Step | Hyp | Ref
| Expression |
1 | | dvply1.f |
. . 3
β’ (π β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) |
2 | 1 | oveq2d 7421 |
. 2
β’ (π β (β D πΉ) = (β D (π§ β β β¦
Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))))) |
3 | | eqid 2732 |
. . . . 5
β’
(TopOpenββfld) =
(TopOpenββfld) |
4 | 3 | cnfldtopon 24290 |
. . . 4
β’
(TopOpenββfld) β
(TopOnββ) |
5 | 4 | toponrestid 22414 |
. . 3
β’
(TopOpenββfld) =
((TopOpenββfld) βΎt
β) |
6 | | cnelprrecn 11199 |
. . . 4
β’ β
β {β, β} |
7 | 6 | a1i 11 |
. . 3
β’ (π β β β {β,
β}) |
8 | 3 | cnfldtop 24291 |
. . . 4
β’
(TopOpenββfld) β Top |
9 | | unicntop 24293 |
. . . . 5
β’ β =
βͺ
(TopOpenββfld) |
10 | 9 | topopn 22399 |
. . . 4
β’
((TopOpenββfld) β Top β β β
(TopOpenββfld)) |
11 | 8, 10 | mp1i 13 |
. . 3
β’ (π β β β
(TopOpenββfld)) |
12 | | fzfid 13934 |
. . 3
β’ (π β (0...π) β Fin) |
13 | | dvply1.a |
. . . . . . 7
β’ (π β π΄:β0βΆβ) |
14 | | elfznn0 13590 |
. . . . . . 7
β’ (π β (0...π) β π β β0) |
15 | | ffvelcdm 7080 |
. . . . . . 7
β’ ((π΄:β0βΆβ β§
π β
β0) β (π΄βπ) β β) |
16 | 13, 14, 15 | syl2an 596 |
. . . . . 6
β’ ((π β§ π β (0...π)) β (π΄βπ) β β) |
17 | 16 | adantr 481 |
. . . . 5
β’ (((π β§ π β (0...π)) β§ π§ β β) β (π΄βπ) β β) |
18 | | simpr 485 |
. . . . . 6
β’ (((π β§ π β (0...π)) β§ π§ β β) β π§ β β) |
19 | 14 | ad2antlr 725 |
. . . . . 6
β’ (((π β§ π β (0...π)) β§ π§ β β) β π β β0) |
20 | 18, 19 | expcld 14107 |
. . . . 5
β’ (((π β§ π β (0...π)) β§ π§ β β) β (π§βπ) β β) |
21 | 17, 20 | mulcld 11230 |
. . . 4
β’ (((π β§ π β (0...π)) β§ π§ β β) β ((π΄βπ) Β· (π§βπ)) β β) |
22 | 21 | 3impa 1110 |
. . 3
β’ ((π β§ π β (0...π) β§ π§ β β) β ((π΄βπ) Β· (π§βπ)) β β) |
23 | 16 | 3adant3 1132 |
. . . 4
β’ ((π β§ π β (0...π) β§ π§ β β) β (π΄βπ) β β) |
24 | | 0cnd 11203 |
. . . . 5
β’ (((π β§ π β (0...π) β§ π§ β β) β§ π = 0) β 0 β
β) |
25 | | simpl2 1192 |
. . . . . . . 8
β’ (((π β§ π β (0...π) β§ π§ β β) β§ Β¬ π = 0) β π β (0...π)) |
26 | 25, 14 | syl 17 |
. . . . . . 7
β’ (((π β§ π β (0...π) β§ π§ β β) β§ Β¬ π = 0) β π β β0) |
27 | 26 | nn0cnd 12530 |
. . . . . 6
β’ (((π β§ π β (0...π) β§ π§ β β) β§ Β¬ π = 0) β π β β) |
28 | | simpl3 1193 |
. . . . . . 7
β’ (((π β§ π β (0...π) β§ π§ β β) β§ Β¬ π = 0) β π§ β β) |
29 | | simpr 485 |
. . . . . . . . 9
β’ (((π β§ π β (0...π) β§ π§ β β) β§ Β¬ π = 0) β Β¬ π = 0) |
30 | | elnn0 12470 |
. . . . . . . . . 10
β’ (π β β0
β (π β β
β¨ π =
0)) |
31 | 26, 30 | sylib 217 |
. . . . . . . . 9
β’ (((π β§ π β (0...π) β§ π§ β β) β§ Β¬ π = 0) β (π β β β¨ π = 0)) |
32 | | orel2 889 |
. . . . . . . . 9
β’ (Β¬
π = 0 β ((π β β β¨ π = 0) β π β β)) |
33 | 29, 31, 32 | sylc 65 |
. . . . . . . 8
β’ (((π β§ π β (0...π) β§ π§ β β) β§ Β¬ π = 0) β π β β) |
34 | | nnm1nn0 12509 |
. . . . . . . 8
β’ (π β β β (π β 1) β
β0) |
35 | 33, 34 | syl 17 |
. . . . . . 7
β’ (((π β§ π β (0...π) β§ π§ β β) β§ Β¬ π = 0) β (π β 1) β
β0) |
36 | 28, 35 | expcld 14107 |
. . . . . 6
β’ (((π β§ π β (0...π) β§ π§ β β) β§ Β¬ π = 0) β (π§β(π β 1)) β β) |
37 | 27, 36 | mulcld 11230 |
. . . . 5
β’ (((π β§ π β (0...π) β§ π§ β β) β§ Β¬ π = 0) β (π Β· (π§β(π β 1))) β
β) |
38 | 24, 37 | ifclda 4562 |
. . . 4
β’ ((π β§ π β (0...π) β§ π§ β β) β if(π = 0, 0, (π Β· (π§β(π β 1)))) β
β) |
39 | 23, 38 | mulcld 11230 |
. . 3
β’ ((π β§ π β (0...π) β§ π§ β β) β ((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1))))) β
β) |
40 | 6 | a1i 11 |
. . . 4
β’ ((π β§ π β (0...π)) β β β {β,
β}) |
41 | | c0ex 11204 |
. . . . . 6
β’ 0 β
V |
42 | | ovex 7438 |
. . . . . 6
β’ (π Β· (π§β(π β 1))) β V |
43 | 41, 42 | ifex 4577 |
. . . . 5
β’ if(π = 0, 0, (π Β· (π§β(π β 1)))) β V |
44 | 43 | a1i 11 |
. . . 4
β’ (((π β§ π β (0...π)) β§ π§ β β) β if(π = 0, 0, (π Β· (π§β(π β 1)))) β V) |
45 | 14 | adantl 482 |
. . . . 5
β’ ((π β§ π β (0...π)) β π β β0) |
46 | | dvexp2 25462 |
. . . . 5
β’ (π β β0
β (β D (π§ β
β β¦ (π§βπ))) = (π§ β β β¦ if(π = 0, 0, (π Β· (π§β(π β 1)))))) |
47 | 45, 46 | syl 17 |
. . . 4
β’ ((π β§ π β (0...π)) β (β D (π§ β β β¦ (π§βπ))) = (π§ β β β¦ if(π = 0, 0, (π Β· (π§β(π β 1)))))) |
48 | 40, 20, 44, 47, 16 | dvmptcmul 25472 |
. . 3
β’ ((π β§ π β (0...π)) β (β D (π§ β β β¦ ((π΄βπ) Β· (π§βπ)))) = (π§ β β β¦ ((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1))))))) |
49 | 5, 3, 7, 11, 12, 22, 39, 48 | dvmptfsum 25483 |
. 2
β’ (π β (β D (π§ β β β¦
Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1))))))) |
50 | | elfznn 13526 |
. . . . . . . . . . 11
β’ (π β (1...π) β π β β) |
51 | 50 | nnne0d 12258 |
. . . . . . . . . 10
β’ (π β (1...π) β π β 0) |
52 | 51 | neneqd 2945 |
. . . . . . . . 9
β’ (π β (1...π) β Β¬ π = 0) |
53 | 52 | adantl 482 |
. . . . . . . 8
β’ (((π β§ π§ β β) β§ π β (1...π)) β Β¬ π = 0) |
54 | 53 | iffalsed 4538 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β (1...π)) β if(π = 0, 0, (π Β· (π§β(π β 1)))) = (π Β· (π§β(π β 1)))) |
55 | 54 | oveq2d 7421 |
. . . . . 6
β’ (((π β§ π§ β β) β§ π β (1...π)) β ((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1))))) = ((π΄βπ) Β· (π Β· (π§β(π β 1))))) |
56 | 55 | sumeq2dv 15645 |
. . . . 5
β’ ((π β§ π§ β β) β Ξ£π β (1...π)((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1))))) = Ξ£π β (1...π)((π΄βπ) Β· (π Β· (π§β(π β 1))))) |
57 | | 1eluzge0 12872 |
. . . . . . 7
β’ 1 β
(β€β₯β0) |
58 | | fzss1 13536 |
. . . . . . 7
β’ (1 β
(β€β₯β0) β (1...π) β (0...π)) |
59 | 57, 58 | mp1i 13 |
. . . . . 6
β’ ((π β§ π§ β β) β (1...π) β (0...π)) |
60 | 13 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π§ β β) β π΄:β0βΆβ) |
61 | 50 | nnnn0d 12528 |
. . . . . . . 8
β’ (π β (1...π) β π β β0) |
