| Step | Hyp | Ref
| Expression |
| 1 | | fmul01lt1lem2.1 |
. . 3
⊢
Ⅎ𝑖𝐵 |
| 2 | | fmul01lt1lem2.2 |
. . . 4
⊢
Ⅎ𝑖𝜑 |
| 3 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑖 𝐽 = 𝐿 |
| 4 | 2, 3 | nfan 1899 |
. . 3
⊢
Ⅎ𝑖(𝜑 ∧ 𝐽 = 𝐿) |
| 5 | | fmul01lt1lem2.3 |
. . 3
⊢ 𝐴 = seq𝐿( · , 𝐵) |
| 6 | | fmul01lt1lem2.4 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ ℤ) |
| 7 | 6 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐽 = 𝐿) → 𝐿 ∈ ℤ) |
| 8 | | fmul01lt1lem2.5 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐿)) |
| 9 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐽 = 𝐿) → 𝑀 ∈ (ℤ≥‘𝐿)) |
| 10 | | fmul01lt1lem2.6 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 11 | 10 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 12 | | fmul01lt1lem2.7 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| 13 | 12 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| 14 | | fmul01lt1lem2.8 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| 15 | 14 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| 16 | | fmul01lt1lem2.9 |
. . . 4
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 17 | 16 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐽 = 𝐿) → 𝐸 ∈
ℝ+) |
| 18 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐽 = 𝐿) → 𝐽 = 𝐿) |
| 19 | 18 | fveq2d 6910 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 = 𝐿) → (𝐵‘𝐽) = (𝐵‘𝐿)) |
| 20 | | fmul01lt1lem2.11 |
. . . . 5
⊢ (𝜑 → (𝐵‘𝐽) < 𝐸) |
| 21 | 20 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐽 = 𝐿) → (𝐵‘𝐽) < 𝐸) |
| 22 | 19, 21 | eqbrtrrd 5167 |
. . 3
⊢ ((𝜑 ∧ 𝐽 = 𝐿) → (𝐵‘𝐿) < 𝐸) |
| 23 | 1, 4, 5, 7, 9, 11,
13, 15, 17, 22 | fmul01lt1lem1 45599 |
. 2
⊢ ((𝜑 ∧ 𝐽 = 𝐿) → (𝐴‘𝑀) < 𝐸) |
| 24 | 5 | fveq1i 6907 |
. . 3
⊢ (𝐴‘𝑀) = (seq𝐿( · , 𝐵)‘𝑀) |
| 25 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑖 𝑎 ∈ (𝐿...𝑀) |
| 26 | 2, 25 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ 𝑎 ∈ (𝐿...𝑀)) |
| 27 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑖𝑎 |
| 28 | 1, 27 | nffv 6916 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝐵‘𝑎) |
| 29 | 28 | nfel1 2922 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝐵‘𝑎) ∈ ℝ |
| 30 | 26, 29 | nfim 1896 |
. . . . . . 7
⊢
Ⅎ𝑖((𝜑 ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵‘𝑎) ∈ ℝ) |
| 31 | | eleq1w 2824 |
. . . . . . . . 9
⊢ (𝑖 = 𝑎 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝑎 ∈ (𝐿...𝑀))) |
| 32 | 31 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑖 = 𝑎 → ((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑 ∧ 𝑎 ∈ (𝐿...𝑀)))) |
| 33 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑖 = 𝑎 → (𝐵‘𝑖) = (𝐵‘𝑎)) |
| 34 | 33 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑖 = 𝑎 → ((𝐵‘𝑖) ∈ ℝ ↔ (𝐵‘𝑎) ∈ ℝ)) |
| 35 | 32, 34 | imbi12d 344 |
. . . . . . 7
⊢ (𝑖 = 𝑎 → (((𝜑 ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) ↔ ((𝜑 ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵‘𝑎) ∈ ℝ))) |
| 36 | 30, 35, 10 | chvarfv 2240 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵‘𝑎) ∈ ℝ) |
| 37 | | remulcl 11240 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ) |
| 38 | 37 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ) |
| 39 | 8, 36, 38 | seqcl 14063 |
. . . . 5
⊢ (𝜑 → (seq𝐿( · , 𝐵)‘𝑀) ∈ ℝ) |
| 40 | 39 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) ∈ ℝ) |
| 41 | | fmul01lt1lem2.10 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑀)) |
| 42 | | elfzuz3 13561 |
. . . . . . 7
⊢ (𝐽 ∈ (𝐿...𝑀) → 𝑀 ∈ (ℤ≥‘𝐽)) |
| 43 | 41, 42 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐽)) |
| 44 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑖 𝑎 ∈ (𝐽...𝑀) |
| 45 | 2, 44 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ 𝑎 ∈ (𝐽...𝑀)) |
| 46 | 45, 29 | nfim 1896 |
. . . . . . 7
⊢
Ⅎ𝑖((𝜑 ∧ 𝑎 ∈ (𝐽...𝑀)) → (𝐵‘𝑎) ∈ ℝ) |
| 47 | | eleq1w 2824 |
. . . . . . . . 9
⊢ (𝑖 = 𝑎 → (𝑖 ∈ (𝐽...𝑀) ↔ 𝑎 ∈ (𝐽...𝑀))) |
| 48 | 47 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑖 = 𝑎 → ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) ↔ (𝜑 ∧ 𝑎 ∈ (𝐽...𝑀)))) |
| 49 | 48, 34 | imbi12d 344 |
. . . . . . 7
⊢ (𝑖 = 𝑎 → (((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → (𝐵‘𝑖) ∈ ℝ) ↔ ((𝜑 ∧ 𝑎 ∈ (𝐽...𝑀)) → (𝐵‘𝑎) ∈ ℝ))) |
| 50 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝐿 ∈ ℤ) |
| 51 | | eluzelz 12888 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝐿) → 𝑀 ∈ ℤ) |
| 52 | 8, 51 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 53 | 52 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝑀 ∈ ℤ) |
| 54 | | elfzelz 13564 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (𝐽...𝑀) → 𝑖 ∈ ℤ) |
| 55 | 54 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝑖 ∈ ℤ) |
| 56 | 6 | zred 12722 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 57 | 56 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝐿 ∈ ℝ) |
| 58 | | elfzelz 13564 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (𝐿...𝑀) → 𝐽 ∈ ℤ) |
| 59 | 41, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 60 | 59 | zred 12722 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 61 | 60 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝐽 ∈ ℝ) |
| 62 | 54 | zred 12722 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (𝐽...𝑀) → 𝑖 ∈ ℝ) |
| 63 | 62 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝑖 ∈ ℝ) |
| 64 | | elfzle1 13567 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (𝐿...𝑀) → 𝐿 ≤ 𝐽) |
| 65 | 41, 64 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ≤ 𝐽) |
| 66 | 65 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝐿 ≤ 𝐽) |
| 67 | | elfzle1 13567 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (𝐽...𝑀) → 𝐽 ≤ 𝑖) |
| 68 | 67 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝐽 ≤ 𝑖) |
| 69 | 57, 61, 63, 66, 68 | letrd 11418 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝐿 ≤ 𝑖) |
| 70 | | elfzle2 13568 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (𝐽...𝑀) → 𝑖 ≤ 𝑀) |
| 71 | 70 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝑖 ≤ 𝑀) |
| 72 | 50, 53, 55, 69, 71 | elfzd 13555 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 𝑖 ∈ (𝐿...𝑀)) |
| 73 | 72, 10 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 74 | 46, 49, 73 | chvarfv 2240 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐽...𝑀)) → (𝐵‘𝑎) ∈ ℝ) |
| 75 | 43, 74, 38 | seqcl 14063 |
. . . . 5
⊢ (𝜑 → (seq𝐽( · , 𝐵)‘𝑀) ∈ ℝ) |
| 76 | 75 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐽( · , 𝐵)‘𝑀) ∈ ℝ) |
| 77 | 16 | rpred 13077 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 78 | 77 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐸 ∈ ℝ) |
| 79 | | remulcl 11240 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ) |
| 80 | 79 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑎 · 𝑏) ∈ ℝ) |
| 81 | | simp1 1137 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑎 ∈
ℝ) |
| 82 | 81 | recnd 11289 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑎 ∈
ℂ) |
| 83 | | simp2 1138 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑏 ∈
ℝ) |
| 84 | 83 | recnd 11289 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑏 ∈
ℂ) |
| 85 | | simp3 1139 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑐 ∈
ℝ) |
| 86 | 85 | recnd 11289 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑐 ∈
ℂ) |
| 87 | 82, 84, 86 | mulassd 11284 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐))) |
| 88 | 87 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ)) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐))) |
| 89 | 59 | zcnd 12723 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 90 | | 1cnd 11256 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
| 91 | 89, 90 | npcand 11624 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐽 − 1) + 1) = 𝐽) |
