| Step | Hyp | Ref
| Expression |
| 1 | | tglineintmo.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | tglineintmo.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
| 3 | | tglineintmo.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
| 4 | | tglineintmo.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | 4 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝐺 ∈ TarskiG) |
| 6 | | colline.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 7 | 6 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑋 ∈ 𝑃) |
| 8 | | simplr 769 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑥 ∈ 𝑃) |
| 9 | | simpr 484 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑋 ≠ 𝑥) |
| 10 | 1, 2, 3, 5, 7, 8, 9 | tgelrnln 28638 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → (𝑋𝐿𝑥) ∈ ran 𝐿) |
| 11 | 1, 2, 3, 5, 7, 8, 9 | tglinerflx1 28641 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑋 ∈ (𝑋𝐿𝑥)) |
| 12 | | simp-4r 784 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑌 = 𝑍) |
| 13 | | simpllr 776 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑋 = 𝑍) |
| 14 | 13, 11 | eqeltrrd 2842 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑍 ∈ (𝑋𝐿𝑥)) |
| 15 | 12, 14 | eqeltrd 2841 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → 𝑌 ∈ (𝑋𝐿𝑥)) |
| 16 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑎 = (𝑋𝐿𝑥) → (𝑋 ∈ 𝑎 ↔ 𝑋 ∈ (𝑋𝐿𝑥))) |
| 17 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑎 = (𝑋𝐿𝑥) → (𝑌 ∈ 𝑎 ↔ 𝑌 ∈ (𝑋𝐿𝑥))) |
| 18 | | eleq2 2830 |
. . . . . . . . 9
⊢ (𝑎 = (𝑋𝐿𝑥) → (𝑍 ∈ 𝑎 ↔ 𝑍 ∈ (𝑋𝐿𝑥))) |
| 19 | 16, 17, 18 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝑎 = (𝑋𝐿𝑥) → ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥)))) |
| 20 | 19 | rspcev 3622 |
. . . . . . 7
⊢ (((𝑋𝐿𝑥) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥))) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
| 21 | 10, 11, 15, 14, 20 | syl13anc 1374 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥 ∈ 𝑃) ∧ 𝑋 ≠ 𝑥) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
| 22 | | eqid 2737 |
. . . . . . . 8
⊢
(dist‘𝐺) =
(dist‘𝐺) |
| 23 | | colline.4 |
. . . . . . . 8
⊢ (𝜑 → 2 ≤
(♯‘𝑃)) |
| 24 | 1, 22, 2, 4, 23, 6 | tglowdim1i 28509 |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝑋 ≠ 𝑥) |
| 25 | 24 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑥 ∈ 𝑃 𝑋 ≠ 𝑥) |
| 26 | 21, 25 | r19.29a 3162 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
| 27 | 4 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝐺 ∈ TarskiG) |
| 28 | 6 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑋 ∈ 𝑃) |
| 29 | | colline.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| 30 | 29 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑍 ∈ 𝑃) |
| 31 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑋 ≠ 𝑍) |
| 32 | 1, 2, 3, 27, 28, 30, 31 | tgelrnln 28638 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → (𝑋𝐿𝑍) ∈ ran 𝐿) |
| 33 | 1, 2, 3, 27, 28, 30, 31 | tglinerflx1 28641 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑋 ∈ (𝑋𝐿𝑍)) |
| 34 | | simplr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑌 = 𝑍) |
| 35 | 1, 2, 3, 27, 28, 30, 31 | tglinerflx2 28642 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑍 ∈ (𝑋𝐿𝑍)) |
| 36 | 34, 35 | eqeltrd 2841 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → 𝑌 ∈ (𝑋𝐿𝑍)) |
| 37 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑎 = (𝑋𝐿𝑍) → (𝑋 ∈ 𝑎 ↔ 𝑋 ∈ (𝑋𝐿𝑍))) |
| 38 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑎 = (𝑋𝐿𝑍) → (𝑌 ∈ 𝑎 ↔ 𝑌 ∈ (𝑋𝐿𝑍))) |
| 39 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑎 = (𝑋𝐿𝑍) → (𝑍 ∈ 𝑎 ↔ 𝑍 ∈ (𝑋𝐿𝑍))) |
| 40 | 37, 38, 39 | 3anbi123d 1438 |
. . . . . . 7
⊢ (𝑎 = (𝑋𝐿𝑍) → ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍)))) |
| 41 | 40 | rspcev 3622 |
. . . . . 6
⊢ (((𝑋𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
| 42 | 32, 33, 36, 35, 41 | syl13anc 1374 |
. . . . 5
⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑋 ≠ 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
| 43 | 26, 42 | pm2.61dane 3029 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
| 44 | 43 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
| 45 | | simpll 767 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝜑) |
| 46 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ≠ 𝑍) |
| 47 | 46 | neneqd 2945 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → ¬ 𝑌 = 𝑍) |
| 48 | | simplr 769 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
| 49 | | orel2 891 |
. . . . . 6
⊢ (¬
𝑌 = 𝑍 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) → 𝑋 ∈ (𝑌𝐿𝑍))) |
| 50 | 47, 48, 49 | sylc 65 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ (𝑌𝐿𝑍)) |
| 51 | 4 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝐺 ∈ TarskiG) |
| 52 | | colline.2 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 53 | 52 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑃) |
| 54 | 29 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ 𝑃) |
| 55 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ≠ 𝑍) |
| 56 | 1, 2, 3, 51, 53, 54, 55 | tgelrnln 28638 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿) |
| 57 | 45, 50, 46, 56 | syl21anc 838 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿) |
| 58 | 1, 2, 3, 51, 53, 54, 55 | tglinerflx1 28641 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ (𝑌𝐿𝑍)) |
| 59 | 45, 50, 46, 58 | syl21anc 838 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ (𝑌𝐿𝑍)) |
| 60 | 1, 2, 3, 51, 53, 54, 55 | tglinerflx2 28642 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ (𝑌𝐿𝑍)) |
| 61 | 45, 50, 46, 60 | syl21anc 838 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ (𝑌𝐿𝑍)) |
| 62 | | eleq2 2830 |
. . . . . 6
⊢ (𝑎 = (𝑌𝐿𝑍) → (𝑋 ∈ 𝑎 ↔ 𝑋 ∈ (𝑌𝐿𝑍))) |
| 63 | | eleq2 2830 |
. . . . . 6
⊢ (𝑎 = (𝑌𝐿𝑍) → (𝑌 ∈ 𝑎 ↔ 𝑌 ∈ (𝑌𝐿𝑍))) |
| 64 | | eleq2 2830 |
. . . . . 6
⊢ (𝑎 = (𝑌𝐿𝑍) → (𝑍 ∈ 𝑎 ↔ 𝑍 ∈ (𝑌𝐿𝑍))) |
| 65 | 62, 63, 64 | 3anbi123d 1438 |
. . . . 5
⊢ (𝑎 = (𝑌𝐿𝑍) → ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎) ↔ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍)))) |
| 66 | 65 | rspcev 3622 |
. . . 4
⊢ (((𝑌𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
| 67 | 57, 50, 59, 61, 66 | syl13anc 1374 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 ≠ 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
| 68 | 44, 67 | pm2.61dane 3029 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) |
| 69 | | df-ne 2941 |
. . . . . 6
⊢ (𝑌 ≠ 𝑍 ↔ ¬ 𝑌 = 𝑍) |
| 70 | | simplr1 1216 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ 𝑎) |
| 71 | 4 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝐺 ∈ TarskiG) |
| 72 | 52 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑃) |
| 73 | 29 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ 𝑃) |
| 74 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ≠ 𝑍) |
| 75 | | simpllr 776 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑎 ∈ ran 𝐿) |
| 76 | | simplr2 1217 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑌 ∈ 𝑎) |
| 77 | | simplr3 1218 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑍 ∈ 𝑎) |
| 78 | 1, 2, 3, 71, 72, 73, 74, 74, 75, 76, 77 | tglinethru 28644 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑎 = (𝑌𝐿𝑍)) |
| 79 | 70, 78 | eleqtrd 2843 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) ∧ 𝑌 ≠ 𝑍) → 𝑋 ∈ (𝑌𝐿𝑍)) |
| 80 | 79 | ex 412 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) → (𝑌 ≠ 𝑍 → 𝑋 ∈ (𝑌𝐿𝑍))) |
| 81 | 69, 80 | biimtrrid 243 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) → (¬ 𝑌 = 𝑍 → 𝑋 ∈ (𝑌𝐿𝑍))) |
| 82 | 81 | orrd 864 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) → (𝑌 = 𝑍 ∨ 𝑋 ∈ (𝑌𝐿𝑍))) |
| 83 | 82 | orcomd 872 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ ran 𝐿) ∧ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
| 84 | 83 | r19.29an 3158 |
. 2
⊢ ((𝜑 ∧ ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) |
| 85 | 68, 84 | impbida 801 |
1
⊢ (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑎 ∧ 𝑍 ∈ 𝑎))) |