62 | 60, 61, 15 | syl2an 596 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β (1...π)) β (π΄βπ) β β) |
63 | 51 | adantl 482 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β (1...π)) β π β 0) |
64 | 63 | neneqd 2945 |
. . . . . . . . 9
β’ (((π β§ π§ β β) β§ π β (1...π)) β Β¬ π = 0) |
65 | 64 | iffalsed 4538 |
. . . . . . . 8
β’ (((π β§ π§ β β) β§ π β (1...π)) β if(π = 0, 0, (π Β· (π§β(π β 1)))) = (π Β· (π§β(π β 1)))) |
66 | 61 | adantl 482 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β (1...π)) β π β β0) |
67 | 66 | nn0cnd 12530 |
. . . . . . . . 9
β’ (((π β§ π§ β β) β§ π β (1...π)) β π β β) |
68 | | simplr 767 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β (1...π)) β π§ β β) |
69 | 50, 34 | syl 17 |
. . . . . . . . . . 11
β’ (π β (1...π) β (π β 1) β
β0) |
70 | 69 | adantl 482 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β (1...π)) β (π β 1) β
β0) |
71 | 68, 70 | expcld 14107 |
. . . . . . . . 9
β’ (((π β§ π§ β β) β§ π β (1...π)) β (π§β(π β 1)) β β) |
72 | 67, 71 | mulcld 11230 |
. . . . . . . 8
β’ (((π β§ π§ β β) β§ π β (1...π)) β (π Β· (π§β(π β 1))) β
β) |
73 | 65, 72 | eqeltrd 2833 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β (1...π)) β if(π = 0, 0, (π Β· (π§β(π β 1)))) β
β) |
74 | 62, 73 | mulcld 11230 |
. . . . . 6
β’ (((π β§ π§ β β) β§ π β (1...π)) β ((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1))))) β
β) |
75 | | eldifn 4126 |
. . . . . . . . . . . 12
β’ (π β ((0...π) β (1...π)) β Β¬ π β (1...π)) |
76 | | 0p1e1 12330 |
. . . . . . . . . . . . . 14
β’ (0 + 1) =
1 |
77 | 76 | oveq1i 7415 |
. . . . . . . . . . . . 13
β’ ((0 +
1)...π) = (1...π) |
78 | 77 | eleq2i 2825 |
. . . . . . . . . . . 12
β’ (π β ((0 + 1)...π) β π β (1...π)) |
79 | 75, 78 | sylnibr 328 |
. . . . . . . . . . 11
β’ (π β ((0...π) β (1...π)) β Β¬ π β ((0 + 1)...π)) |
80 | 79 | adantl 482 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β ((0...π) β (1...π))) β Β¬ π β ((0 + 1)...π)) |
81 | | eldifi 4125 |
. . . . . . . . . . . 12
β’ (π β ((0...π) β (1...π)) β π β (0...π)) |
82 | 81 | adantl 482 |
. . . . . . . . . . 11
β’ (((π β§ π§ β β) β§ π β ((0...π) β (1...π))) β π β (0...π)) |
83 | | dvply1.n |
. . . . . . . . . . . . . 14
β’ (π β π β
β0) |
84 | | nn0uz 12860 |
. . . . . . . . . . . . . 14
β’
β0 = (β€β₯β0) |
85 | 83, 84 | eleqtrdi 2843 |
. . . . . . . . . . . . 13
β’ (π β π β
(β€β₯β0)) |
86 | 85 | ad2antrr 724 |
. . . . . . . . . . . 12
β’ (((π β§ π§ β β) β§ π β ((0...π) β (1...π))) β π β
(β€β₯β0)) |
87 | | elfzp12 13576 |
. . . . . . . . . . . 12
β’ (π β
(β€β₯β0) β (π β (0...π) β (π = 0 β¨ π β ((0 + 1)...π)))) |
88 | 86, 87 | syl 17 |
. . . . . . . . . . 11
β’ (((π β§ π§ β β) β§ π β ((0...π) β (1...π))) β (π β (0...π) β (π = 0 β¨ π β ((0 + 1)...π)))) |
89 | 82, 88 | mpbid 231 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β ((0...π) β (1...π))) β (π = 0 β¨ π β ((0 + 1)...π))) |
90 | | orel2 889 |
. . . . . . . . . 10
β’ (Β¬
π β ((0 + 1)...π) β ((π = 0 β¨ π β ((0 + 1)...π)) β π = 0)) |
91 | 80, 89, 90 | sylc 65 |
. . . . . . . . 9
β’ (((π β§ π§ β β) β§ π β ((0...π) β (1...π))) β π = 0) |
92 | 91 | iftrued 4535 |
. . . . . . . 8
β’ (((π β§ π§ β β) β§ π β ((0...π) β (1...π))) β if(π = 0, 0, (π Β· (π§β(π β 1)))) = 0) |
93 | 92 | oveq2d 7421 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β ((0...π) β (1...π))) β ((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1))))) = ((π΄βπ) Β· 0)) |
94 | 60, 14, 15 | syl2an 596 |
. . . . . . . . 9
β’ (((π β§ π§ β β) β§ π β (0...π)) β (π΄βπ) β β) |
95 | 94 | mul01d 11409 |
. . . . . . . 8
β’ (((π β§ π§ β β) β§ π β (0...π)) β ((π΄βπ) Β· 0) = 0) |
96 | 81, 95 | sylan2 593 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β ((0...π) β (1...π))) β ((π΄βπ) Β· 0) = 0) |
97 | 93, 96 | eqtrd 2772 |
. . . . . 6
β’ (((π β§ π§ β β) β§ π β ((0...π) β (1...π))) β ((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1))))) = 0) |
98 | | fzfid 13934 |
. . . . . 6
β’ ((π β§ π§ β β) β (0...π) β Fin) |
99 | 59, 74, 97, 98 | fsumss 15667 |
. . . . 5
β’ ((π β§ π§ β β) β Ξ£π β (1...π)((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1))))) = Ξ£π β (0...π)((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1)))))) |
100 | | elfznn0 13590 |
. . . . . . . . . . . . . . 15
β’ (π β (0...(π β 1)) β π β β0) |
101 | 100 | adantl 482 |
. . . . . . . . . . . . . 14
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β π β β0) |
102 | 101 | nn0cnd 12530 |
. . . . . . . . . . . . 13
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β π β β) |
103 | | ax-1cn 11164 |
. . . . . . . . . . . . 13
β’ 1 β
β |
104 | | pncan 11462 |
. . . . . . . . . . . . 13
β’ ((π β β β§ 1 β
β) β ((π + 1)
β 1) = π) |
105 | 102, 103,
104 | sylancl 586 |
. . . . . . . . . . . 12
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β ((π + 1) β 1) = π) |
106 | 105 | oveq2d 7421 |
. . . . . . . . . . 11
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β (π§β((π + 1) β 1)) = (π§βπ)) |
107 | 106 | oveq2d 7421 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β ((π + 1) Β· (π§β((π + 1) β 1))) = ((π + 1) Β· (π§βπ))) |
108 | 107 | oveq2d 7421 |
. . . . . . . . 9
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β ((π΄β(π + 1)) Β· ((π + 1) Β· (π§β((π + 1) β 1)))) = ((π΄β(π + 1)) Β· ((π + 1) Β· (π§βπ)))) |
109 | 13 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β π΄:β0βΆβ) |
110 | | peano2nn0 12508 |
. . . . . . . . . . . . 13
β’ (π β β0
β (π + 1) β
β0) |
111 | 100, 110 | syl 17 |
. . . . . . . . . . . 12
β’ (π β (0...(π β 1)) β (π + 1) β
β0) |
112 | 111 | adantl 482 |
