Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.23 Structured version   Visualization version   GIF version

Theorem jm2.23 41130
Description: Lemma for jm2.20nn 41131. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.23 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))))

Proof of Theorem jm2.23
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 13798 . . . . . 6 (3...𝐽) ∈ Fin
2 ssrab2 4029 . . . . . 6 {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (3...𝐽)
3 ssfi 9043 . . . . . 6 (((3...𝐽) ∈ Fin ∧ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (3...𝐽)) → {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
41, 2, 3mp2an 690 . . . . 5 {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin
54a1i 11 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
6 nnnn0 12346 . . . . . . . 8 (𝐽 ∈ ℕ → 𝐽 ∈ ℕ0)
763ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 ∈ ℕ0)
82sseli 3932 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ (3...𝐽))
9 elfzelz 13362 . . . . . . . 8 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℤ)
108, 9syl 17 . . . . . . 7 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℤ)
11 bccl 14142 . . . . . . 7 ((𝐽 ∈ ℕ0𝑎 ∈ ℤ) → (𝐽C𝑎) ∈ ℕ0)
127, 10, 11syl2an 597 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℕ0)
1312nn0zd 12530 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℤ)
14 simpl1 1191 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝐴 ∈ (ℤ‘2))
15 simpl2 1192 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑁 ∈ ℤ)
16 frmx 41047 . . . . . . . . . 10 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1716fovcl 7469 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1814, 15, 17syl2anc 585 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1918nn0zd 12530 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℤ)
208adantl 483 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ (3...𝐽))
21 fznn0sub 13394 . . . . . . . 8 (𝑎 ∈ (3...𝐽) → (𝐽𝑎) ∈ ℕ0)
2220, 21syl 17 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽𝑎) ∈ ℕ0)
23 zexpcl 13903 . . . . . . 7 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐽𝑎) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℤ)
2419, 22, 23syl2anc 585 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℤ)
25 rmspecnonsq 41040 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2625eldifad 3914 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
2726nnzd 12531 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
28273ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴↑2) − 1) ∈ ℤ)
29 breq2 5101 . . . . . . . . . . . . . 14 (𝑏 = 𝑎 → (2 ∥ 𝑏 ↔ 2 ∥ 𝑎))
3029notbid 318 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → (¬ 2 ∥ 𝑏 ↔ ¬ 2 ∥ 𝑎))
3130elrab 3638 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎))
3231simprbi 498 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 𝑎)
33 1zzd 12457 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 1 ∈ ℤ)
34 n2dvds1 16177 . . . . . . . . . . . 12 ¬ 2 ∥ 1
3534a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 1)
36 omoe 16173 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ ¬ 2 ∥ 𝑎) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑎 − 1))
3710, 32, 33, 35, 36syl22anc 837 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∥ (𝑎 − 1))
38 2z 12458 . . . . . . . . . . . 12 2 ∈ ℤ
3938a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℤ)
40 2ne0 12183 . . . . . . . . . . . 12 2 ≠ 0
4140a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ≠ 0)
42 peano2zm 12469 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → (𝑎 − 1) ∈ ℤ)
4310, 42syl 17 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℤ)
44 dvdsval2 16066 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑎 − 1) ∈ ℤ) → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
4539, 41, 43, 44syl3anc 1371 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
4637, 45mpbid 231 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℤ)
4743zred 12532 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℝ)
48 0red 11084 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 0 ∈ ℝ)
49 3re 12159 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
5049a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 3 ∈ ℝ)
519zred 12532 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℝ)
52 3pos 12184 . . . . . . . . . . . . . . . 16 0 < 3
5352a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 0 < 3)
54 elfzle1 13365 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 3 ≤ 𝑎)
5548, 50, 51, 53, 54ltletrd 11241 . . . . . . . . . . . . . 14 (𝑎 ∈ (3...𝐽) → 0 < 𝑎)
56 elnnz 12435 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