| 92 | 91 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝜑 →
(ℤ≥‘((𝐽 − 1) + 1)) =
(ℤ≥‘𝐽)) |
| 93 | 43, 92 | eleqtrrd 2844 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘((𝐽 − 1) + 1))) |
| 94 | 93 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈
(ℤ≥‘((𝐽 − 1) + 1))) |
| 95 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐿 ∈ ℤ) |
| 96 | 59 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐽 ∈ ℤ) |
| 97 | | 1zzd 12648 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 1 ∈ ℤ) |
| 98 | 96, 97 | zsubcld 12727 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ∈ ℤ) |
| 99 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ¬ 𝐽 = 𝐿) |
| 100 | | eqcom 2744 |
. . . . . . . . . . . 12
⊢ (𝐽 = 𝐿 ↔ 𝐿 = 𝐽) |
| 101 | 99, 100 | sylnib 328 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ¬ 𝐿 = 𝐽) |
| 102 | 56, 60 | leloed 11404 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐿 ≤ 𝐽 ↔ (𝐿 < 𝐽 ∨ 𝐿 = 𝐽))) |
| 103 | 65, 102 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐿 < 𝐽 ∨ 𝐿 = 𝐽)) |
| 104 | 103 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 < 𝐽 ∨ 𝐿 = 𝐽)) |
| 105 | | orel2 891 |
. . . . . . . . . . 11
⊢ (¬
𝐿 = 𝐽 → ((𝐿 < 𝐽 ∨ 𝐿 = 𝐽) → 𝐿 < 𝐽)) |
| 106 | 101, 104,
105 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐿 < 𝐽) |
| 107 | | zltlem1 12670 |
. . . . . . . . . . . 12
⊢ ((𝐿 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐿 < 𝐽 ↔ 𝐿 ≤ (𝐽 − 1))) |
| 108 | 6, 59, 107 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿 < 𝐽 ↔ 𝐿 ≤ (𝐽 − 1))) |
| 109 | 108 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 < 𝐽 ↔ 𝐿 ≤ (𝐽 − 1))) |
| 110 | 106, 109 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐿 ≤ (𝐽 − 1)) |
| 111 | | eluz2 12884 |
. . . . . . . . 9
⊢ ((𝐽 − 1) ∈
(ℤ≥‘𝐿) ↔ (𝐿 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ ∧ 𝐿 ≤ (𝐽 − 1))) |
| 112 | 95, 98, 110, 111 | syl3anbrc 1344 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ∈
(ℤ≥‘𝐿)) |
| 113 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖 ¬ 𝐽 = 𝐿 |
| 114 | 2, 113 | nfan 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝜑 ∧ ¬ 𝐽 = 𝐿) |
| 115 | 114, 25 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑖((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)) |
| 116 | 115, 29 | nfim 1896 |
. . . . . . . . 9
⊢
Ⅎ𝑖(((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵‘𝑎) ∈ ℝ) |
| 117 | 31 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑎 → (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ ((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)))) |
| 118 | 117, 34 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑖 = 𝑎 → ((((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) ↔ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵‘𝑎) ∈ ℝ))) |
| 119 | 10 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 120 | 116, 118,
119 | chvarfv 2240 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵‘𝑎) ∈ ℝ) |
| 121 | 80, 88, 94, 112, 120 | seqsplit 14076 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) = ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq((𝐽 − 1) + 1)( · ,
𝐵)‘𝑀))) |
| 122 | 91 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((𝐽 − 1) + 1) = 𝐽) |
| 123 | 122 | seqeq1d 14048 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → seq((𝐽 − 1) + 1)( · , 𝐵) = seq𝐽( · , 𝐵)) |
| 124 | 123 | fveq1d 6908 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq((𝐽 − 1) + 1)( · , 𝐵)‘𝑀) = (seq𝐽( · , 𝐵)‘𝑀)) |
| 125 | 124 | oveq2d 7447 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq((𝐽 − 1) + 1)( · ,
𝐵)‘𝑀)) = ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq𝐽( · , 𝐵)‘𝑀))) |
| 126 | 121, 125 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) = ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq𝐽( · , 𝐵)‘𝑀))) |
| 127 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖 𝑎 ∈ (𝐿...(𝐽 − 1)) |
