MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colline Structured version   Visualization version   GIF version

Theorem colline 27879
Description: Three points are colinear iff there is a line through all three of them. Theorem 6.23 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 28-May-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
colline.1 (𝜑𝑋𝑃)
colline.2 (𝜑𝑌𝑃)
colline.3 (𝜑𝑍𝑃)
colline.4 (𝜑 → 2 ≤ (♯‘𝑃))
Assertion
Ref Expression
colline (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)))
Distinct variable groups:   𝐿,𝑎   𝑋,𝑎   𝑌,𝑎   𝑍,𝑎   𝜑,𝑎
Allowed substitution hints:   𝑃(𝑎)   𝐺(𝑎)   𝐼(𝑎)

Proof of Theorem colline
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54ad4antr 731 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝐺 ∈ TarskiG)
6 colline.1 . . . . . . . . 9 (𝜑𝑋𝑃)
76ad4antr 731 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋𝑃)
8 simplr 768 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑥𝑃)
9 simpr 486 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋𝑥)
101, 2, 3, 5, 7, 8, 9tgelrnln 27860 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → (𝑋𝐿𝑥) ∈ ran 𝐿)
111, 2, 3, 5, 7, 8, 9tglinerflx1 27863 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋 ∈ (𝑋𝐿𝑥))
12 simp-4r 783 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑌 = 𝑍)
13 simpllr 775 . . . . . . . . 9 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑋 = 𝑍)
1413, 11eqeltrrd 2835 . . . . . . . 8 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑍 ∈ (𝑋𝐿𝑥))
1512, 14eqeltrd 2834 . . . . . . 7 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → 𝑌 ∈ (𝑋𝐿𝑥))
16 eleq2 2823 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑋𝑎𝑋 ∈ (𝑋𝐿𝑥)))
17 eleq2 2823 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑌𝑎𝑌 ∈ (𝑋𝐿𝑥)))
18 eleq2 2823 . . . . . . . . 9 (𝑎 = (𝑋𝐿𝑥) → (𝑍𝑎𝑍 ∈ (𝑋𝐿𝑥)))
1916, 17, 183anbi123d 1437 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑥) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥))))
2019rspcev 3611 . . . . . . 7 (((𝑋𝐿𝑥) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑥) ∧ 𝑌 ∈ (𝑋𝐿𝑥) ∧ 𝑍 ∈ (𝑋𝐿𝑥))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
2110, 11, 15, 14, 20syl13anc 1373 . . . . . 6 (((((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) ∧ 𝑥𝑃) ∧ 𝑋𝑥) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
22 eqid 2733 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
23 colline.4 . . . . . . . 8 (𝜑 → 2 ≤ (♯‘𝑃))
241, 22, 2, 4, 23, 6tglowdim1i 27731 . . . . . . 7 (𝜑 → ∃𝑥𝑃 𝑋𝑥)
2524ad2antrr 725 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑥𝑃 𝑋𝑥)
2621, 25r19.29a 3163 . . . . 5 (((𝜑𝑌 = 𝑍) ∧ 𝑋 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
274ad2antrr 725 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝐺 ∈ TarskiG)
286ad2antrr 725 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋𝑃)
29 colline.3 . . . . . . . 8 (𝜑𝑍𝑃)
3029ad2antrr 725 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑍𝑃)
31 simpr 486 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋𝑍)
321, 2, 3, 27, 28, 30, 31tgelrnln 27860 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → (𝑋𝐿𝑍) ∈ ran 𝐿)
331, 2, 3, 27, 28, 30, 31tglinerflx1 27863 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑋 ∈ (𝑋𝐿𝑍))
34 simplr 768 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑌 = 𝑍)
351, 2, 3, 27, 28, 30, 31tglinerflx2 27864 . . . . . . 7 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑍 ∈ (𝑋𝐿𝑍))
3634, 35eqeltrd 2834 . . . . . 6 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → 𝑌 ∈ (𝑋𝐿𝑍))
37 eleq2 2823 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑋𝑎𝑋 ∈ (𝑋𝐿𝑍)))
38 eleq2 2823 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑌𝑎𝑌 ∈ (𝑋𝐿𝑍)))
39 eleq2 2823 . . . . . . . 8 (𝑎 = (𝑋𝐿𝑍) → (𝑍𝑎𝑍 ∈ (𝑋𝐿𝑍)))
4037, 38, 393anbi123d 1437 . . . . . . 7 (𝑎 = (𝑋𝐿𝑍) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍))))
4140rspcev 3611 . . . . . 6 (((𝑋𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑋𝐿𝑍) ∧ 𝑌 ∈ (𝑋𝐿𝑍) ∧ 𝑍 ∈ (𝑋𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4232, 33, 36, 35, 41syl13anc 1373 . . . . 5 (((𝜑𝑌 = 𝑍) ∧ 𝑋𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4326, 42pm2.61dane 3030 . . . 4 ((𝜑𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
4443adantlr 714 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌 = 𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
45 simpll 766 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝜑)