. . . . . . . . . . 11
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β (π + 1) β
β0) |
113 | 109, 112 | ffvelcdmd 7084 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β (π΄β(π + 1)) β β) |
114 | 112 | nn0cnd 12530 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β (π + 1) β β) |
115 | | simplr 767 |
. . . . . . . . . . 11
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β π§ β β) |
116 | 115, 101 | expcld 14107 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β (π§βπ) β β) |
117 | 113, 114,
116 | mulassd 11233 |
. . . . . . . . 9
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β (((π΄β(π + 1)) Β· (π + 1)) Β· (π§βπ)) = ((π΄β(π + 1)) Β· ((π + 1) Β· (π§βπ)))) |
118 | 113, 114 | mulcomd 11231 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β ((π΄β(π + 1)) Β· (π + 1)) = ((π + 1) Β· (π΄β(π + 1)))) |
119 | 118 | oveq1d 7420 |
. . . . . . . . 9
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β (((π΄β(π + 1)) Β· (π + 1)) Β· (π§βπ)) = (((π + 1) Β· (π΄β(π + 1))) Β· (π§βπ))) |
120 | 108, 117,
119 | 3eqtr2d 2778 |
. . . . . . . 8
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β ((π΄β(π + 1)) Β· ((π + 1) Β· (π§β((π + 1) β 1)))) = (((π + 1) Β· (π΄β(π + 1))) Β· (π§βπ))) |
121 | 120 | sumeq2dv 15645 |
. . . . . . 7
β’ ((π β§ π§ β β) β Ξ£π β (0...(π β 1))((π΄β(π + 1)) Β· ((π + 1) Β· (π§β((π + 1) β 1)))) = Ξ£π β (0...(π β 1))(((π + 1) Β· (π΄β(π + 1))) Β· (π§βπ))) |
122 | | 1m1e0 12280 |
. . . . . . . . 9
β’ (1
β 1) = 0 |
123 | 122 | oveq1i 7415 |
. . . . . . . 8
β’ ((1
β 1)...(π β 1))
= (0...(π β
1)) |
124 | 123 | sumeq1i 15640 |
. . . . . . 7
β’
Ξ£π β ((1
β 1)...(π β
1))((π΄β(π + 1)) Β· ((π + 1) Β· (π§β((π + 1) β 1)))) = Ξ£π β (0...(π β 1))((π΄β(π + 1)) Β· ((π + 1) Β· (π§β((π + 1) β 1)))) |
125 | | oveq1 7412 |
. . . . . . . . . 10
β’ (π = π β (π + 1) = (π + 1)) |
126 | | fvoveq1 7428 |
. . . . . . . . . 10
β’ (π = π β (π΄β(π + 1)) = (π΄β(π + 1))) |
127 | 125, 126 | oveq12d 7423 |
. . . . . . . . 9
β’ (π = π β ((π + 1) Β· (π΄β(π + 1))) = ((π + 1) Β· (π΄β(π + 1)))) |
128 | | oveq2 7413 |
. . . . . . . . 9
β’ (π = π β (π§βπ) = (π§βπ)) |
129 | 127, 128 | oveq12d 7423 |
. . . . . . . 8
β’ (π = π β (((π + 1) Β· (π΄β(π + 1))) Β· (π§βπ)) = (((π + 1) Β· (π΄β(π + 1))) Β· (π§βπ))) |
130 | 129 | cbvsumv 15638 |
. . . . . . 7
β’
Ξ£π β
(0...(π β 1))(((π + 1) Β· (π΄β(π + 1))) Β· (π§βπ)) = Ξ£π β (0...(π β 1))(((π + 1) Β· (π΄β(π + 1))) Β· (π§βπ)) |
131 | 121, 124,
130 | 3eqtr4g 2797 |
. . . . . 6
β’ ((π β§ π§ β β) β Ξ£π β ((1 β 1)...(π β 1))((π΄β(π + 1)) Β· ((π + 1) Β· (π§β((π + 1) β 1)))) = Ξ£π β (0...(π β 1))(((π + 1) Β· (π΄β(π + 1))) Β· (π§βπ))) |
132 | | 1zzd 12589 |
. . . . . . 7
β’ ((π β§ π§ β β) β 1 β
β€) |
133 | 83 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π§ β β) β π β
β0) |
134 | 133 | nn0zd 12580 |
. . . . . . 7
β’ ((π β§ π§ β β) β π β β€) |
135 | 62, 72 | mulcld 11230 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β (1...π)) β ((π΄βπ) Β· (π Β· (π§β(π β 1)))) β
β) |
136 | | fveq2 6888 |
. . . . . . . 8
β’ (π = (π + 1) β (π΄βπ) = (π΄β(π + 1))) |
137 | | id 22 |
. . . . . . . . 9
β’ (π = (π + 1) β π = (π + 1)) |
138 | | oveq1 7412 |
. . . . . . . . . 10
β’ (π = (π + 1) β (π β 1) = ((π + 1) β 1)) |
139 | 138 | oveq2d 7421 |
. . . . . . . . 9
β’ (π = (π + 1) β (π§β(π β 1)) = (π§β((π + 1) β 1))) |
140 | 137, 139 | oveq12d 7423 |
. . . . . . . 8
β’ (π = (π + 1) β (π Β· (π§β(π β 1))) = ((π + 1) Β· (π§β((π + 1) β 1)))) |
141 | 136, 140 | oveq12d 7423 |
. . . . . . 7
β’ (π = (π + 1) β ((π΄βπ) Β· (π Β· (π§β(π β 1)))) = ((π΄β(π + 1)) Β· ((π + 1) Β· (π§β((π + 1) β 1))))) |
142 | 132, 132,
134, 135, 141 | fsumshftm 15723 |
. . . . . 6
β’ ((π β§ π§ β β) β Ξ£π β (1...π)((π΄βπ) Β· (π Β· (π§β(π β 1)))) = Ξ£π β ((1 β 1)...(π β 1))((π΄β(π + 1)) Β· ((π + 1) Β· (π§β((π + 1) β 1))))) |
143 | | elfznn0 13590 |
. . . . . . . . . 10
β’ (π β (0...(π β 1)) β π β β0) |
144 | 143 | adantl 482 |
. . . . . . . . 9
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β π β β0) |
145 | | ovex 7438 |
. . . . . . . . 9
β’ ((π + 1) Β· (π΄β(π + 1))) β V |
146 | | dvply1.b |
. . . . . . . . . 10
β’ π΅ = (π β β0 β¦ ((π + 1) Β· (π΄β(π + 1)))) |
147 | 146 | fvmpt2 7006 |
. . . . . . . . 9
β’ ((π β β0
β§ ((π + 1) Β·
(π΄β(π + 1))) β V) β (π΅βπ) = ((π + 1) Β· (π΄β(π + 1)))) |
148 | 144, 145,
147 | sylancl 586 |
. . . . . . . 8
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β (π΅βπ) = ((π + 1) Β· (π΄β(π + 1)))) |
149 | 148 | oveq1d 7420 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β (0...(π β 1))) β ((π΅βπ) Β· (π§βπ)) = (((π + 1) Β· (π΄β(π + 1))) Β· (π§βπ))) |
150 | 149 | sumeq2dv 15645 |
. . . . . 6
β’ ((π β§ π§ β β) β Ξ£π β (0...(π β 1))((π΅βπ) Β· (π§βπ)) = Ξ£π β (0...(π β 1))(((π + 1) Β· (π΄β(π + 1))) Β· (π§βπ))) |
151 | 131, 142,
150 | 3eqtr4d 2782 |
. . . . 5
β’ ((π β§ π§ β β) β Ξ£π β (1...π)((π΄βπ) Β· (π Β· (π§β(π β 1)))) = Ξ£π β (0...(π β 1))((π΅βπ) Β· (π§βπ))) |
152 | 56, 99, 151 | 3eqtr3d 2780 |
. . . 4
β’ ((π β§ π§ β β) β Ξ£π β (0...π)((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1))))) = Ξ£π β (0...(π β 1))((π΅βπ) Β· (π§βπ))) |
153 | 152 | mpteq2dva 5247 |
. . 3
β’ (π β (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1)))))) = (π§ β β β¦ Ξ£π β (0...(π β 1))((π΅βπ) Β· (π§βπ)))) |
154 | | dvply1.g |
. . 3
β’ (π β πΊ = (π§ β β β¦ Ξ£π β (0...(π β 1))((π΅βπ) Β· (π§βπ)))) |
155 | 153, 154 | eqtr4d 2775 |
. 2
β’ (π β (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· if(π = 0, 0, (π Β· (π§β(π β 1)))))) = πΊ) |
156 | 2, 49, 155 | 3eqtrd 2776 |
1
β’ (π β (β D πΉ) = πΊ) |