| 128 | 114, 127 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑖((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))) |
| 129 | 128, 29 | nfim 1896 |
. . . . . . . . 9
⊢
Ⅎ𝑖(((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))) → (𝐵‘𝑎) ∈ ℝ) |
| 130 | | eleq1w 2824 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑎 → (𝑖 ∈ (𝐿...(𝐽 − 1)) ↔ 𝑎 ∈ (𝐿...(𝐽 − 1)))) |
| 131 | 130 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑎 → (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) ↔ ((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))))) |
| 132 | 131, 34 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑖 = 𝑎 → ((((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐵‘𝑖) ∈ ℝ) ↔ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))) → (𝐵‘𝑎) ∈ ℝ))) |
| 133 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐿 ∈ ℤ) |
| 134 | 52 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑀 ∈ ℤ) |
| 135 | | elfzelz 13564 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝑖 ∈ ℤ) |
| 136 | 135 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ∈ ℤ) |
| 137 | | elfzle1 13567 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝐿 ≤ 𝑖) |
| 138 | 137 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐿 ≤ 𝑖) |
| 139 | 135 | zred 12722 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝑖 ∈ ℝ) |
| 140 | 139 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ∈ ℝ) |
| 141 | 60 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐽 ∈ ℝ) |
| 142 | 52 | zred 12722 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 143 | 142 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑀 ∈ ℝ) |
| 144 | | 1red 11262 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℝ) |
| 145 | 60, 144 | resubcld 11691 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐽 − 1) ∈ ℝ) |
| 146 | 145 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐽 − 1) ∈ ℝ) |
| 147 | | elfzle2 13568 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝑖 ≤ (𝐽 − 1)) |
| 148 | 147 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ≤ (𝐽 − 1)) |
| 149 | 60 | lem1d 12201 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐽 − 1) ≤ 𝐽) |
| 150 | 149 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐽 − 1) ≤ 𝐽) |
| 151 | 140, 146,
141, 148, 150 | letrd 11418 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ≤ 𝐽) |
| 152 | | elfzle2 13568 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ (𝐿...𝑀) → 𝐽 ≤ 𝑀) |
| 153 | 41, 152 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 ≤ 𝑀) |
| 154 | 153 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐽 ≤ 𝑀) |
| 155 | 140, 141,
143, 151, 154 | letrd 11418 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ≤ 𝑀) |
| 156 | 133, 134,
136, 138, 155 | elfzd 13555 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ∈ (𝐿...𝑀)) |
| 157 | 156, 10 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐵‘𝑖) ∈ ℝ) |
| 158 | 157 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐵‘𝑖) ∈ ℝ) |
| 159 | 129, 132,
158 | chvarfv 2240 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))) → (𝐵‘𝑎) ∈ ℝ) |
| 160 | 37 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ) |
| 161 | 112, 159,
160 | seqcl 14063 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ∈
ℝ) |
| 162 | | 1red 11262 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 1 ∈ ℝ) |
| 163 | | eqid 2737 |
. . . . . . . . 9
⊢ seq𝐽( · , 𝐵) = seq𝐽( · , 𝐵) |
| 164 | 43 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (ℤ≥‘𝐽)) |
| 165 | | eluzfz2 13572 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝐽) → 𝑀 ∈ (𝐽...𝑀)) |
| 166 | 43, 165 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (𝐽...𝑀)) |
| 167 | 166 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (𝐽...𝑀)) |
| 168 | 73 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐽...𝑀)) → (𝐵‘𝑖) ∈ ℝ) |