46 simpr 486 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑌𝑍)
4746neneqd 2946 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → ¬ 𝑌 = 𝑍)
48 simplr 768 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
49 orel2 890 . . . . . 6 𝑌 = 𝑍 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) → 𝑋 ∈ (𝑌𝐿𝑍)))
5047, 48, 49sylc 65 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑋 ∈ (𝑌𝐿𝑍))
514ad2antrr 725 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝐺 ∈ TarskiG)
52 colline.2 . . . . . . 7 (𝜑𝑌𝑃)
5352ad2antrr 725 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌𝑃)
5429ad2antrr 725 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑍𝑃)
55 simpr 486 . . . . . 6 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌𝑍)
561, 2, 3, 51, 53, 54, 55tgelrnln 27860 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿)
5745, 50, 46, 56syl21anc 837 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → (𝑌𝐿𝑍) ∈ ran 𝐿)
581, 2, 3, 51, 53, 54, 55tglinerflx1 27863 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑌 ∈ (𝑌𝐿𝑍))
5945, 50, 46, 58syl21anc 837 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑌 ∈ (𝑌𝐿𝑍))
601, 2, 3, 51, 53, 54, 55tglinerflx2 27864 . . . . 5 (((𝜑𝑋 ∈ (𝑌𝐿𝑍)) ∧ 𝑌𝑍) → 𝑍 ∈ (𝑌𝐿𝑍))
6145, 50, 46, 60syl21anc 837 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → 𝑍 ∈ (𝑌𝐿𝑍))
62 eleq2 2823 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑋𝑎𝑋 ∈ (𝑌𝐿𝑍)))
63 eleq2 2823 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑌𝑎𝑌 ∈ (𝑌𝐿𝑍)))
64 eleq2 2823 . . . . . 6 (𝑎 = (𝑌𝐿𝑍) → (𝑍𝑎𝑍 ∈ (𝑌𝐿𝑍)))
6562, 63, 643anbi123d 1437 . . . . 5 (𝑎 = (𝑌𝐿𝑍) → ((𝑋𝑎𝑌𝑎𝑍𝑎) ↔ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍))))
6665rspcev 3611 . . . 4 (((𝑌𝐿𝑍) ∈ ran 𝐿 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∧ 𝑌 ∈ (𝑌𝐿𝑍) ∧ 𝑍 ∈ (𝑌𝐿𝑍))) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
6757, 50, 59, 61, 66syl13anc 1373 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) ∧ 𝑌𝑍) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
6844, 67pm2.61dane 3030 . 2 ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎))
69 df-ne 2942 . . . . . 6 (𝑌𝑍 ↔ ¬ 𝑌 = 𝑍)
70 simplr1 1216 . . . . . . . 8 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑋𝑎)
714ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝐺 ∈ TarskiG)
7252ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑃)
7329ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑍𝑃)
74 simpr 486 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑍)
75 simpllr 775 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑎 ∈ ran 𝐿)
76 simplr2 1217 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑌𝑎)
77 simplr3 1218 . . . . . . . . 9 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑍𝑎)
781, 2, 3, 71, 72, 73, 74, 74, 75, 76, 77tglinethru 27866 . . . . . . . 8 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑎 = (𝑌𝐿𝑍))
7970, 78eleqtrd 2836 . . . . . . 7 ((((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) ∧ 𝑌𝑍) → 𝑋 ∈ (𝑌𝐿𝑍))
8079ex 414 . . . . . 6 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑌𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8169, 80biimtrrid 242 . . . . 5 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (¬ 𝑌 = 𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8281orrd 862 . . . 4 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑌 = 𝑍𝑋 ∈ (𝑌𝐿𝑍)))
8382orcomd 870 . . 3 (((𝜑𝑎 ∈ ran 𝐿) ∧ (𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
8483r19.29an 3159 . 2 ((𝜑 ∧ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
8568, 84impbida 800 1 (𝜑 → ((𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍) ↔ ∃𝑎 ∈ ran 𝐿(𝑋𝑎𝑌𝑎𝑍𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wrex 3071   class class class wbr 5146  ran crn 5675  cfv 6539  (class class class)co 7403  cle 11244  2c2 12262  chash 14285  Basecbs 17139  distcds 17201  TarskiGcstrkg 27657  Itvcitv 27663  LineGclng 27664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-oadd 8464  df-er 8698  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-dju 9891  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-nn 12208  df-2 12270  df-3 12271  df-n0 12468  df-xnn0 12540  df-z 12554  df-uz 12818  df-fz 13480  df-fzo 13623  df-hash 14286  df-word 14460  df-concat 14516  df-s1 14541  df-s2 14794  df-s3 14795  df-trkgc 27678  df-trkgb 27679  df-trkgcb 27680  df-trkg 27683  df-cgrg 27741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator