Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmul01lt1lem2 Structured version   Visualization version   GIF version

Theorem fmul01lt1lem2 43126
Description: Given a finite multiplication of values betweeen 0 and 1, a value 𝐸 larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmul01lt1lem2.1 𝑖𝐵
fmul01lt1lem2.2 𝑖𝜑
fmul01lt1lem2.3 𝐴 = seq𝐿( · , 𝐵)
fmul01lt1lem2.4 (𝜑𝐿 ∈ ℤ)
fmul01lt1lem2.5 (𝜑𝑀 ∈ (ℤ𝐿))
fmul01lt1lem2.6 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)
fmul01lt1lem2.7 ((𝜑𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))
fmul01lt1lem2.8 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)
fmul01lt1lem2.9 (𝜑𝐸 ∈ ℝ+)
fmul01lt1lem2.10 (𝜑𝐽 ∈ (𝐿...𝑀))
fmul01lt1lem2.11 (𝜑 → (𝐵𝐽) < 𝐸)
Assertion
Ref Expression
fmul01lt1lem2 (𝜑 → (𝐴𝑀) < 𝐸)
Distinct variable groups:   𝑖,𝐽   𝑖,𝐿   𝑖,𝑀
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑖)   𝐵(𝑖)   𝐸(𝑖)

Proof of Theorem fmul01lt1lem2
Dummy variables 𝑎 𝑏 𝑐 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmul01lt1lem2.1 . . 3 𝑖𝐵
2 fmul01lt1lem2.2 . . . 4 𝑖𝜑
3 nfv 1917 . . . 4 𝑖 𝐽 = 𝐿
42, 3nfan 1902 . . 3 𝑖(𝜑𝐽 = 𝐿)
5 fmul01lt1lem2.3 . . 3 𝐴 = seq𝐿( · , 𝐵)
6 fmul01lt1lem2.4 . . . 4 (𝜑𝐿 ∈ ℤ)
76adantr 481 . . 3 ((𝜑𝐽 = 𝐿) → 𝐿 ∈ ℤ)
8 fmul01lt1lem2.5 . . . 4 (𝜑𝑀 ∈ (ℤ𝐿))
98adantr 481 . . 3 ((𝜑𝐽 = 𝐿) → 𝑀 ∈ (ℤ𝐿))
10 fmul01lt1lem2.6 . . . 4 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)
1110adantlr 712 . . 3 (((𝜑𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)
12 fmul01lt1lem2.7 . . . 4 ((𝜑𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))
1312adantlr 712 . . 3 (((𝜑𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))
14 fmul01lt1lem2.8 . . . 4 ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)
1514adantlr 712 . . 3 (((𝜑𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)
16 fmul01lt1lem2.9 . . . 4 (𝜑𝐸 ∈ ℝ+)
1716adantr 481 . . 3 ((𝜑𝐽 = 𝐿) → 𝐸 ∈ ℝ+)
18 simpr 485 . . . . 5 ((𝜑𝐽 = 𝐿) → 𝐽 = 𝐿)
1918fveq2d 6778 . . . 4 ((𝜑𝐽 = 𝐿) → (𝐵𝐽) = (𝐵𝐿))
20 fmul01lt1lem2.11 . . . . 5 (𝜑 → (𝐵𝐽) < 𝐸)
2120adantr 481 . . . 4 ((𝜑𝐽 = 𝐿) → (𝐵𝐽) < 𝐸)
2219, 21eqbrtrrd 5098 . . 3 ((𝜑𝐽 = 𝐿) → (𝐵𝐿) < 𝐸)
231, 4, 5, 7, 9, 11, 13, 15, 17, 22fmul01lt1lem1 43125 . 2 ((𝜑𝐽 = 𝐿) → (𝐴𝑀) < 𝐸)
245fveq1i 6775 . . 3 (𝐴𝑀) = (seq𝐿( · , 𝐵)‘𝑀)
25 nfv 1917 . . . . . . . . 9 𝑖 𝑎 ∈ (𝐿...𝑀)
262, 25nfan 1902 . . . . . . . 8 𝑖(𝜑𝑎 ∈ (𝐿...𝑀))
27 nfcv 2907 . . . . . . . . . 10 𝑖𝑎
281, 27nffv 6784 . . . . . . . . 9 𝑖(𝐵𝑎)
2928nfel1 2923 . . . . . . . 8 𝑖(𝐵𝑎) ∈ ℝ
3026, 29nfim 1899 . . . . . . 7 𝑖((𝜑𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)
31 eleq1w 2821 . . . . . . . . 9 (𝑖 = 𝑎 → (𝑖 ∈ (𝐿...𝑀) ↔ 𝑎 ∈ (𝐿...𝑀)))
3231anbi2d 629 . . . . . . . 8 (𝑖 = 𝑎 → ((𝜑𝑖 ∈ (𝐿...𝑀)) ↔ (𝜑𝑎 ∈ (𝐿...𝑀))))
33 fveq2 6774 . . . . . . . . 9 (𝑖 = 𝑎 → (𝐵𝑖) = (𝐵𝑎))
3433eleq1d 2823 . . . . . . . 8 (𝑖 = 𝑎 → ((𝐵𝑖) ∈ ℝ ↔ (𝐵𝑎) ∈ ℝ))
3532, 34imbi12d 345 . . . . . . 7 (𝑖 = 𝑎 → (((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ) ↔ ((𝜑𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)))
3630, 35, 10chvarfv 2233 . . . . . 6 ((𝜑𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)
37 remulcl 10956 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑎 · 𝑗) ∈ ℝ)
3837adantl 482 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ)
398, 36, 38seqcl 13743 . . . . 5 (𝜑 → (seq𝐿( · , 𝐵)‘𝑀) ∈ ℝ)
4039adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) ∈ ℝ)
41 fmul01lt1lem2.10 . . . . . . 7 (𝜑𝐽 ∈ (𝐿...𝑀))
42 elfzuz3 13253 . . . . . . 7 (𝐽 ∈ (𝐿...𝑀) → 𝑀 ∈ (ℤ𝐽))
4341, 42syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝐽))
44 nfv 1917 . . . . . . . . 9 𝑖 𝑎 ∈ (𝐽...𝑀)
