MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colline Structured version   Visualization version   GIF version

Theorem colline 28576
Description: Three points are colinear iff there is a line through all three of them. Theorem 6.23 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 28-May-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
colline.1 (𝜑𝑋𝑃)
colline.2 (𝜑𝑌𝑃)
colline.3 (𝜑𝑍𝑃)
colline.4 (𝜑 → 2 ≤ (♯‘𝑃))
Assertion
Ref Expression
colline (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)))
Distinct variable groups:   𝐿,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎   𝜑,𝑎
Allowed substitution hints:   𝑃(𝑎)   𝐺(𝑎)   𝐼(𝑎)

Proof of Theorem colline
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad4antr 732 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝐺 ∈ TarskiG)
6 colline.1 . . . . . . . . 9 (𝜑𝑋𝑃)
76ad4antr 732 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋𝑃)
8 simplr 768 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑥𝑃)
9 simpr 484 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋𝑥)
101, 2, 3, 5, 7, 8, 9tgelrnln 28557 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → (𝑋𝐿𝑥) ∈ ran 𝐿)
111, 2, 3, 5, 7, 8, 9tglinerflx1 28560 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋 ∈ (𝑋𝐿𝑥))
12 simp-4r 783 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑌 = 𝑍)
13 simpllr 775 . . . . . . . . 9 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋 = 𝑍)
1413, 11eqeltrrd 2829 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑍 ∈ (𝑋𝐿𝑥))
1512, 14eqeltrd 2828 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑌 ∈ (𝑋𝐿𝑥))
16 eleq2 2817 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑋𝑎𝑋 ∈ (𝑋𝐿𝑥)))
17 eleq2 2817 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑌𝑎𝑌 ∈ (𝑋𝐿𝑥)))
18 eleq2 2817 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑍𝑎𝑍 ∈ (𝑋𝐿𝑥)))
1916, 17, 183anbi123d 1438 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑥) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥))))
2019rspcev 3588 . . . . . . 7 (((𝑋𝐿𝑥) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
2110, 11, 15, 14, 20syl13anc 1374 . . . . . 6 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
22 eqid 2729 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
23 colline.4 . . . . . . . 8 (𝜑 → 2 ≤ (♯‘𝑃))
241, 22, 2, 4, 23, 6tglowdim1i 28428 . . . . . . 7 (𝜑 → ∃𝑥𝑃 𝑋𝑥)
2524ad2antrr 726 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑥𝑃 𝑋𝑥)
2621, 25r19.29a 3141 . . . . 5 (((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
274ad2antrr 726 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝐺 ∈ TarskiG)
286ad2antrr 726 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋𝑃)
29 colline.3 . . . . . . . 8 (𝜑𝑍𝑃)
3029ad2antrr 726 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑍𝑃)
31 simpr 484 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋𝑍)
321, 2, 3, 27, 28, 30, 31tgelrnln 28557 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → (𝑋𝐿𝑍) ∈ ran 𝐿)
331, 2, 3, 27, 28, 30, 31tglinerflx1 28560 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋 ∈ (𝑋𝐿𝑍))
34 simplr 768 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑌 = 𝑍)
351, 2, 3, 27, 28, 30, 31tglinerflx2 28561 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑍 ∈ (𝑋𝐿𝑍))
3634, 35eqeltrd 2828 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑌 ∈ (𝑋𝐿𝑍))
37 eleq2 2817 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑋𝑎𝑋 ∈ (𝑋𝐿𝑍)))
38 eleq2 2817 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑌𝑎𝑌 ∈ (𝑋𝐿𝑍)))
39 eleq2 2817 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑍𝑎𝑍 ∈ (𝑋𝐿𝑍)))
4037, 38, 393anbi123d 1438 . . . . . . 7 (𝑎 = (𝑋𝐿𝑍) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍))))
4140rspcev 3588 . . . . . 6 (((𝑋𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4232, 33, 36, 35, 41syl13anc 1374 . . . . 5 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4326, 42pm2.61dane 3012 . . . 4 ((𝜑𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4443adantlr 715 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
45 simpll 766 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝜑)
46 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑌𝑍)
4746neneqd 2930 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → ¬ 𝑌 = 𝑍)
48 simplr 768 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
49 orel2 890 . . . . . 6 𝑌 = 𝑍 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) → 𝑋 ∈ (𝑌𝐿𝑍)))
5047, 48, 49sylc 65 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑋 ∈ (𝑌𝐿𝑍))
514ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝐺 ∈ TarskiG)
52 colline.2 . . . . . . 7 (𝜑𝑌𝑃)
5352ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌𝑃)
5429ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑍𝑃)
55 simpr 484 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌𝑍)
561, 2, 3, 51, 53, 54, 55tgelrnln 28557 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿)
5745, 50, 46, 56syl21anc 837 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿)
581, 2, 3, 51, 53, 54, 55tglinerflx1 28560 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌 ∈ (𝑌𝐿𝑍))
5945, 50, 46, 58syl21anc 837 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑌 ∈ (𝑌𝐿𝑍))
601, 2, 3, 51, 53, 54, 55tglinerflx2 28561 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑍 ∈ (𝑌𝐿𝑍))
6145, 50, 46, 60syl21anc 837 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑍 ∈ (𝑌𝐿𝑍))
62 eleq2 2817 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑋𝑎𝑋 ∈ (𝑌𝐿𝑍)))
63 eleq2 2817 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑌𝑎𝑌 ∈ (𝑌𝐿𝑍)))
64 eleq2 2817 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑍𝑎𝑍 ∈ (𝑌𝐿𝑍)))
6562, 63, 643anbi123d 1438 . . . . 5 (𝑎 = (𝑌𝐿𝑍) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍))))
6665rspcev 3588 . . . 4 (((𝑌𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
6757, 50, 59, 61, 66syl13anc 1374 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
6844, 67pm2.61dane 3012 . 2 ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
69 df-ne 2926 . . . . . 6 (𝑌𝑍 ↔ ¬ 𝑌 = 𝑍)
70 simplr1 1216 . . . . . . . 8 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑋𝑎)
714ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝐺 ∈ TarskiG)
7252ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑃)
7329ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑍𝑃)
74 simpr 484 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑍)
75 simpllr 775 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑎 ∈ ran 𝐿)
76 simplr2 1217 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑎)
77 simplr3 1218 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑍𝑎)
781, 2, 3, 71, 72, 73, 74, 74, 75, 76, 77tglinethru 28563 . . . . . . . 8 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑎 = (𝑌𝐿𝑍))
7970, 78eleqtrd 2830 . . . . . . 7 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑋 ∈ (𝑌𝐿𝑍))
8079ex 412 . . . . . 6 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑌𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8169, 80biimtrrid 243 . . . . 5 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (¬ 𝑌 = 𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8281orrd 863 . . . 4 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑌 = 𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8382orcomd 871 . . 3 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
8483r19.29an 3137 . 2 ((𝜑 ∧ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
8568, 84impbida 800 1 (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  ran crn 5639  cfv 6511  (class class class)co 7387  cle 11209  2c2 12241  chash 14295  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380  df-cgrg 28438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator