Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.23 Structured version   Visualization version   GIF version

Theorem jm2.23 42992
Description: Lemma for jm2.20nn 42993. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.23 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))))

Proof of Theorem jm2.23
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 13944 . . . . . 6 (3...𝐽) ∈ Fin
2 ssrab2 4046 . . . . . 6 {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (3...𝐽)
3 ssfi 9143 . . . . . 6 (((3...𝐽) ∈ Fin ∧ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (3...𝐽)) → {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
41, 2, 3mp2an 692 . . . . 5 {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin
54a1i 11 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
6 nnnn0 12456 . . . . . . . 8 (𝐽 ∈ ℕ → 𝐽 ∈ ℕ0)
763ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 ∈ ℕ0)
82sseli 3945 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ (3...𝐽))
9 elfzelz 13492 . . . . . . . 8 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℤ)
108, 9syl 17 . . . . . . 7 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℤ)
11 bccl 14294 . . . . . . 7 ((𝐽 ∈ ℕ0𝑎 ∈ ℤ) → (𝐽C𝑎) ∈ ℕ0)
127, 10, 11syl2an 596 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℕ0)
1312nn0zd 12562 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℤ)
14 simpl1 1192 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝐴 ∈ (ℤ‘2))
15 simpl2 1193 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑁 ∈ ℤ)
16 frmx 42909 . . . . . . . . . 10 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1716fovcl 7520 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1814, 15, 17syl2anc 584 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1918nn0zd 12562 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℤ)
208adantl 481 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ (3...𝐽))
21 fznn0sub 13524 . . . . . . . 8 (𝑎 ∈ (3...𝐽) → (𝐽𝑎) ∈ ℕ0)
2220, 21syl 17 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽𝑎) ∈ ℕ0)
23 zexpcl 14048 . . . . . . 7 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐽𝑎) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℤ)
2419, 22, 23syl2anc 584 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℤ)
25 rmspecnonsq 42902 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2625eldifad 3929 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
2726nnzd 12563 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
28273ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴↑2) − 1) ∈ ℤ)
29 breq2 5114 . . . . . . . . . . . . . 14 (𝑏 = 𝑎 → (2 ∥ 𝑏 ↔ 2 ∥ 𝑎))
3029notbid 318 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → (¬ 2 ∥ 𝑏 ↔ ¬ 2 ∥ 𝑎))
3130elrab 3662 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎))
3231simprbi 496 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 𝑎)
33 1zzd 12571 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 1 ∈ ℤ)
34 n2dvds1 16345 . . . . . . . . . . . 12 ¬ 2 ∥ 1
3534a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 1)
36 omoe 16341 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ ¬ 2 ∥ 𝑎) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑎 − 1))
3710, 32, 33, 35, 36syl22anc 838 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∥ (𝑎 − 1))
38 2z 12572 . . . . . . . . . . . 12 2 ∈ ℤ
3938a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℤ)
40 2ne0 12297 . . . . . . . . . . . 12 2 ≠ 0
4140a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ≠ 0)
42 peano2zm 12583 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → (𝑎 − 1) ∈ ℤ)
4310, 42syl 17 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℤ)
44 dvdsval2 16232 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑎 − 1) ∈ ℤ) → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
4539, 41, 43, 44syl3anc 1373 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
4637, 45mpbid 232 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℤ)
4743zred 12645 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℝ)
48 0red 11184 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 0 ∈ ℝ)
49 3re 12273 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
5049a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 3 ∈ ℝ)
519zred 12645 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℝ)
52 3pos 12298 . . . . . . . . . . . . . . . 16 0 < 3
5352a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 0 < 3)
54 elfzle1 13495 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 3 ≤ 𝑎)
5548, 50, 51, 53, 54ltletrd 11341 . . . . . . . . . . . . . 14 (𝑎 ∈ (3...𝐽) → 0 < 𝑎)
56 elnnz 12546 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
579, 55, 56sylanbrc 583 . . . . . . . . . . . . 13 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℕ)
58 nnm1nn0 12490 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (𝑎 − 1) ∈ ℕ0)
5957, 58syl 17 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → (𝑎 − 1) ∈ ℕ0)
6059nn0ge0d 12513 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → 0 ≤ (𝑎 − 1))
618, 60syl 17 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ (𝑎 − 1))
62 2re 12267 . . . . . . . . . . 11 2 ∈ ℝ
6362a1i 11 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℝ)
64 2pos 12296 . . . . . . . . . . 11 0 < 2
6564a1i 11 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 < 2)
66 divge0 12059 . . . . . . . . . 10 ((((𝑎 − 1) ∈ ℝ ∧ 0 ≤ (𝑎 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑎 − 1) / 2))
6747, 61, 63, 65, 66syl22anc 838 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ ((𝑎 − 1) / 2))
68 elnn0z 12549 . . . . . . . . 9 (((𝑎 − 1) / 2) ∈ ℕ0 ↔ (((𝑎 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑎 − 1) / 2)))
6946, 67, 68sylanbrc 583 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℕ0)
70 zexpcl 14048 . . . . . . . 8 ((((𝐴↑2) − 1) ∈ ℤ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℤ)
7128, 69, 70syl2an 596 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℤ)
72 frmy 42910 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
7372fovcl 7520 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
7414, 15, 73syl2anc 584 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Yrm 𝑁) ∈ ℤ)
75 elfzel1 13491 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → 3 ∈ ℤ)
769, 75zsubcld 12650 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → (𝑎 − 3) ∈ ℤ)
77 subge0 11698 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 3 ∈ ℝ) → (0 ≤ (𝑎 − 3) ↔ 3 ≤ 𝑎))
7851, 49, 77sylancl 586 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → (0 ≤ (𝑎 − 3) ↔ 3 ≤ 𝑎))
7954, 78mpbird 257 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → 0 ≤ (𝑎 − 3))
80 elnn0z 12549 . . . . . . . . . . 11 ((𝑎 − 3) ∈ ℕ0 ↔ ((𝑎 − 3) ∈ ℤ ∧ 0 ≤ (𝑎 − 3)))
8176, 79, 80sylanbrc 583 . . . . . . . . . 10 (𝑎 ∈ (3...𝐽) → (𝑎 − 3) ∈ ℕ0)
828, 81syl 17 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 3) ∈ ℕ0)
8382adantl 481 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝑎 − 3) ∈ ℕ0)
84 zexpcl 14048 . . . . . . . 8 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑎 − 3) ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℤ)
8574, 83, 84syl2anc 584 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℤ)
8671, 85zmulcld 12651 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) ∈ ℤ)
8724, 86zmulcld 12651 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) ∈ ℤ)
8813, 87zmulcld 12651 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ)
895, 88fsumzcl 15708 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ)
90733adant3 1132 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
91 3nn0 12467 . . . 4 3 ∈ ℕ0
92 zexpcl 14048 . . . 4 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
9390, 91, 92sylancl 586 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
94 dvdsmul2 16255 . . 3 ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑3) ∈ ℤ) → ((𝐴 Yrm 𝑁)↑3) ∥ (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
9589, 93, 94syl2anc 584 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
96 jm2.22 42991 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
976, 96syl3an3 1165 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
98 1lt3 12361 . . . . . . . . . . . 12 1 < 3
99 1re 11181 . . . . . . . . . . . . 13 1 ∈ ℝ
10099, 49ltnlei 11302 . . . . . . . . . . . 12 (1 < 3 ↔ ¬ 3 ≤ 1)
10198, 100mpbi 230 . . . . . . . . . . 11 ¬ 3 ≤ 1
102 elfzle1 13495 . . . . . . . . . . 11 (1 ∈ (3...𝐽) → 3 ≤ 1)
103101, 102mto 197 . . . . . . . . . 10 ¬ 1 ∈ (3...𝐽)
104103a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ 1 ∈ (3...𝐽))
105104intnanrd 489 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ (1 ∈ (3...𝐽) ∧ ¬ 2 ∥ 1))
106 breq2 5114 . . . . . . . . . 10 (𝑏 = 1 → (2 ∥ 𝑏 ↔ 2 ∥ 1))
107106notbid 318 . . . . . . . . 9 (𝑏 = 1 → (¬ 2 ∥ 𝑏 ↔ ¬ 2 ∥ 1))
108107elrab 3662 . . . . . . . 8 (1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (1 ∈ (3...𝐽) ∧ ¬ 2 ∥ 1))
109105, 108sylnibr 329 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ 1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏})
110 disjsn 4678 . . . . . . 7 (({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∩ {1}) = ∅ ↔ ¬ 1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏})
111109, 110sylibr 234 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∩ {1}) = ∅)
112 simpr 484 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 = 1) → 𝑎 = 1)
113112olcd 874 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 = 1) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
114 3z 12573 . . . . . . . . . . . . . 14 3 ∈ ℤ
115114a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 3 ∈ ℤ)
116 nnz 12557 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → 𝐽 ∈ ℤ)
1171163ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 ∈ ℤ)
118117ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝐽 ∈ ℤ)
119 elfzelz 13492 . . . . . . . . . . . . . . 15 (𝑎 ∈ (0...𝐽) → 𝑎 ∈ ℤ)
120119adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎 ∈ ℤ)
121120ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ ℤ)
122 elfznn0 13588 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (0...𝐽) → 𝑎 ∈ ℕ0)
123122adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎 ∈ ℕ0)
124123ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ ℕ0)
125 simplrr 777 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → ¬ 2 ∥ 𝑎)
126 simpr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ≠ 1)
127 elnn1uz2 12891 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ ↔ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2)))
128 df-ne 2927 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ≠ 1 ↔ ¬ 𝑎 = 1)
129128biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ≠ 1 → ¬ 𝑎 = 1)
1301293ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → ¬ 𝑎 = 1)
131130pm2.21d 121 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → (𝑎 = 1 → 3 ≤ 𝑎))
132131imp 406 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 1) → 3 ≤ 𝑎)
133 uzp1 12841 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (ℤ‘2) → (𝑎 = 2 ∨ 𝑎 ∈ (ℤ‘(2 + 1))))
134 1z 12570 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℤ
135 dvdsmul1 16254 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → 2 ∥ (2 · 1))
13638, 134, 135mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 2 ∥ (2 · 1)
137 2t1e2 12351 . . . . . . . . . . . . . . . . . . . . . 22 (2 · 1) = 2
138136, 137breqtri 5135 . . . . . . . . . . . . . . . . . . . . 21 2 ∥ 2
139 breq2 5114 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 2 → (2 ∥ 𝑎 ↔ 2 ∥ 2))
140139adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → (2 ∥ 𝑎 ↔ 2 ∥ 2))
141138, 140mpbiri 258 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → 2 ∥ 𝑎)
142 simpl2 1193 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → ¬ 2 ∥ 𝑎)
143141, 142pm2.21dd 195 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → 3 ≤ 𝑎)
144 eluzle 12813 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (ℤ‘3) → 3 ≤ 𝑎)
145 2p1e3 12330 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = 3
146145fveq2i 6864 . . . . . . . . . . . . . . . . . . . . 21 (ℤ‘(2 + 1)) = (ℤ‘3)
147144, 146eleq2s 2847 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (ℤ‘(2 + 1)) → 3 ≤ 𝑎)
148147adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ (ℤ‘(2 + 1))) → 3 ≤ 𝑎)
149143, 148jaodan 959 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ (𝑎 = 2 ∨ 𝑎 ∈ (ℤ‘(2 + 1)))) → 3 ≤ 𝑎)
150133, 149sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ (ℤ‘2)) → 3 ≤ 𝑎)
151132, 150jaodan 959 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2))) → 3 ≤ 𝑎)
152127, 151sylan2b 594 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ ℕ) → 3 ≤ 𝑎)
153 dvds0 16248 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℤ → 2 ∥ 0)
15438, 153ax-mp 5 . . . . . . . . . . . . . . . . . 18 2 ∥ 0
155 breq2 5114 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (2 ∥ 𝑎 ↔ 2 ∥ 0))
156154, 155mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑎 = 0 → 2 ∥ 𝑎)
157156adantl 481 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → 2 ∥ 𝑎)
158 simpl2 1193 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → ¬ 2 ∥ 𝑎)
159157, 158pm2.21dd 195 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → 3 ≤ 𝑎)
160 elnn0 12451 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
161160biimpi 216 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
1621613ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
163152, 159, 162mpjaodan 960 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → 3 ≤ 𝑎)
164124, 125, 126, 163syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 3 ≤ 𝑎)
165 elfzle2 13496 . . . . . . . . . . . . . . 15 (𝑎 ∈ (0...𝐽) → 𝑎𝐽)
166165adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎𝐽)
167166ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎𝐽)
168115, 118, 121, 164, 167elfzd 13483 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ (3...𝐽))
169168, 125jca 511 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎))
170169orcd 873 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
171113, 170pm2.61dane 3013 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
172 nn0uz 12842 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
17391, 172eleqtri 2827 . . . . . . . . . . . . . 14 3 ∈ (ℤ‘0)
174 fzss1 13531 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘0) → (3...𝐽) ⊆ (0...𝐽))
175173, 174ax-mp 5 . . . . . . . . . . . . 13 (3...𝐽) ⊆ (0...𝐽)
176175sseli 3945 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ (0...𝐽))
177176anim1i 615 . . . . . . . . . . 11 ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
178177adantl 481 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎)) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
179 0zd 12548 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 0 ∈ ℤ)
180117adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 𝐽 ∈ ℤ)
181 1zzd 12571 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ∈ ℤ)
182 0le1 11708 . . . . . . . . . . . . 13 0 ≤ 1
183182a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 0 ≤ 1)
184 nnge1 12221 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