579, 55, 56sylanbrc 584 . . . . . . . . . . . . 13 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℕ)
58 nnm1nn0 12380 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (𝑎 − 1) ∈ ℕ0)
5957, 58syl 17 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → (𝑎 − 1) ∈ ℕ0)
6059nn0ge0d 12402 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → 0 ≤ (𝑎 − 1))
618, 60syl 17 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ (𝑎 − 1))
62 2re 12153 . . . . . . . . . . 11 2 ∈ ℝ
6362a1i 11 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℝ)
64 2pos 12182 . . . . . . . . . . 11 0 < 2
6564a1i 11 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 < 2)
66 divge0 11950 . . . . . . . . . 10 ((((𝑎 − 1) ∈ ℝ ∧ 0 ≤ (𝑎 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑎 − 1) / 2))
6747, 61, 63, 65, 66syl22anc 837 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ ((𝑎 − 1) / 2))
68 elnn0z 12438 . . . . . . . . 9 (((𝑎 − 1) / 2) ∈ ℕ0 ↔ (((𝑎 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑎 − 1) / 2)))
6946, 67, 68sylanbrc 584 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℕ0)
70 zexpcl 13903 . . . . . . . 8 ((((𝐴↑2) − 1) ∈ ℤ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℤ)
7128, 69, 70syl2an 597 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℤ)
72 frmy 41048 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
7372fovcl 7469 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
7414, 15, 73syl2anc 585 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Yrm 𝑁) ∈ ℤ)
75 elfzel1 13361 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → 3 ∈ ℤ)
769, 75zsubcld 12537 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → (𝑎 − 3) ∈ ℤ)
77 subge0 11594 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 3 ∈ ℝ) → (0 ≤ (𝑎 − 3) ↔ 3 ≤ 𝑎))
7851, 49, 77sylancl 587 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → (0 ≤ (𝑎 − 3) ↔ 3 ≤ 𝑎))
7954, 78mpbird 257 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → 0 ≤ (𝑎 − 3))
80 elnn0z 12438 . . . . . . . . . . 11 ((𝑎 − 3) ∈ ℕ0 ↔ ((𝑎 − 3) ∈ ℤ ∧ 0 ≤ (𝑎 − 3)))
8176, 79, 80sylanbrc 584 . . . . . . . . . 10 (𝑎 ∈ (3...𝐽) → (𝑎 − 3) ∈ ℕ0)
828, 81syl 17 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 3) ∈ ℕ0)
8382adantl 483 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝑎 − 3) ∈ ℕ0)
84 zexpcl 13903 . . . . . . . 8 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑎 − 3) ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℤ)
8574, 83, 84syl2anc 585 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℤ)
8671, 85zmulcld 12538 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) ∈ ℤ)
8724, 86zmulcld 12538 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) ∈ ℤ)
8813, 87zmulcld 12538 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ)
895, 88fsumzcl 15547 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ)
90733adant3 1132 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
91 3nn0 12357 . . . 4 3 ∈ ℕ0
92 zexpcl 13903 . . . 4 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
9390, 91, 92sylancl 587 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
94 dvdsmul2 16088 . . 3 ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑3) ∈ ℤ) → ((𝐴 Yrm 𝑁)↑3) ∥ (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
9589, 93, 94syl2anc 585 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
96 jm2.22 41129 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
976, 96syl3an3 1165 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
98 1lt3 12252 . . . . . . . . . . . 12 1 < 3
99 1re 11081 . . . . . . . . . . . . 13 1 ∈ ℝ
10099, 49ltnlei 11202 . . . . . . . . . . . 12 (1 < 3 ↔ ¬ 3 ≤ 1)
10198, 100mpbi 229 . . . . . . . . . . 11 ¬ 3 ≤ 1
102 elfzle1 13365 . . . . . . . . . . 11 (1 ∈ (3...𝐽) → 3 ≤ 1)
103101, 102mto 196 . . . . . . . . . 10 ¬ 1 ∈ (3...𝐽)
104103a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ 1 ∈ (3...𝐽))
105104intnanrd 491 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ (1 ∈ (3...𝐽) ∧ ¬ 2 ∥ 1))
106 breq2 5101 . . . . . . . . . 10 (𝑏 = 1 → (2 ∥ 𝑏 ↔ 2 ∥ 1))
107106notbid 318 . . . . . . . . 9 (𝑏 = 1 → (¬ 2 ∥ 𝑏 ↔ ¬ 2 ∥ 1))
108107elrab 3638 . . . . . . . 8 (1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (1 ∈ (3...𝐽) ∧ ¬ 2 ∥ 1))
109105, 108sylnibr 329 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ 1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏})
110 disjsn 4664 . . . . . . 7 (({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∩ {1}) = ∅ ↔ ¬ 1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏})
111109, 110sylibr 233 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∩ {1}) = ∅)
112 simpr 486 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 = 1) → 𝑎 = 1)
113112olcd 872 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 = 1) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
114 3z 12459 . . . . . . . . . . . . . 14 3 ∈ ℤ
115114a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 3 ∈ ℤ)
116 nnz 12448 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → 𝐽 ∈ ℤ)
1171163ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 ∈ ℤ)
118117ad2antrr 724 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝐽 ∈ ℤ)
119 elfzelz 13362 . . . . . . . . . . . . . . 15 (𝑎 ∈ (0...𝐽) → 𝑎 ∈ ℤ)
120119adantr 482 . . . . . . . . . . . . . 14 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎 ∈ ℤ)
121120ad2antlr 725 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ ℤ)
122 elfznn0 13455 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (0...𝐽) → 𝑎 ∈ ℕ0)
123122adantr 482 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎 ∈ ℕ0)
124123ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ ℕ0)
125 simplrr 776 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → ¬ 2 ∥ 𝑎)
126 simpr 486 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ≠ 1)
127 elnn1uz2 12771 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ ↔ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2)))
128 df-ne 2942 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ≠ 1 ↔ ¬ 𝑎 = 1)
129128biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ≠ 1 → ¬ 𝑎 = 1)
1301293ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → ¬ 𝑎 = 1)
131130pm2.21d 121 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → (𝑎 = 1 → 3 ≤ 𝑎))
132131imp 408 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 1) → 3 ≤ 𝑎)
133 uzp1 12725 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (ℤ‘2) → (𝑎 = 2 ∨ 𝑎 ∈ (ℤ‘(2 + 1))))
134 1z 12456 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℤ
135 dvdsmul1 16087 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → 2 ∥ (2 · 1))
13638, 134, 135mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 2 ∥ (2 · 1)
137 2t1e2 12242 . . . . . . . . . . . . . . . . . . . . . 22 (2 · 1) = 2
138136, 137breqtri 5122 . . . . . . . . . . . . . . . . . . . . 21 2 ∥ 2
139 breq2 5101 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 2 → (2 ∥ 𝑎 ↔ 2 ∥ 2))
140139adantl 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → (2 ∥ 𝑎 ↔ 2 ∥ 2))
141138, 140mpbiri 258 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → 2 ∥ 𝑎)
142 simpl2 1192 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → ¬ 2 ∥ 𝑎)
143141, 142pm2.21dd 194 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → 3 ≤ 𝑎)
144 eluzle 12701 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (ℤ‘3) → 3 ≤ 𝑎)
145 2p1e3 12221 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = 3
146145fveq2i 6833 . . . . . . . . . . . . . . . . . . . . 21 (ℤ‘(2 + 1)) = (ℤ‘3)
147144, 146eleq2s 2856 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (ℤ‘(2 + 1)) → 3 ≤ 𝑎)
148147adantl 483 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ (ℤ‘(2 + 1))) → 3 ≤ 𝑎)
149143, 148jaodan 956 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ (𝑎 = 2 ∨ 𝑎 ∈ (ℤ‘(2 + 1)))) → 3 ≤ 𝑎)
150133, 149sylan2 594 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ (ℤ‘2)) → 3 ≤ 𝑎)
151132, 150jaodan 956 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2))) → 3 ≤ 𝑎)
152127, 151sylan2b 595 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ ℕ) → 3 ≤ 𝑎)
153 dvds0 16081 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℤ → 2 ∥ 0)
15438, 153ax-mp 5 . . . . . . . . . . . . . . . . . 18 2 ∥ 0
155 breq2 5101 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (2 ∥ 𝑎 ↔ 2 ∥ 0))
156154, 155mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑎 = 0 → 2 ∥ 𝑎)
157156adantl 483 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → 2 ∥ 𝑎)
158 simpl2 1192 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → ¬ 2 ∥ 𝑎)
159157, 158pm2.21dd 194 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → 3 ≤ 𝑎)
160 elnn0 12341 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
161160biimpi 215 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
1621613ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
163152, 159, 162mpjaodan 957 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → 3 ≤ 𝑎)
164124, 125, 126, 163syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 3 ≤ 𝑎)
165 elfzle2 13366 . . . . . . . . . . . . . . 15 (𝑎 ∈ (0...𝐽) → 𝑎𝐽)
166165adantr 482 . . . . . . . . . . . . . 14 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎𝐽)
167166ad2antlr 725 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎𝐽)
168115, 118, 121, 164, 167elfzd 13353 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ (3...𝐽))
169168, 125jca 513 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎))
170169orcd 871 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
171113, 170pm2.61dane 3030 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
172 nn0uz 12726 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
17391, 172eleqtri 2836 . . . . . . . . . . . . . 14 3 ∈ (ℤ‘0)
174 fzss1 13401 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘0) → (3...𝐽) ⊆ (0...𝐽))
175173, 174ax-mp 5 . . . . . . . . . . . . 13 (3...𝐽) ⊆ (0...𝐽)
176175sseli 3932 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ (0...𝐽))
177176anim1i 616 . . . . . . . . . . 11 ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
178177adantl 483 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎)) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
179 0zd 12437 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 0 ∈ ℤ)
180117adantr 482 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 𝐽 ∈ ℤ)
181 1zzd 12457 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ∈ ℤ)
182 0le1 11604 . . . . . . . . . . . . 13 0 ≤ 1
183182a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 0 ≤ 1)
184 nnge1 12107 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
1851843ad2ant3 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 1 ≤ 𝐽)
186185adantr 482 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ≤ 𝐽)
187179, 180, 181, 183, 186elfzd 13353 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ∈ (0...𝐽))
18834a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → ¬ 2 ∥ 1)
189 eleq1 2825 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑎 ∈ (0...𝐽) ↔ 1 ∈ (0...𝐽)))
190 breq2 5101 . . . . . . . . . . . . . 14 (𝑎 = 1 → (2 ∥ 𝑎 ↔ 2 ∥ 1))
191190notbid 318 . . . . . . . . . . . . 13 (𝑎 = 1 → (¬ 2 ∥ 𝑎 ↔ ¬ 2 ∥ 1))
192189, 191anbi12d 632 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ (1 ∈ (0...𝐽) ∧ ¬ 2 ∥ 1)))
193192adantl 483 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ (1 ∈ (0...𝐽) ∧ ¬ 2 ∥ 1)))
194187, 188, 193mpbir2and 711 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
195178, 194jaodan 956 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1)) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
196171, 195impbida 799 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1)))
19730elrab 3638 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
198 elun 4100 . . . . . . . . 9 (𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}) ↔ (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∨ 𝑎 ∈ {1}))
199 velsn 4594 . . . . . . . . . 10 (𝑎 ∈ {1} ↔ 𝑎 = 1)
20031, 199orbi12i 913 . . . . . . . . 9 ((𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∨ 𝑎 ∈ {1}) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
201198, 200bitri 275 . . . . . . . 8 (𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
202196, 197, 2013bitr4g 314 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ 𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1})))
203202eqrdv 2735 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} = ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}))
204 fzfi 13798 . . . . . . . 8 (0...𝐽) ∈ Fin
205 ssrab2 4029 . . . . . . . 8 {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (0...𝐽)
206 ssfi 9043 . . . . . . . 8 (((0...𝐽) ∈ Fin ∧ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (0...𝐽)) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
207204, 205, 206mp2an 690 . . . . . . 7 {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin
208207a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
209205sseli 3932 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ (0...𝐽))
210209, 119syl 17 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℤ)
2117, 210, 11syl2an 597 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℕ0)
212211nn0cnd 12401 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℂ)
213173adant3 1132 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
214213nn0cnd 12401 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℂ)
215214adantr 482 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℂ)
216209adantl 483 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ (0...𝐽))
217 fznn0sub 13394 . . . . . . . . . 10 (𝑎 ∈ (0...𝐽) → (𝐽𝑎) ∈ ℕ0)
218216, 217syl 17 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽𝑎) ∈ ℕ0)
219215, 218expcld 13970 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℂ)
22090zcnd 12533 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
221209, 122syl 17 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℕ0)
222 expcl 13906 . . . . . . . . . 10 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 𝑎 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑𝑎) ∈ ℂ)
223220, 221, 222syl2an 597 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑𝑎) ∈ ℂ)
224 rmspecpos 41050 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
225224rpcnd 12880 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
2262253ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴↑2) − 1) ∈ ℂ)
227197simprbi 498 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 𝑎)
228 1zzd 12457 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 1 ∈ ℤ)
22934a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 1)
230210, 227, 228, 229, 36syl22anc 837 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∥ (𝑎 − 1))
23138a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℤ)
23240a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ≠ 0)
233210, 42syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℤ)
234231, 232, 233, 44syl3anc 1371 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
235230, 234mpbid 231 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℤ)
236233zred 12532 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℝ)
237156a1i 11 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (0...𝐽) → (𝑎 = 0 → 2 ∥ 𝑎))
238237con3dimp 410 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → ¬ 𝑎 = 0)
239197, 238sylbi 216 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 𝑎 = 0)
240221, 161syl 17 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
241 orel2 889 . . . . . . . . . . . . . . 15 𝑎 = 0 → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → 𝑎 ∈ ℕ))
242239, 240, 241sylc 65 . . . . . . . . . . . . . 14 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℕ)
243242, 58syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℕ0)
244243nn0ge0d 12402 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ (𝑎 − 1))
24562a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℝ)
24664a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 < 2)
247236, 244, 245, 246, 66syl22anc 837 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ ((𝑎 − 1) / 2))
248235, 247, 68sylanbrc 584 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℕ0)
249 expcl 13906 . . . . . . . . . 10 ((((𝐴↑2) − 1) ∈ ℂ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
250226, 248, 249syl2an 597 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
251223, 250mulcld 11101 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) ∈ ℂ)
252219, 251mulcld 11101 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))) ∈ ℂ)
253212, 252mulcld 11101 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) ∈ ℂ)
254111, 203, 208, 253fsumsplit 15553 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) + Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))))
255 expcl 13906 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
256220, 91, 255sylancl 587 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
25788zcnd 12533 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℂ)
2585, 256, 257fsummulc1 15597 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
25912nn0cnd 12401 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℂ)
260214adantr 482 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℂ)
261260, 22expcld 13970 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℂ)
262226, 69, 249syl2an 597 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
263 expcl 13906 . . . . . . . . . . . . 13 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ (𝑎 − 3) ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℂ)
264220, 82, 263syl2an 597 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℂ)
265262, 264mulcld 11101 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) ∈ ℂ)
266261, 265mulcld 11101 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) ∈ ℂ)
267256adantr 482 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
268259, 266, 267mulassd 11104 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐽C𝑎) · ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3))))
269261, 265, 267mulassd 11104 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3))))
270262, 264, 267mulassd 11104 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3)) = ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3))))
271264, 267mulcld 11101 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) ∈ ℂ)
272262, 271mulcomd 11102 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3))) = ((((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
273220adantr 482 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Yrm 𝑁) ∈ ℂ)
27491a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 3 ∈ ℕ0)
275273, 274, 83expaddd 13972 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑((𝑎 − 3) + 3)) = (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)))
27610adantl 483 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ ℤ)
277276zcnd 12533 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ ℂ)
278 3cn 12160 . . . . . . . . . . . . . . . . 17 3 ∈ ℂ
279 npcan 11336 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑎 − 3) + 3) = 𝑎)
280277, 278, 279sylancl 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝑎 − 3) + 3) = 𝑎)
281280oveq2d 7358 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑((𝑎 − 3) + 3)) = ((𝐴 Yrm 𝑁)↑𝑎))
282275, 281eqtr3d 2779 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐴 Yrm 𝑁)↑𝑎))
283282oveq1d 7357 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) = (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
284270, 272, 2833eqtrd 2781 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
285284oveq2d 7358 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))
286269, 285eqtrd 2777 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))
287286oveq2d 7358 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3))) = ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
288268, 287eqtrd 2777 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
289288sumeq2dv 15515 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
290258, 289eqtr2d 2778 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
291 1nn 12090 . . . . . . 7 1 ∈ ℕ
292 bccl 14142 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0 ∧ 1 ∈ ℤ) → (𝐽C1) ∈ ℕ0)
2936, 134, 292sylancl 587 . . . . . . . . . 10 (𝐽 ∈ ℕ → (𝐽C1) ∈ ℕ0)
294293nn0cnd 12401 . . . . . . . . 9 (𝐽 ∈ ℕ → (𝐽C1) ∈ ℂ)
2952943ad2ant3 1135 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽C1) ∈ ℂ)
296 nnm1nn0 12380 . . . . . . . . . . 11 (𝐽 ∈ ℕ → (𝐽 − 1) ∈ ℕ0)
2972963ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽 − 1) ∈ ℕ0)
298214, 297expcld 13970 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑(𝐽 − 1)) ∈ ℂ)
299 1nn0 12355 . . . . . . . . . . 11 1 ∈ ℕ0
300 expcl 13906 . . . . . . . . . . 11 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑1) ∈ ℂ)
301220, 299, 300sylancl 587 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑1) ∈ ℂ)
302 1m1e0 12151 . . . . . . . . . . . . . 14 (1 − 1) = 0
303302oveq1i 7352 . . . . . . . . . . . . 13 ((1 − 1) / 2) = (0 / 2)
304 2cn 12154 . . . . . . . . . . . . . 14 2 ∈ ℂ
305304, 40div0i 11815 . . . . . . . . . . . . 13 (0 / 2) = 0
306303, 305eqtri 2765 . . . . . . . . . . . 12 ((1 − 1) / 2) = 0
307 0nn0 12354 . . . . . . . . . . . 12 0 ∈ ℕ0
308306, 307eqeltri 2834 . . . . . . . . . . 11 ((1 − 1) / 2) ∈ ℕ0
309 expcl 13906 . . . . . . . . . . 11 ((((𝐴↑2) − 1) ∈ ℂ ∧ ((1 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) ∈ ℂ)
310226, 308, 309sylancl 587 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) ∈ ℂ)
311301, 310mulcld 11101 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))) ∈ ℂ)
312298, 311mulcld 11101 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))) ∈ ℂ)
313295, 312mulcld 11101 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))) ∈ ℂ)
314 oveq2 7350 . . . . . . . . 9 (𝑎 = 1 → (𝐽C𝑎) = (𝐽C1))
315 oveq2 7350 . . . . . . . . . . 11 (𝑎 = 1 → (𝐽𝑎) = (𝐽 − 1))
316315oveq2d 7358 . . . . . . . . . 10 (𝑎 = 1 → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) = ((𝐴 Xrm 𝑁)↑(𝐽 − 1)))
317 oveq2 7350 . . . . . . . . . . 11 (𝑎 = 1 → ((𝐴 Yrm 𝑁)↑𝑎) = ((𝐴 Yrm 𝑁)↑1))
318 oveq1 7349 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑎 − 1) = (1 − 1))
319318oveq1d 7357 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑎 − 1) / 2) = ((1 − 1) / 2))
320319oveq2d 7358 . . . . . . . . . . 11 (𝑎 = 1 → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) = (((𝐴↑2) − 1)↑((1 − 1) / 2)))
321317, 320oveq12d 7360 . . . . . . . . . 10 (𝑎 = 1 → (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) = (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))
322316, 321oveq12d 7360 . . . . . . . . 9 (𝑎 = 1 → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))) = (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))
323314, 322oveq12d 7360 . . . . . . . 8 (𝑎 = 1 → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
324323sumsn 15558 . . . . . . 7 ((1 ∈ ℕ ∧ ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))) ∈ ℂ) → Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
325291, 313, 324sylancr 588 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
