Step | Hyp | Ref
| Expression |
1 | | tglineintmo.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
2 | | tglineintmo.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
3 | | tglineintmo.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
4 | | tglineintmo.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | ad4antr 731 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝐺 ∈ TarskiG) |
6 | | colline.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
7 | 6 | ad4antr 731 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑋 ∈ 𝑃) |
8 | | simplr 768 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑥 ∈ 𝑃) |
9 | | simpr 488 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑋 ≠ 𝑥) |
10 | 1, 2, 3, 5, 7, 8, 9 | tgelrnln 26523 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → (𝑋𝐿𝑥) ∈ ran 𝐿) |
11 | 1, 2, 3, 5, 7, 8, 9 | tglinerflx1 26526 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑋 ∈ (𝑋𝐿𝑥)) |
12 | | simp-4r 783 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑌 = 𝑍) |
13 | | simpllr 775 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑋 = 𝑍) |
14 | 13, 11 | eqeltrrd 2853 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑍 ∈ (𝑋𝐿𝑥)) |
15 | 12, 14 | eqeltrd 2852 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑌 ∈ (𝑋𝐿𝑥)) |
16 | | eleq2 2840 |
. . . . . . . . 9
⊢ (𝑎 = (𝑋𝐿𝑥) → (𝑋 ∈ 𝑎 ↔ 𝑋 ∈ (𝑋𝐿𝑥))) |
17 | | eleq2 2840 |
. . . . . . . . 9
⊢ (𝑎 = (𝑋𝐿𝑥) → (𝑌 ∈ 𝑎 ↔ 𝑌 ∈ (𝑋𝐿𝑥))) |
18 | | eleq2 2840 |
. . . . . . . . 9
⊢ (𝑎 = (𝑋𝐿𝑥) → (𝑍 ∈ 𝑎 ↔ 𝑍 ∈ (𝑋𝐿𝑥))) |
19 | 16, 17, 18 | 3anbi123d 1433 |
. . . . . . . 8
⊢ (𝑎 = (𝑋𝐿𝑥) → ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥)))) |
20 | 19 | rspcev 3541 |
. . . . . . 7
⊢ (((𝑋𝐿𝑥) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥))) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
21 | 10, 11, 15, 14, 20 | syl13anc 1369 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
22 | | eqid 2758 |
. . . . . . . 8
⊢
(dist‘𝐺) =
(dist‘𝐺) |
23 | | colline.4 |
. . . . . . . 8
⊢ (𝜑 → 2 ≤
(♯‘𝑃)) |
24 | 1, 22, 2, 4, 23, 6 | tglowdim1i 26394 |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝑋 ≠ 𝑥) |
25 | 24 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑥 ∈ 𝑃 𝑋 ≠ 𝑥) |
26 | 21, 25 | r19.29a 3213 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
27 | 4 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝐺 ∈ TarskiG) |
28 | 6 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑋 ∈ 𝑃) |
29 | | colline.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ 𝑃) |
30 | 29 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑍 ∈ 𝑃) |
31 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑋 ≠ 𝑍) |
32 | 1, 2, 3, 27, 28, 30, 31 | tgelrnln 26523 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → (𝑋𝐿𝑍) ∈ ran 𝐿) |
33 | 1, 2, 3, 27, 28, 30, 31 | tglinerflx1 26526 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑋 ∈ (𝑋𝐿𝑍)) |
34 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑌 = 𝑍) |
35 | 1, 2, 3, 27, 28, 30, 31 | tglinerflx2 26527 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑍 ∈ (𝑋𝐿𝑍)) |
36 | 34, 35 | eqeltrd 2852 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑌 ∈ (𝑋𝐿𝑍)) |
37 | | eleq2 2840 |
. . . . . . . 8
⊢ (𝑎 = (𝑋𝐿𝑍) → (𝑋 ∈ 𝑎 ↔ 𝑋 ∈ (𝑋𝐿𝑍))) |
38 | | eleq2 2840 |
. . . . . . . 8
⊢ (𝑎 = (𝑋𝐿𝑍) → (𝑌 ∈ 𝑎 ↔ 𝑌 ∈ (𝑋𝐿𝑍))) |
39 | | eleq2 2840 |
. . . . . . . 8
⊢ (𝑎 = (𝑋𝐿𝑍) → (𝑍 ∈ 𝑎 ↔ 𝑍 ∈ (𝑋𝐿𝑍))) |
40 | 37, 38, 39 | 3anbi123d 1433 |
. . . . . . 7
⊢ (𝑎 = (𝑋𝐿𝑍) → ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍)))) |
41 | 40 | rspcev 3541 |
. . . . . 6
⊢ (((𝑋𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
42 | 32, 33, 36, 35, 41 | syl13anc 1369 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
43 | 26, 42 | pm2.61dane 3038 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
44 | 43 | adantlr 714 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
45 | | simpll 766 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝜑) |
46 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ≠ 𝑍) |
47 | 46 | neneqd 2956 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → ¬ 𝑌 = 𝑍) |
48 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
49 | | orel2 888 |
. . . . . 6
⊢ (¬
𝑌 = 𝑍 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) → 𝑋 ∈ (𝑌𝐿𝑍))) |
50 | 47, 48, 49 | sylc 65 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ (𝑌𝐿𝑍)) |
51 | 4 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝐺 ∈ TarskiG) |
52 | | colline.2 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
53 | 52 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑃) |
54 | 29 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ 𝑃) |
55 | | simpr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ≠ 𝑍) |
56 | 1, 2, 3, 51, 53, 54, 55 | tgelrnln 26523 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿) |
57 | 45, 50, 46, 56 | syl21anc 836 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿) |
58 | 1, 2, 3, 51, 53, 54, 55 | tglinerflx1 26526 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ (𝑌𝐿𝑍)) |
59 | 45, 50, 46, 58 | syl21anc 836 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ (𝑌𝐿𝑍)) |
60 | 1, 2, 3, 51, 53, 54, 55 | tglinerflx2 26527 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ (𝑌𝐿𝑍)) |
61 | 45, 50, 46, 60 | syl21anc 836 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ (𝑌𝐿𝑍)) |
62 | | eleq2 2840 |
. . . . . 6
⊢ (𝑎 = (𝑌𝐿𝑍) → (𝑋 ∈ 𝑎 ↔ 𝑋 ∈ (𝑌𝐿𝑍))) |
63 | | eleq2 2840 |
. . . . . 6
⊢ (𝑎 = (𝑌𝐿𝑍) → (𝑌 ∈ 𝑎 ↔ 𝑌 ∈ (𝑌𝐿𝑍))) |
64 | | eleq2 2840 |
. . . . . 6
⊢ (𝑎 = (𝑌𝐿𝑍) → (𝑍 ∈ 𝑎 ↔ 𝑍 ∈ (𝑌𝐿𝑍))) |
65 | 62, 63, 64 | 3anbi123d 1433 |
. . . . 5
⊢ (𝑎 = (𝑌𝐿𝑍) → ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎) ↔ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍)))) |
66 | 65 | rspcev 3541 |
. . . 4
⊢ (((𝑌𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
67 | 57, 50, 59, 61, 66 | syl13anc 1369 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
68 | 44, 67 | pm2.61dane 3038 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
69 | | df-ne 2952 |
. . . . . 6
⊢ (𝑌 ≠ 𝑍 ↔ ¬ 𝑌 = 𝑍) |
70 | | simplr1 1212 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ 𝑎) |
71 | 4 | ad3antrrr 729 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝐺 ∈ TarskiG) |
72 | 52 | ad3antrrr 729 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑃) |
73 | 29 | ad3antrrr 729 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ 𝑃) |
74 | | simpr 488 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ≠ 𝑍) |
75 | | simpllr 775 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑎 ∈ ran 𝐿) |
76 | | simplr2 1213 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑎) |
77 | | simplr3 1214 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ 𝑎) |
78 | 1, 2, 3, 71, 72, 73, 74, 74, 75, 76, 77 | tglinethru 26529 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑎 = (𝑌𝐿𝑍)) |
79 | 70, 78 | eleqtrd 2854 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ (𝑌𝐿𝑍)) |
80 | 79 | ex 416 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) → (𝑌 ≠ 𝑍 → 𝑋 ∈ (𝑌𝐿𝑍))) |
81 | 69, 80 | syl5bir 246 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) → (¬ 𝑌 = 𝑍 → 𝑋 ∈ (𝑌𝐿𝑍))) |
82 | 81 | orrd 860 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) → (𝑌 = 𝑍 ∨ 𝑋 ∈ (𝑌𝐿𝑍))) |
83 | 82 | orcomd 868 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
84 | 83 | r19.29an 3212 |
. 2
⊢ ((𝜑 ∧ ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
85 | 68, 84 | impbida 800 |
1
⊢ (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎))) |