1851843ad2ant3 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 1 ≤ 𝐽)
186185adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ≤ 𝐽)
187179, 180, 181, 183, 186elfzd 13483 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ∈ (0...𝐽))
18834a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → ¬ 2 ∥ 1)
189 eleq1 2817 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑎 ∈ (0...𝐽) ↔ 1 ∈ (0...𝐽)))
190 breq2 5114 . . . . . . . . . . . . . 14 (𝑎 = 1 → (2 ∥ 𝑎 ↔ 2 ∥ 1))
191190notbid 318 . . . . . . . . . . . . 13 (𝑎 = 1 → (¬ 2 ∥ 𝑎 ↔ ¬ 2 ∥ 1))
192189, 191anbi12d 632 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ (1 ∈ (0...𝐽) ∧ ¬ 2 ∥ 1)))
193192adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ (1 ∈ (0...𝐽) ∧ ¬ 2 ∥ 1)))
194187, 188, 193mpbir2and 713 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
195178, 194jaodan 959 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1)) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
196171, 195impbida 800 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1)))
19730elrab 3662 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
198 elun 4119 . . . . . . . . 9 (𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}) ↔ (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∨ 𝑎 ∈ {1}))
199 velsn 4608 . . . . . . . . . 10 (𝑎 ∈ {1} ↔ 𝑎 = 1)
20031, 199orbi12i 914 . . . . . . . . 9 ((𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∨ 𝑎 ∈ {1}) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
201198, 200bitri 275 . . . . . . . 8 (𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
202196, 197, 2013bitr4g 314 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ 𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1})))
203202eqrdv 2728 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} = ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}))
204 fzfi 13944 . . . . . . . 8 (0...𝐽) ∈ Fin
205 ssrab2 4046 . . . . . . . 8 {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (0...𝐽)
206 ssfi 9143 . . . . . . . 8 (((0...𝐽) ∈ Fin ∧ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (0...𝐽)) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
207204, 205, 206mp2an 692 . . . . . . 7 {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin
208207a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
209205sseli 3945 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ (0...𝐽))
210209, 119syl 17 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℤ)
2117, 210, 11syl2an 596 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℕ0)
212211nn0cnd 12512 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℂ)
213173adant3 1132 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
214213nn0cnd 12512 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℂ)
215214adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℂ)
216209adantl 481 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ (0...𝐽))
217 fznn0sub 13524 . . . . . . . . . 10 (𝑎 ∈ (0...𝐽) → (𝐽𝑎) ∈ ℕ0)
218216, 217syl 17 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽𝑎) ∈ ℕ0)
219215, 218expcld 14118 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℂ)
22090zcnd 12646 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
221209, 122syl 17 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℕ0)
222 expcl 14051 . . . . . . . . . 10 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 𝑎 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑𝑎) ∈ ℂ)
223220, 221, 222syl2an 596 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑𝑎) ∈ ℂ)
224 rmspecpos 42912 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
225224rpcnd 13004 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
2262253ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴↑2) − 1) ∈ ℂ)
227197simprbi 496 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 𝑎)
228 1zzd 12571 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 1 ∈ ℤ)
22934a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 1)
230210, 227, 228, 229, 36syl22anc 838 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∥ (𝑎 − 1))
23138a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℤ)
23240a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ≠ 0)
233210, 42syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℤ)
234231, 232, 233, 44syl3anc 1373 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
235230, 234mpbid 232 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℤ)
236233zred 12645 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℝ)
237156a1i 11 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (0...𝐽) → (𝑎 = 0 → 2 ∥ 𝑎))
238237con3dimp 408 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → ¬ 𝑎 = 0)
239197, 238sylbi 217 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 𝑎 = 0)
240221, 161syl 17 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
241 orel2 890 . . . . . . . . . . . . . . 15 𝑎 = 0 → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → 𝑎 ∈ ℕ))
242239, 240, 241sylc 65 . . . . . . . . . . . . . 14 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℕ)
243242, 58syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℕ0)
244243nn0ge0d 12513 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ (𝑎 − 1))
24562a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℝ)
24664a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 < 2)
247236, 244, 245, 246, 66syl22anc 838 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ ((𝑎 − 1) / 2))
248235, 247, 68sylanbrc 583 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℕ0)
249 expcl 14051 . . . . . . . . . 10 ((((𝐴↑2) − 1) ∈ ℂ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
250226, 248, 249syl2an 596 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
251223, 250mulcld 11201 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) ∈ ℂ)
252219, 251mulcld 11201 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))) ∈ ℂ)
253212, 252mulcld 11201 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) ∈ ℂ)
254111, 203, 208, 253fsumsplit 15714 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) + Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))))
255 expcl 14051 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
256220, 91, 255sylancl 586 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
25788zcnd 12646 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℂ)
2585, 256, 257fsummulc1 15758 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
25912nn0cnd 12512 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℂ)
260214adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℂ)
261260, 22expcld 14118 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℂ)
262226, 69, 249syl2an 596 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
263 expcl 14051 . . . . . . . . . . . . 13 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ (𝑎 − 3) ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℂ)
264220, 82, 263syl2an 596 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℂ)
265262, 264mulcld 11201 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) ∈ ℂ)
266261, 265mulcld 11201 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) ∈ ℂ)
267256adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
268259, 266, 267mulassd 11204 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐽C𝑎) · ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3))))
269261, 265, 267mulassd 11204 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3))))
270262, 264, 267mulassd 11204 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3)) = ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3))))
271264, 267mulcld 11201 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) ∈ ℂ)
272262, 271mulcomd 11202 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3))) = ((((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
273220adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Yrm 𝑁) ∈ ℂ)
27491a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 3 ∈ ℕ0)
275273, 274, 83expaddd 14120 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑((𝑎 − 3) + 3)) = (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)))
27610adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ ℤ)
277276zcnd 12646 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ ℂ)
278 3cn 12274 . . . . . . . . . . . . . . . . 17 3 ∈ ℂ
279 npcan 11437 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑎 − 3) + 3) = 𝑎)
280277, 278, 279sylancl 586 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝑎 − 3) + 3) = 𝑎)
281280oveq2d 7406 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑((𝑎 − 3) + 3)) = ((𝐴 Yrm 𝑁)↑𝑎))
282275, 281eqtr3d 2767 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐴 Yrm 𝑁)↑𝑎))
283282oveq1d 7405 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) = (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
284270, 272, 2833eqtrd 2769 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
285284oveq2d 7406 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))
286269, 285eqtrd 2765 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))
287286oveq2d 7406 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3))) = ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
288268, 287eqtrd 2765 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
289288sumeq2dv 15675 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
290258, 289eqtr2d 2766 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
291 1nn 12204 . . . . . . 7 1 ∈ ℕ
292 bccl 14294 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0 ∧ 1 ∈ ℤ) → (𝐽C1) ∈ ℕ0)
2936, 134, 292sylancl 586 . . . . . . . . . 10 (𝐽 ∈ ℕ → (𝐽C1) ∈ ℕ0)
294293nn0cnd 12512 . . . . . . . . 9 (𝐽 ∈ ℕ → (𝐽C1) ∈ ℂ)
2952943ad2ant3 1135 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽C1) ∈ ℂ)
296 nnm1nn0 12490 . . . . . . . . . . 11 (𝐽 ∈ ℕ → (𝐽 − 1) ∈ ℕ0)
2972963ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽 − 1) ∈ ℕ0)
298214, 297expcld 14118 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑(𝐽 − 1)) ∈ ℂ)
299 1nn0 12465 . . . . . . . . . . 11 1 ∈ ℕ0
300 expcl 14051 . . . . . . . . . . 11 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑1) ∈ ℂ)
301220, 299, 300sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑1) ∈ ℂ)
302 1m1e0 12265 . . . . . . . . . . . . . 14 (1 − 1) = 0
303302oveq1i 7400 . . . . . . . . . . . . 13 ((1 − 1) / 2) = (0 / 2)
304 2cn 12268 . . . . . . . . . . . . . 14 2 ∈ ℂ
305304, 40div0i 11923 . . . . . . . . . . . . 13 (0 / 2) = 0
306303, 305eqtri 2753 . . . . . . . . . . . 12 ((1 − 1) / 2) = 0
307 0nn0 12464 . . . . . . . . . . . 12 0 ∈ ℕ0
308306, 307eqeltri 2825 . . . . . . . . . . 11 ((1 − 1) / 2) ∈ ℕ0
309 expcl 14051 . . . . . . . . . . 11 ((((𝐴↑2) − 1) ∈ ℂ ∧ ((1 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) ∈ ℂ)
310226, 308, 309sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) ∈ ℂ)
311301, 310mulcld 11201 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))) ∈ ℂ)
312298, 311mulcld 11201 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))) ∈ ℂ)
313295, 312mulcld 11201 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))) ∈ ℂ)
314 oveq2 7398 . . . . . . . . 9 (𝑎 = 1 → (𝐽C𝑎) = (𝐽C1))
315 oveq2 7398 . . . . . . . . . . 11 (𝑎 = 1 → (𝐽𝑎) = (𝐽 − 1))
316315oveq2d 7406 . . . . . . . . . 10 (𝑎 = 1 → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) = ((𝐴 Xrm 𝑁)↑(𝐽 − 1)))
317 oveq2 7398 . . . . . . . . . . 11 (𝑎 = 1 → ((𝐴 Yrm 𝑁)↑𝑎) = ((𝐴 Yrm 𝑁)↑1))
318 oveq1 7397 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑎 − 1) = (1 − 1))
319318oveq1d 7405 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑎 − 1) / 2) = ((1 − 1) / 2))
320319oveq2d 7406 . . . . . . . . . . 11 (𝑎 = 1 → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) = (((𝐴↑2) − 1)↑((1 − 1) / 2)))
321317, 320oveq12d 7408 . . . . . . . . . 10 (𝑎 = 1 → (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) = (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))
322316, 321oveq12d 7408 . . . . . . . . 9 (𝑎 = 1 → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))) = (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))
323314, 322oveq12d 7408 . . . . . . . 8 (𝑎 = 1 → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
324323sumsn 15719 . . . . . . 7 ((1 ∈ ℕ ∧ ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))) ∈ ℂ) → Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
325291, 313, 324sylancr 587 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
326290, 325oveq12d 7408 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) + Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))) = ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
32797, 254, 3263eqtrd 2769 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm (𝑁 · 𝐽)) = ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
328 bcn1 14285 . . . . . . 7 (𝐽 ∈ ℕ0 → (𝐽C1) = 𝐽)
3297, 328syl 17 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽C1) = 𝐽)
330329eqcomd 2736 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 = (𝐽C1))
331220exp1d 14113 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑1) = (𝐴 Yrm 𝑁))
332306a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((1 − 1) / 2) = 0)
333332oveq2d 7406 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) = (((𝐴↑2) − 1)↑0))
334226exp0d 14112 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑0) = 1)
335333, 334eqtrd 2765 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) = 1)
336331, 335oveq12d 7408 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))) = ((𝐴 Yrm 𝑁) · 1))
337220mulridd 11198 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁))
338336, 337eqtr2d 2766 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) = (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))
339338oveq2d 7406 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)) = (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))
340330, 339oveq12d 7408 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
341327, 340oveq12d 7408 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))) = (((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) − ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
3425, 257fsumcl 15706 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℂ)
343342, 256mulcld 11201 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) ∈ ℂ)
344343, 313pncand 11541 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) − ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
345341, 344eqtrd 2765 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
34695, 345breqtrrd 5138 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  {crab 3408  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  cexp 14033  Ccbc 14274  Σcsu 15659  cdvds 16229  NNcsquarenn 42831   Xrm crmx 42895   Yrm crmy 42896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-numer 16712  df-denom 16713  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-squarenn 42836  df-pell1qr 42837  df-pell14qr 42838  df-pell1234qr 42839  df-pellfund 42840  df-rmx 42897  df-rmy 42898
This theorem is referenced by:  jm2.20nn  42993
  Copyright terms: Public domain W3C validator