| 169 | 72, 12 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| 170 | 169 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐽...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| 171 | 72, 14 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (𝐽...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| 172 | 171 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐽...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| 173 | 1, 114, 163, 96, 164, 167, 168, 170, 172 | fmul01 45595 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (0 ≤ (seq𝐽( · , 𝐵)‘𝑀) ∧ (seq𝐽( · , 𝐵)‘𝑀) ≤ 1)) |
| 174 | 173 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 0 ≤ (seq𝐽( · , 𝐵)‘𝑀)) |
| 175 | | eqid 2737 |
. . . . . . . . 9
⊢ seq𝐿( · , 𝐵) = seq𝐿( · , 𝐵) |
| 176 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (ℤ≥‘𝐿)) |
| 177 | | 1zzd 12648 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈
ℤ) |
| 178 | 59, 177 | zsubcld 12727 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐽 − 1) ∈ ℤ) |
| 179 | 6, 52, 178 | 3jca 1129 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐽 − 1) ∈
ℤ)) |
| 180 | 179 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐽 − 1) ∈
ℤ)) |
| 181 | 145, 60, 142 | 3jca 1129 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐽 − 1) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈
ℝ)) |
| 182 | 181 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((𝐽 − 1) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈
ℝ)) |
| 183 | 60 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐽 ∈ ℝ) |
| 184 | 183 | lem1d 12201 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ≤ 𝐽) |
| 185 | 153 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐽 ≤ 𝑀) |
| 186 | 184, 185 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((𝐽 − 1) ≤ 𝐽 ∧ 𝐽 ≤ 𝑀)) |
| 187 | | letr 11355 |
. . . . . . . . . . . 12
⊢ (((𝐽 − 1) ∈ ℝ ∧
𝐽 ∈ ℝ ∧
𝑀 ∈ ℝ) →
(((𝐽 − 1) ≤ 𝐽 ∧ 𝐽 ≤ 𝑀) → (𝐽 − 1) ≤ 𝑀)) |
| 188 | 182, 186,
187 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ≤ 𝑀) |
| 189 | 110, 188 | jca 511 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 ≤ (𝐽 − 1) ∧ (𝐽 − 1) ≤ 𝑀)) |
| 190 | | elfz2 13554 |
. . . . . . . . . 10
⊢ ((𝐽 − 1) ∈ (𝐿...𝑀) ↔ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ) ∧ (𝐿 ≤ (𝐽 − 1) ∧ (𝐽 − 1) ≤ 𝑀))) |
| 191 | 180, 189,
190 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ∈ (𝐿...𝑀)) |
| 192 | 12 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵‘𝑖)) |
| 193 | 14 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵‘𝑖) ≤ 1) |
| 194 | 1, 114, 175, 95, 176, 191, 119, 192, 193 | fmul01 45595 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (0 ≤ (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ∧ (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ≤ 1)) |
| 195 | 194 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ≤ 1) |
| 196 | 161, 162,
76, 174, 195 | lemul1ad 12207 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq𝐽( · , 𝐵)‘𝑀)) ≤ (1 · (seq𝐽( · , 𝐵)‘𝑀))) |
| 197 | 126, 196 | eqbrtrd 5165 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) ≤ (1 · (seq𝐽( · , 𝐵)‘𝑀))) |
| 198 | 76 | recnd 11289 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐽( · , 𝐵)‘𝑀) ∈ ℂ) |
| 199 | 198 | mullidd 11279 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (1 · (seq𝐽( · , 𝐵)‘𝑀)) = (seq𝐽( · , 𝐵)‘𝑀)) |
| 200 | 197, 199 | breqtrd 5169 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) ≤ (seq𝐽( · , 𝐵)‘𝑀)) |
| 201 | 1, 2, 163, 59, 43, 73, 169, 171, 16, 20 | fmul01lt1lem1 45599 |
. . . . 5
⊢ (𝜑 → (seq𝐽( · , 𝐵)‘𝑀) < 𝐸) |
| 202 | 201 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐽( · , 𝐵)‘𝑀) < 𝐸) |
| 203 | 40, 76, 78, 200, 202 | lelttrd 11419 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) < 𝐸) |
| 204 | 24, 203 | eqbrtrid 5178 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐴‘𝑀) < 𝐸) |
| 205 | 23, 204 | pm2.61dan 813 |
1
⊢ (𝜑 → (𝐴‘𝑀) < 𝐸) |