MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colline Structured version   Visualization version   GIF version

Theorem colline 28675
Description: Three points are colinear iff there is a line through all three of them. Theorem 6.23 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 28-May-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
colline.1 (𝜑𝑋𝑃)
colline.2 (𝜑𝑌𝑃)
colline.3 (𝜑𝑍𝑃)
colline.4 (𝜑 → 2 ≤ (♯‘𝑃))
Assertion
Ref Expression
colline (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)))
Distinct variable groups:   𝐿,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎   𝜑,𝑎
Allowed substitution hints:   𝑃(𝑎)   𝐺(𝑎)   𝐼(𝑎)

Proof of Theorem colline
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad4antr 731 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝐺 ∈ TarskiG)
6 colline.1 . . . . . . . . 9 (𝜑𝑋𝑃)
76ad4antr 731 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋𝑃)
8 simplr 768 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑥𝑃)
9 simpr 484 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋𝑥)
101, 2, 3, 5, 7, 8, 9tgelrnln 28656 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → (𝑋𝐿𝑥) ∈ ran 𝐿)
111, 2, 3, 5, 7, 8, 9tglinerflx1 28659 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋 ∈ (𝑋𝐿𝑥))
12 simp-4r 783 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑌 = 𝑍)
13 simpllr 775 . . . . . . . . 9 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋 = 𝑍)
1413, 11eqeltrrd 2845 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑍 ∈ (𝑋𝐿𝑥))
1512, 14eqeltrd 2844 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑌 ∈ (𝑋𝐿𝑥))
16 eleq2 2833 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑋𝑎𝑋 ∈ (𝑋𝐿𝑥)))
17 eleq2 2833 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑌𝑎𝑌 ∈ (𝑋𝐿𝑥)))
18 eleq2 2833 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑍𝑎𝑍 ∈ (𝑋𝐿𝑥)))
1916, 17, 183anbi123d 1436 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑥) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥))))
2019rspcev 3635 . . . . . . 7 (((𝑋𝐿𝑥) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
2110, 11, 15, 14, 20syl13anc 1372 . . . . . 6 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
22 eqid 2740 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
23 colline.4 . . . . . . . 8 (𝜑 → 2 ≤ (♯‘𝑃))
241, 22, 2, 4, 23, 6tglowdim1i 28527 . . . . . . 7 (𝜑 → ∃𝑥𝑃 𝑋𝑥)
2524ad2antrr 725 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑥𝑃 𝑋𝑥)
2621, 25r19.29a 3168 . . . . 5 (((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
274ad2antrr 725 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝐺 ∈ TarskiG)
286ad2antrr 725 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋𝑃)
29 colline.3 . . . . . . . 8 (𝜑𝑍𝑃)
3029ad2antrr 725 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑍𝑃)
31 simpr 484 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋𝑍)
321, 2, 3, 27, 28, 30, 31tgelrnln 28656 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → (𝑋𝐿𝑍) ∈ ran 𝐿)
331, 2, 3, 27, 28, 30, 31tglinerflx1 28659 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋 ∈ (𝑋𝐿𝑍))
34 simplr 768 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑌 = 𝑍)
351, 2, 3, 27, 28, 30, 31tglinerflx2 28660 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑍 ∈ (𝑋𝐿𝑍))
3634, 35eqeltrd 2844 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑌 ∈ (𝑋𝐿𝑍))
37 eleq2 2833 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑋𝑎𝑋 ∈ (𝑋𝐿𝑍)))
38 eleq2 2833 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑌𝑎𝑌 ∈ (𝑋𝐿𝑍)))
39 eleq2 2833 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑍𝑎𝑍 ∈ (𝑋𝐿𝑍)))
4037, 38, 393anbi123d 1436 . . . . . . 7 (𝑎 = (𝑋𝐿𝑍) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍))))
4140rspcev 3635 . . . . . 6 (((𝑋𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4232, 33, 36, 35, 41syl13anc 1372 . . . . 5 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4326, 42pm2.61dane 3035 . . . 4 ((𝜑𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4443adantlr 714 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
45 simpll 766 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝜑)
46 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑌𝑍)
4746neneqd 2951 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → ¬ 𝑌 = 𝑍)
48 simplr 768 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
49 orel2 889 . . . . . 6 𝑌 = 𝑍 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) → 𝑋 ∈ (𝑌𝐿𝑍)))
5047, 48, 49sylc 65 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑋 ∈ (𝑌𝐿𝑍))
514ad2antrr 725 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝐺 ∈ TarskiG)
52 colline.2 . . . . . . 7 (𝜑𝑌𝑃)
5352ad2antrr 725 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌𝑃)
5429ad2antrr 725 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑍𝑃)
55 simpr 484 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌𝑍)
561, 2, 3, 51, 53, 54, 55tgelrnln 28656 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿)
5745, 50, 46, 56syl21anc 837 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿)
581, 2, 3, 51, 53, 54, 55tglinerflx1 28659 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌 ∈ (𝑌𝐿𝑍))
5945, 50, 46, 58syl21anc 837 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑌 ∈ (𝑌𝐿𝑍))
601, 2, 3, 51, 53, 54, 55tglinerflx2 28660 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑍 ∈ (𝑌𝐿𝑍))
6145, 50, 46, 60syl21anc 837 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑍 ∈ (𝑌𝐿𝑍))
62 eleq2 2833 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑋𝑎𝑋 ∈ (𝑌𝐿𝑍)))
63 eleq2 2833 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑌𝑎𝑌 ∈ (𝑌𝐿𝑍)))
64 eleq2 2833 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑍𝑎𝑍 ∈ (𝑌𝐿𝑍)))
6562, 63, 643anbi123d 1436 . . . . 5 (𝑎 = (𝑌𝐿𝑍) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍))))
6665rspcev 3635 . . . 4 (((𝑌𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
6757, 50, 59, 61, 66syl13anc 1372 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
6844, 67pm2.61dane 3035 . 2 ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
69 df-ne 2947 . . . . . 6 (𝑌𝑍 ↔ ¬ 𝑌 = 𝑍)
70 simplr1 1215 . . . . . . . 8 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑋𝑎)
714ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝐺 ∈ TarskiG)
7252ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑃)
7329ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑍𝑃)
74 simpr 484 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑍)
75 simpllr 775 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑎 ∈ ran 𝐿)
76 simplr2 1216 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑎)
77 simplr3 1217 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑍𝑎)
781, 2, 3, 71, 72, 73, 74, 74, 75, 76, 77tglinethru 28662 . . . . . . . 8 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑎 = (𝑌𝐿𝑍))
7970, 78eleqtrd 2846 . . . . . . 7 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑋 ∈ (𝑌𝐿𝑍))
8079ex 412 . . . . . 6 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑌𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8169, 80biimtrrid 243 . . . . 5 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (¬ 𝑌 = 𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8281orrd 862 . . . 4 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑌 = 𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8382orcomd 870 . . 3 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
8483r19.29an 3164 . 2 ((𝜑 ∧ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
8568, 84impbida 800 1 (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  ran crn 5701  cfv 6573  (class class class)co 7448  cle 11325  2c2 12348  chash 14379  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator