726nn0cnd 12038 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℂ)
28 simpl3 1194 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑧 ∈ ℂ)
29 simpr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → ¬ 𝑘 = 0)
30 elnn0 11978 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
3126, 30sylib 221 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
32 orel2 890 . . . . . . . . 9 𝑘 = 0 → ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → 𝑘 ∈ ℕ))
3329, 31, 32sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → 𝑘 ∈ ℕ)
34 nnm1nn0 12017 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
3533, 34syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 − 1) ∈ ℕ0)
3628, 35expcld 13602 . . . . . 6 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
3727, 36mulcld 10739 . . . . 5 (((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) ∧ ¬ 𝑘 = 0) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
3824, 37ifclda 4449 . . . 4 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
3923, 38mulcld 10739 . . 3 ((𝜑𝑘 ∈ (0...𝑁) ∧ 𝑧 ∈ ℂ) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈ ℂ)
406a1i 11 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ℂ ∈ {ℝ, ℂ})
41 c0ex 10713 . . . . . 6 0 ∈ V
42 ovex 7203 . . . . . 6 (𝑘 · (𝑧↑(𝑘 − 1))) ∈ V
4341, 42ifex 4464 . . . . 5 if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ V
4443a1i 11 . . . 4 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑧 ∈ ℂ) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ V)
4514adantl 485 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
46 dvexp2 24706 . . . . 5 (𝑘 ∈ ℕ0 → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
4745, 46syl 17 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
4840, 20, 44, 47, 16dvmptcmul 24716 . . 3 ((𝜑𝑘 ∈ (0...𝑁)) → (ℂ D (𝑧 ∈ ℂ ↦ ((𝐴𝑘) · (𝑧𝑘)))) = (𝑧 ∈ ℂ ↦ ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))))
495, 3, 7, 11, 12, 22, 39, 48dvmptfsum 24727 . 2 (𝜑 → (ℂ D (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))))
50 elfznn 13027 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
5150nnne0d 11766 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0)
5251neneqd 2939 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ¬ 𝑘 = 0)
5352adantl 485 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0)
5453iffalsed 4425 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1))))
5554oveq2d 7186 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))))
5655sumeq2dv 15153 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))))
57 1eluzge0 12374 . . . . . . 7 1 ∈ (ℤ‘0)
58 fzss1 13037 . . . . . . 7 (1 ∈ (ℤ‘0) → (1...𝑁) ⊆ (0...𝑁))
5957, 58mp1i 13 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (1...𝑁) ⊆ (0...𝑁))
6013adantr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
6150nnnn0d 12036 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0)
6260, 61, 15syl2an 599 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐴𝑘) ∈ ℂ)
6351adantl 485 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0)
6463neneqd 2939 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ¬ 𝑘 = 0)
6564iffalsed 4425 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = (𝑘 · (𝑧↑(𝑘 − 1))))
6661adantl 485 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
6766nn0cnd 12038 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
68 simplr 769 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑧 ∈ ℂ)
6950, 34syl 17 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0)
7069adantl 485 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℕ0)
7168, 70expcld 13602 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑧↑(𝑘 − 1)) ∈ ℂ)
7267, 71mulcld 10739 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · (𝑧↑(𝑘 − 1))) ∈ ℂ)
7365, 72eqeltrd 2833 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
7462, 73mulcld 10739 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) ∈ ℂ)
75 eldifn 4018 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ (1...𝑁))
76 0p1e1 11838 . . . . . . . . . . . . . 14 (0 + 1) = 1
7776oveq1i 7180 . . . . . . . . . . . . 13 ((0 + 1)...𝑁) = (1...𝑁)
7877eleq2i 2824 . . . . . . . . . . . 12 (𝑘 ∈ ((0 + 1)...𝑁) ↔ 𝑘 ∈ (1...𝑁))
7975, 78sylnibr 332 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → ¬ 𝑘 ∈ ((0 + 1)...𝑁))
8079adantl 485 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ¬ 𝑘 ∈ ((0 + 1)...𝑁))
81 eldifi 4017 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑁) ∖ (1...𝑁)) → 𝑘 ∈ (0...𝑁))
8281adantl 485 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 ∈ (0...𝑁))
83 dvply1.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
84 nn0uz 12362 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
8583, 84eleqtrdi 2843 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ‘0))
8685ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑁 ∈ (ℤ‘0))
87 elfzp12 13077 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘0) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))))
8886, 87syl 17 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁))))
8982, 88mpbid 235 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → (𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)))
90 orel2 890 . . . . . . . . . 10 𝑘 ∈ ((0 + 1)...𝑁) → ((𝑘 = 0 ∨ 𝑘 ∈ ((0 + 1)...𝑁)) → 𝑘 = 0))
9180, 89, 90sylc 65 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → 𝑘 = 0)
9291iftrued 4422 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))) = 0)
9392oveq2d 7186 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = ((𝐴𝑘) · 0))
9460, 14, 15syl2an 599 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
9594mul01d 10917 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · 0) = 0)
9681, 95sylan2 596 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · 0) = 0)
9793, 96eqtrd 2773 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑁) ∖ (1...𝑁))) → ((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = 0)
98 fzfid 13432 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
9959, 74, 97, 98fsumss 15175 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))))
100 elfznn0 13091 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
101100adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