326290, 325oveq12d 7360 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) + Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))) = ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
32797, 254, 3263eqtrd 2781 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm (𝑁 · 𝐽)) = ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
328 bcn1 14133 . . . . . . 7 (𝐽 ∈ ℕ0 → (𝐽C1) = 𝐽)
3297, 328syl 17 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽C1) = 𝐽)
330329eqcomd 2743 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 = (𝐽C1))
331220exp1d 13965 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑1) = (𝐴 Yrm 𝑁))
332306a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((1 − 1) / 2) = 0)
333332oveq2d 7358 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) = (((𝐴↑2) − 1)↑0))
334226exp0d 13964 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑0) = 1)
335333, 334eqtrd 2777 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) = 1)
336331, 335oveq12d 7360 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))) = ((𝐴 Yrm 𝑁) · 1))
337220mulid1d 11098 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁))
338336, 337eqtr2d 2778 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) = (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))
339338oveq2d 7358 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)) = (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))
340330, 339oveq12d 7360 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
341327, 340oveq12d 7360 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))) = (((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) − ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
3425, 257fsumcl 15545 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℂ)
343342, 256mulcld 11101 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) ∈ ℂ)
344343, 313pncand 11439 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) − ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
345341, 344eqtrd 2777 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
34695, 345breqtrrd 5125 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2941  {crab 3404  cun 3900  cin 3901  wss 3902  c0 4274  {csn 4578   class class class wbr 5097  cfv 6484  (class class class)co 7342  Fincfn 8809  cc 10975  cr 10976  0cc0 10977  1c1 10978   + caddc 10980   · cmul 10982   < clt 11115  cle 11116  cmin 11311   / cdiv 11738  cn 12079  2c2 12134  3c3 12135  0cn0 12339  cz 12425  cuz 12688  ...cfz 13345  cexp 13888  Ccbc 14122  Σcsu 15497  cdvds 16063  NNcsquarenn 40969   Xrm crmx 41033   Yrm crmy 41034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055  ax-addf 11056  ax-mulf 11057
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-om 7786  df-1st 7904  df-2nd 7905  df-supp 8053  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-2o 8373  df-oadd 8376  df-omul 8377  df-er 8574  df-map 8693  df-pm 8694  df-ixp 8762  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fsupp 9232  df-fi 9273  df-sup 9304  df-inf 9305  df-oi 9372  df-card 9801  df-acn 9804  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-9 12149  df-n0 12340  df-xnn0 12412  df-z 12426  df-dec 12544  df-uz 12689  df-q 12795  df-rp 12837  df-xneg 12954  df-xadd 12955  df-xmul 12956  df-ioo 13189  df-ioc 13190  df-ico 13191  df-icc 13192  df-fz 13346  df-fzo 13489  df-fl 13618  df-mod 13696  df-seq 13828  df-exp 13889  df-fac 14094  df-bc 14123  df-hash 14151  df-shft 14878  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-limsup 15280  df-clim 15297  df-rlim 15298  df-sum 15498  df-ef 15877  df-sin 15879  df-cos 15880  df-pi 15882  df-dvds 16064  df-gcd 16302  df-numer 16537  df-denom 16538  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-starv 17075  df-sca 17076  df-vsca 17077  df-ip 17078  df-tset 17079  df-ple 17080  df-ds 17082  df-unif 17083  df-hom 17084  df-cco 17085  df-rest 17231  df-topn 17232  df-0g 17250  df-gsum 17251  df-topgen 17252  df-pt 17253  df-prds 17256  df-xrs 17311  df-qtop 17316  df-imas 17317  df-xps 17319  df-mre 17393  df-mrc 17394  df-acs 17396  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-mulg 18798  df-cntz 19020  df-cmn 19484  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-lp 22393  df-perf 22394  df-cn 22484  df-cnp 22485  df-haus 22572  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-limc 25136  df-dv 25137  df-log 25818  df-squarenn 40974  df-pell1qr 40975  df-pell14qr 40976  df-pell1234qr 40977  df-pellfund 40978  df-rmx 41035  df-rmy 41036
This theorem is referenced by:  jm2.20nn  41131
  Copyright terms: Public domain W3C validator