452, 44nfan 1902 . . . . . . . 8 𝑖(𝜑𝑎 ∈ (𝐽...𝑀))
4645, 29nfim 1899 . . . . . . 7 𝑖((𝜑𝑎 ∈ (𝐽...𝑀)) → (𝐵𝑎) ∈ ℝ)
47 eleq1w 2821 . . . . . . . . 9 (𝑖 = 𝑎 → (𝑖 ∈ (𝐽...𝑀) ↔ 𝑎 ∈ (𝐽...𝑀)))
4847anbi2d 629 . . . . . . . 8 (𝑖 = 𝑎 → ((𝜑𝑖 ∈ (𝐽...𝑀)) ↔ (𝜑𝑎 ∈ (𝐽...𝑀))))
4948, 34imbi12d 345 . . . . . . 7 (𝑖 = 𝑎 → (((𝜑𝑖 ∈ (𝐽...𝑀)) → (𝐵𝑖) ∈ ℝ) ↔ ((𝜑𝑎 ∈ (𝐽...𝑀)) → (𝐵𝑎) ∈ ℝ)))
506adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐿 ∈ ℤ)
51 eluzelz 12592 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝐿) → 𝑀 ∈ ℤ)
528, 51syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
5352adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝑀 ∈ ℤ)
54 elfzelz 13256 . . . . . . . . . 10 (𝑖 ∈ (𝐽...𝑀) → 𝑖 ∈ ℤ)
5554adantl 482 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝑖 ∈ ℤ)
566zred 12426 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ)
5756adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐿 ∈ ℝ)
58 elfzelz 13256 . . . . . . . . . . . . 13 (𝐽 ∈ (𝐿...𝑀) → 𝐽 ∈ ℤ)
5941, 58syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℤ)
6059zred 12426 . . . . . . . . . . 11 (𝜑𝐽 ∈ ℝ)
6160adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐽 ∈ ℝ)
6254zred 12426 . . . . . . . . . . 11 (𝑖 ∈ (𝐽...𝑀) → 𝑖 ∈ ℝ)
6362adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝑖 ∈ ℝ)
64 elfzle1 13259 . . . . . . . . . . . 12 (𝐽 ∈ (𝐿...𝑀) → 𝐿𝐽)
6541, 64syl 17 . . . . . . . . . . 11 (𝜑𝐿𝐽)
6665adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐿𝐽)
67 elfzle1 13259 . . . . . . . . . . 11 (𝑖 ∈ (𝐽...𝑀) → 𝐽𝑖)
6867adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐽𝑖)
6957, 61, 63, 66, 68letrd 11132 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝐿𝑖)
70 elfzle2 13260 . . . . . . . . . 10 (𝑖 ∈ (𝐽...𝑀) → 𝑖𝑀)
7170adantl 482 . . . . . . . . 9 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝑖𝑀)
7250, 53, 55, 69, 71elfzd 13247 . . . . . . . 8 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 𝑖 ∈ (𝐿...𝑀))
7372, 10syldan 591 . . . . . . 7 ((𝜑𝑖 ∈ (𝐽...𝑀)) → (𝐵𝑖) ∈ ℝ)
7446, 49, 73chvarfv 2233 . . . . . 6 ((𝜑𝑎 ∈ (𝐽...𝑀)) → (𝐵𝑎) ∈ ℝ)
7543, 74, 38seqcl 13743 . . . . 5 (𝜑 → (seq𝐽( · , 𝐵)‘𝑀) ∈ ℝ)
7675adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐽( · , 𝐵)‘𝑀) ∈ ℝ)
7716rpred 12772 . . . . 5 (𝜑𝐸 ∈ ℝ)
7877adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐸 ∈ ℝ)
79 remulcl 10956 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ)
8079adantl 482 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑎 · 𝑏) ∈ ℝ)
81 simp1 1135 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑎 ∈ ℝ)
8281recnd 11003 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑎 ∈ ℂ)
83 simp2 1136 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑏 ∈ ℝ)
8483recnd 11003 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑏 ∈ ℂ)
85 simp3 1137 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℝ)
8685recnd 11003 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → 𝑐 ∈ ℂ)
8782, 84, 86mulassd 10998 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
8887adantl 482 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ)) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
8959zcnd 12427 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℂ)
90 1cnd 10970 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
9189, 90npcand 11336 . . . . . . . . . . 11 (𝜑 → ((𝐽 − 1) + 1) = 𝐽)
9291fveq2d 6778 . . . . . . . . . 10 (𝜑 → (ℤ‘((𝐽 − 1) + 1)) = (ℤ𝐽))
9343, 92eleqtrrd 2842 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ‘((𝐽 − 1) + 1)))
9493adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (ℤ‘((𝐽 − 1) + 1)))
956adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐿 ∈ ℤ)
9659adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐽 ∈ ℤ)
97 1zzd 12351 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 1 ∈ ℤ)
9896, 97zsubcld 12431 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ∈ ℤ)
99 simpr 485 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ¬ 𝐽 = 𝐿)
100 eqcom 2745 . . . . . . . . . . . 12 (𝐽 = 𝐿𝐿 = 𝐽)
10199, 100sylnib 328 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ¬ 𝐿 = 𝐽)
10256, 60leloed 11118 . . . . . . . . . . . . 13 (𝜑 → (𝐿𝐽 ↔ (𝐿 < 𝐽𝐿 = 𝐽)))
10365, 102mpbid 231 . . . . . . . . . . . 12 (𝜑 → (𝐿 < 𝐽𝐿 = 𝐽))
104103adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 < 𝐽𝐿 = 𝐽))
105 orel2 888 . . . . . . . . . . 11 𝐿 = 𝐽 → ((𝐿 < 𝐽𝐿 = 𝐽) → 𝐿 < 𝐽))
106101, 104, 105sylc 65 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐿 < 𝐽)
107 zltlem1 12373 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐿 < 𝐽𝐿 ≤ (𝐽 − 1)))
1086, 59, 107syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐿 < 𝐽𝐿 ≤ (𝐽 − 1)))
109108adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 < 𝐽𝐿 ≤ (𝐽 − 1)))
110106, 109mpbid 231 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐿 ≤ (𝐽 − 1))
111 eluz2 12588 . . . . . . . . 9 ((𝐽 − 1) ∈ (ℤ𝐿) ↔ (𝐿 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ ∧ 𝐿 ≤ (𝐽 − 1)))
11295, 98, 110, 111syl3anbrc 1342 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ∈ (ℤ𝐿))
113 nfv 1917 . . . . . . . . . . . 12 𝑖 ¬ 𝐽 = 𝐿
1142, 113nfan 1902 . . . . . . . . . . 11 𝑖(𝜑 ∧ ¬ 𝐽 = 𝐿)
115114, 25nfan 1902 . . . . . . . . . 10 𝑖((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀))
116115, 29nfim 1899 . . . . . . . . 9 𝑖(((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)
11731anbi2d 629 . . . . . . . . . 10 (𝑖 = 𝑎 → (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) ↔ ((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀))))
118117, 34imbi12d 345 . . . . . . . . 9 (𝑖 = 𝑎 → ((((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ) ↔ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)))
11910adantlr 712 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)
120116, 118, 119chvarfv 2233 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...𝑀)) → (𝐵𝑎) ∈ ℝ)
12180, 88, 94, 112, 120seqsplit 13756 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) = ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq((𝐽 − 1) + 1)( · , 𝐵)‘𝑀)))
12291adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((𝐽 − 1) + 1) = 𝐽)
123122seqeq1d 13727 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → seq((𝐽 − 1) + 1)( · , 𝐵) = seq𝐽( · , 𝐵))
124123fveq1d 6776 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq((𝐽 − 1) + 1)( · , 𝐵)‘𝑀) = (seq𝐽( · , 𝐵)‘𝑀))
125124oveq2d 7291 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq((𝐽 − 1) + 1)( · , 𝐵)‘𝑀)) = ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq𝐽( · , 𝐵)‘𝑀)))
126121, 125eqtrd 2778 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) = ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq𝐽( · , 𝐵)‘𝑀)))
127 nfv 1917 . . . . . . . . . . 11 𝑖 𝑎 ∈ (𝐿...(𝐽 − 1))
128114, 127nfan 1902 . . . . . . . . . 10 𝑖((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1)))
129128, 29nfim 1899 . . . . . . . . 9 𝑖(((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑎) ∈ ℝ)
130 eleq1w 2821 . . . . . . . . . . 11 (𝑖 = 𝑎 → (𝑖 ∈ (𝐿...(𝐽 − 1)) ↔ 𝑎 ∈ (𝐿...(𝐽 − 1))))
131130anbi2d 629 . . . . . . . . . 10 (𝑖 = 𝑎 → (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) ↔ ((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1)))))
132131, 34imbi12d 345 . . . . . . . . 9 (𝑖 = 𝑎 → ((((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑖) ∈ ℝ) ↔ (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑎) ∈ ℝ)))
1336adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐿 ∈ ℤ)
13452adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑀 ∈ ℤ)
135 elfzelz 13256 . . . . . . . . . . . . 13 (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝑖 ∈ ℤ)
136135adantl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ∈ ℤ)
137 elfzle1 13259 . . . . . . . . . . . . 13 (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝐿𝑖)
138137adantl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐿𝑖)
139135zred 12426 . . . . . . . . . . . . . 14 (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝑖 ∈ ℝ)
140139adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ∈ ℝ)
14160adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐽 ∈ ℝ)
14252zred 12426 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
143142adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑀 ∈ ℝ)
144 1red 10976 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
14560, 144resubcld 11403 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 − 1) ∈ ℝ)
146145adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐽 − 1) ∈ ℝ)
147 elfzle2 13260 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝐿...(𝐽 − 1)) → 𝑖 ≤ (𝐽 − 1))
148147adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ≤ (𝐽 − 1))
14960lem1d 11908 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 − 1) ≤ 𝐽)
150149adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐽 − 1) ≤ 𝐽)
151140, 146, 141, 148, 150letrd 11132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖𝐽)
152 elfzle2 13260 . . . . . . . . . . . . . . 15 (𝐽 ∈ (𝐿...𝑀) → 𝐽𝑀)
15341, 152syl 17 . . . . . . . . . . . . . 14 (𝜑𝐽𝑀)
154153adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝐽𝑀)
155140, 141, 143, 151, 154letrd 11132 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖𝑀)
156133, 134, 136, 138, 155elfzd 13247 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → 𝑖 ∈ (𝐿...𝑀))
157156, 10syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑖) ∈ ℝ)
158157adantlr 712 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑖) ∈ ℝ)
159129, 132, 158chvarfv 2233 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑎 ∈ (𝐿...(𝐽 − 1))) → (𝐵𝑎) ∈ ℝ)
16037adantl 482 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ (𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ)) → (𝑎 · 𝑗) ∈ ℝ)
161112, 159, 160seqcl 13743 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ∈ ℝ)
162 1red 10976 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 1 ∈ ℝ)
163 eqid 2738 . . . . . . . . 9 seq𝐽( · , 𝐵) = seq𝐽( · , 𝐵)
16443adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (ℤ𝐽))
165 eluzfz2 13264 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝐽) → 𝑀 ∈ (𝐽...𝑀))
16643, 165syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝐽...𝑀))
167166adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (𝐽...𝑀))
16873adantlr 712 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐽...𝑀)) → (𝐵𝑖) ∈ ℝ)
16972, 12syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → 0 ≤ (𝐵𝑖))
170169adantlr 712 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐽...𝑀)) → 0 ≤ (𝐵𝑖))
17172, 14syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ (𝐽...𝑀)) → (𝐵𝑖) ≤ 1)
172171adantlr 712 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐽...𝑀)) → (𝐵𝑖) ≤ 1)
1731, 114, 163, 96, 164, 167, 168, 170, 172fmul01 43121 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (0 ≤ (seq𝐽( · , 𝐵)‘𝑀) ∧ (seq𝐽( · , 𝐵)‘𝑀) ≤ 1))
174173simpld 495 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 0 ≤ (seq𝐽( · , 𝐵)‘𝑀))
175 eqid 2738 . . . . . . . . 9 seq𝐿( · , 𝐵) = seq𝐿( · , 𝐵)
1768adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝑀 ∈ (ℤ𝐿))
177 1zzd 12351 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℤ)
17859, 177zsubcld 12431 . . . . . . . . . . . 12 (𝜑 → (𝐽 − 1) ∈ ℤ)
1796, 52, 1783jca 1127 . . . . . . . . . . 11 (𝜑 → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ))
180179adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ))
181145, 60, 1423jca 1127 . . . . . . . . . . . . 13 (𝜑 → ((𝐽 − 1) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ))
182181adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((𝐽 − 1) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ))
18360adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐽 ∈ ℝ)
184183lem1d 11908 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ≤ 𝐽)
185153adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → 𝐽𝑀)
186184, 185jca 512 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((𝐽 − 1) ≤ 𝐽𝐽𝑀))
187 letr 11069 . . . . . . . . . . . 12 (((𝐽 − 1) ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (((𝐽 − 1) ≤ 𝐽𝐽𝑀) → (𝐽 − 1) ≤ 𝑀))
188182, 186, 187sylc 65 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ≤ 𝑀)
189110, 188jca 512 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐿 ≤ (𝐽 − 1) ∧ (𝐽 − 1) ≤ 𝑀))
190 elfz2 13246 . . . . . . . . . 10 ((𝐽 − 1) ∈ (𝐿...𝑀) ↔ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝐽 − 1) ∈ ℤ) ∧ (𝐿 ≤ (𝐽 − 1) ∧ (𝐽 − 1) ≤ 𝑀)))
191180, 189, 190sylanbrc 583 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐽 − 1) ∈ (𝐿...𝑀))
19212adantlr 712 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))
19314adantlr 712 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐽 = 𝐿) ∧ 𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)
1941, 114, 175, 95, 176, 191, 119, 192, 193fmul01 43121 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (0 ≤ (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ∧ (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ≤ 1))
195194simprd 496 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘(𝐽 − 1)) ≤ 1)
196161, 162, 76, 174, 195lemul1ad 11914 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → ((seq𝐿( · , 𝐵)‘(𝐽 − 1)) · (seq𝐽( · , 𝐵)‘𝑀)) ≤ (1 · (seq𝐽( · , 𝐵)‘𝑀)))
197126, 196eqbrtrd 5096 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) ≤ (1 · (seq𝐽( · , 𝐵)‘𝑀)))
19876recnd 11003 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐽( · , 𝐵)‘𝑀) ∈ ℂ)
199198mulid2d 10993 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (1 · (seq𝐽( · , 𝐵)‘𝑀)) = (seq𝐽( · , 𝐵)‘𝑀))
200197, 199breqtrd 5100 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) ≤ (seq𝐽( · , 𝐵)‘𝑀))
2011, 2, 163, 59, 43, 73, 169, 171, 16, 20fmul01lt1lem1 43125 . . . . 5 (𝜑 → (seq𝐽( · , 𝐵)‘𝑀) < 𝐸)
202201adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐽( · , 𝐵)‘𝑀) < 𝐸)
20340, 76, 78, 200, 202lelttrd 11133 . . 3 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (seq𝐿( · , 𝐵)‘𝑀) < 𝐸)
20424, 203eqbrtrid 5109 . 2 ((𝜑 ∧ ¬ 𝐽 = 𝐿) → (𝐴𝑀) < 𝐸)
20523, 204pm2.61dan 810 1 (𝜑 → (𝐴𝑀) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cz 12319  cuz 12582  +crp 12730  ...cfz 13239  seqcseq 13721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722
This theorem is referenced by:  fmul01lt1  43127
  Copyright terms: Public domain W3C validator