102101nn0cnd 12038 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ)
103 ax-1cn 10673 . . . . . . . . . . . . 13 1 ∈ ℂ
104 pncan 10970 . . . . . . . . . . . . 13 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 1) = 𝑗)
105102, 103, 104sylancl 589 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) − 1) = 𝑗)
106105oveq2d 7186 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧↑((𝑗 + 1) − 1)) = (𝑧𝑗))
107106oveq2d 7186 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))) = ((𝑗 + 1) · (𝑧𝑗)))
108107oveq2d 7186 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧𝑗))))
10913ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝐴:ℕ0⟶ℂ)
110 peano2nn0 12016 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
111100, 110syl 17 . . . . . . . . . . . 12 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℕ0)
112111adantl 485 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℕ0)
113109, 112ffvelrnd 6862 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝐴‘(𝑗 + 1)) ∈ ℂ)
114112nn0cnd 12038 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) ∈ ℂ)
115 simplr 769 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑧 ∈ ℂ)
116115, 101expcld 13602 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑧𝑗) ∈ ℂ)
117113, 114, 116mulassd 10742 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧𝑗)) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧𝑗))))
118113, 114mulcomd 10740 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1))))
119118oveq1d 7185 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝐴‘(𝑗 + 1)) · (𝑗 + 1)) · (𝑧𝑗)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
120108, 117, 1193eqtr2d 2779 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
121120sumeq2dv 15153 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
122 1m1e0 11788 . . . . . . . . 9 (1 − 1) = 0
123122oveq1i 7180 . . . . . . . 8 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
124123sumeq1i 15148 . . . . . . 7 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑗 ∈ (0...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))
125 oveq1 7177 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 + 1) = (𝑗 + 1))
126 fvoveq1 7193 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴‘(𝑘 + 1)) = (𝐴‘(𝑗 + 1)))
127125, 126oveq12d 7188 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) = ((𝑗 + 1) · (𝐴‘(𝑗 + 1))))
128 oveq2 7178 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑧𝑘) = (𝑧𝑗))
129127, 128oveq12d 7188 . . . . . . . 8 (𝑘 = 𝑗 → (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)) = (((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗)))
130129cbvsumv 15146 . . . . . . 7 Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)) = Σ𝑗 ∈ (0...(𝑁 − 1))(((𝑗 + 1) · (𝐴‘(𝑗 + 1))) · (𝑧𝑗))
131121, 124, 1303eqtr4g 2798 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
132 1zzd 12094 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 1 ∈ ℤ)
13383adantr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℕ0)
134133nn0zd 12166 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
13562, 72mulcld 10739 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) ∈ ℂ)
136 fveq2 6674 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝐴𝑘) = (𝐴‘(𝑗 + 1)))
137 id 22 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1))
138 oveq1 7177 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → (𝑘 − 1) = ((𝑗 + 1) − 1))
139138oveq2d 7186 . . . . . . . . 9 (𝑘 = (𝑗 + 1) → (𝑧↑(𝑘 − 1)) = (𝑧↑((𝑗 + 1) − 1)))
140137, 139oveq12d 7188 . . . . . . . 8 (𝑘 = (𝑗 + 1) → (𝑘 · (𝑧↑(𝑘 − 1))) = ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1))))
141136, 140oveq12d 7188 . . . . . . 7 (𝑘 = (𝑗 + 1) → ((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = ((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))))
142132, 132, 134, 135, 141fsumshftm 15229 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))((𝐴‘(𝑗 + 1)) · ((𝑗 + 1) · (𝑧↑((𝑗 + 1) − 1)))))
143 elfznn0 13091 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
144143adantl 485 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
145 ovex 7203 . . . . . . . . 9 ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ V
146 dvply1.b . . . . . . . . . 10 𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
147146fvmpt2 6786 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))) ∈ V) → (𝐵𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
148144, 145, 147sylancl 589 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐵𝑘) = ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))
149148oveq1d 7185 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝐵𝑘) · (𝑧𝑘)) = (((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
150149sumeq2dv 15153 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(𝑁 − 1))(((𝑘 + 1) · (𝐴‘(𝑘 + 1))) · (𝑧𝑘)))
151131, 142, 1503eqtr4d 2783 . . . . 5 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (1...𝑁)((𝐴𝑘) · (𝑘 · (𝑧↑(𝑘 − 1)))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)))
15256, 99, 1513eqtr3d 2781 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1))))) = Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘)))
153152mpteq2dva 5125 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
154 dvply1.g . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))
155153, 154eqtr4d 2776 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · if(𝑘 = 0, 0, (𝑘 · (𝑧↑(𝑘 − 1)))))) = 𝐺)
1562, 49, 1553eqtrd 2777 1 (𝜑 → (ℂ D 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2114  wne 2934  Vcvv 3398  cdif 3840  wss 3843  ifcif 4414  {cpr 4518  cmpt 5110  wf 6335  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620  cmin 10948  cn 11716  0cn0 11976  cuz 12324  ...cfz 12981  cexp 13521  Σcsu 15135  TopOpenctopn 16798  fldccnfld 20217  Topctop 21644   D cdv 24615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-icc 12828  df-fz 12982  df-fzo 13125  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-sum 15136  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-haus 22066  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-limc 24618  df-dv 24619
This theorem is referenced by:  dvply2g  25033
  Copyright terms: Public domain W3C validator