Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.23 Structured version   Visualization version   GIF version

Theorem jm2.23 43114
Description: Lemma for jm2.20nn 43115. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.23 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))))

Proof of Theorem jm2.23
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 13881 . . . . . 6 (3...𝐽) ∈ Fin
2 ssrab2 4029 . . . . . 6 {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (3...𝐽)
3 ssfi 9089 . . . . . 6 (((3...𝐽) ∈ Fin ∧ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (3...𝐽)) → {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
41, 2, 3mp2an 692 . . . . 5 {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin
54a1i 11 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
6 nnnn0 12395 . . . . . . . 8 (𝐽 ∈ ℕ → 𝐽 ∈ ℕ0)
763ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 ∈ ℕ0)
82sseli 3926 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ (3...𝐽))
9 elfzelz 13426 . . . . . . . 8 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℤ)
108, 9syl 17 . . . . . . 7 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℤ)
11 bccl 14231 . . . . . . 7 ((𝐽 ∈ ℕ0𝑎 ∈ ℤ) → (𝐽C𝑎) ∈ ℕ0)
127, 10, 11syl2an 596 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℕ0)
1312nn0zd 12500 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℤ)
14 simpl1 1192 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝐴 ∈ (ℤ‘2))
15 simpl2 1193 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑁 ∈ ℤ)
16 frmx 43031 . . . . . . . . . 10 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1716fovcl 7480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1814, 15, 17syl2anc 584 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1918nn0zd 12500 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℤ)
208adantl 481 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ (3...𝐽))
21 fznn0sub 13458 . . . . . . . 8 (𝑎 ∈ (3...𝐽) → (𝐽𝑎) ∈ ℕ0)
2220, 21syl 17 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽𝑎) ∈ ℕ0)
23 zexpcl 13985 . . . . . . 7 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐽𝑎) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℤ)
2419, 22, 23syl2anc 584 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℤ)
25 rmspecnonsq 43025 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2625eldifad 3910 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
2726nnzd 12501 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
28273ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴↑2) − 1) ∈ ℤ)
29 breq2 5097 . . . . . . . . . . . . . 14 (𝑏 = 𝑎 → (2 ∥ 𝑏 ↔ 2 ∥ 𝑎))
3029notbid 318 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → (¬ 2 ∥ 𝑏 ↔ ¬ 2 ∥ 𝑎))
3130elrab 3643 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎))
3231simprbi 496 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 𝑎)
33 1zzd 12509 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 1 ∈ ℤ)
34 n2dvds1 16281 . . . . . . . . . . . 12 ¬ 2 ∥ 1
3534a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 1)
36 omoe 16277 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ ¬ 2 ∥ 𝑎) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑎 − 1))
3710, 32, 33, 35, 36syl22anc 838 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∥ (𝑎 − 1))
38 2z 12510 . . . . . . . . . . . 12 2 ∈ ℤ
3938a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℤ)
40 2ne0 12236 . . . . . . . . . . . 12 2 ≠ 0
4140a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ≠ 0)
42 peano2zm 12521 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → (𝑎 − 1) ∈ ℤ)
4310, 42syl 17 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℤ)
44 dvdsval2 16168 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑎 − 1) ∈ ℤ) → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
4539, 41, 43, 44syl3anc 1373 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
4637, 45mpbid 232 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℤ)
4743zred 12583 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℝ)
48 0red 11122 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 0 ∈ ℝ)
49 3re 12212 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
5049a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 3 ∈ ℝ)
519zred 12583 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℝ)
52 3pos 12237 . . . . . . . . . . . . . . . 16 0 < 3
5352a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 0 < 3)
54 elfzle1 13429 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 3 ≤ 𝑎)
5548, 50, 51, 53, 54ltletrd 11280 . . . . . . . . . . . . . 14 (𝑎 ∈ (3...𝐽) → 0 < 𝑎)
56 elnnz 12485 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
579, 55, 56sylanbrc 583 . . . . . . . . . . . . 13 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℕ)
58 nnm1nn0 12429 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (𝑎 − 1) ∈ ℕ0)
5957, 58syl 17 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → (𝑎 − 1) ∈ ℕ0)
6059nn0ge0d 12452 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → 0 ≤ (𝑎 − 1))
618, 60syl 17 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ (𝑎 − 1))
62 2re 12206 . . . . . . . . . . 11 2 ∈ ℝ
6362a1i 11 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℝ)
64 2pos 12235 . . . . . . . . . . 11 0 < 2
6564a1i 11 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 < 2)
66 divge0 11998 . . . . . . . . . 10 ((((𝑎 − 1) ∈ ℝ ∧ 0 ≤ (𝑎 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑎 − 1) / 2))
6747, 61, 63, 65, 66syl22anc 838 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ ((𝑎 − 1) / 2))
68 elnn0z 12488 . . . . . . . . 9 (((𝑎 − 1) / 2) ∈ ℕ0 ↔ (((𝑎 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑎 − 1) / 2)))
6946, 67, 68sylanbrc 583 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℕ0)
70 zexpcl 13985 . . . . . . . 8 ((((𝐴↑2) − 1) ∈ ℤ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℤ)
7128, 69, 70syl2an 596 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℤ)
72 frmy 43032 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
7372fovcl 7480 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
7414, 15, 73syl2anc 584 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Yrm 𝑁) ∈ ℤ)
75 elfzel1 13425 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → 3 ∈ ℤ)
769, 75zsubcld 12588 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → (𝑎 − 3) ∈ ℤ)
77 subge0 11637 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 3 ∈ ℝ) → (0 ≤ (𝑎 − 3) ↔ 3 ≤ 𝑎))
7851, 49, 77sylancl 586 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → (0 ≤ (𝑎 − 3) ↔ 3 ≤ 𝑎))
7954, 78mpbird 257 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → 0 ≤ (𝑎 − 3))
80 elnn0z 12488 . . . . . . . . . . 11 ((𝑎 − 3) ∈ ℕ0 ↔ ((𝑎 − 3) ∈ ℤ ∧ 0 ≤ (𝑎 − 3)))
8176, 79, 80sylanbrc 583 . . . . . . . . . 10 (𝑎 ∈ (3...𝐽) → (𝑎 − 3) ∈ ℕ0)
828, 81syl 17 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 3) ∈ ℕ0)
8382adantl 481 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝑎 − 3) ∈ ℕ0)
84 zexpcl 13985 . . . . . . . 8 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑎 − 3) ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℤ)
8574, 83, 84syl2anc 584 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℤ)
8671, 85zmulcld 12589 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) ∈ ℤ)
8724, 86zmulcld 12589 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) ∈ ℤ)
8813, 87zmulcld 12589 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ)
895, 88fsumzcl 15644 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ)
90733adant3 1132 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
91 3nn0 12406 . . . 4 3 ∈ ℕ0
92 zexpcl 13985 . . . 4 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
9390, 91, 92sylancl 586 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
94 dvdsmul2 16191 . . 3 ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑3) ∈ ℤ) → ((𝐴 Yrm 𝑁)↑3) ∥ (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
9589, 93, 94syl2anc 584 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
96 jm2.22 43113 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
976, 96syl3an3 1165 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
98 1lt3 12300 . . . . . . . . . . . 12 1 < 3
99 1re 11119 . . . . . . . . . . . . 13 1 ∈ ℝ
10099, 49ltnlei 11241 . . . . . . . . . . . 12 (1 < 3 ↔ ¬ 3 ≤ 1)
10198, 100mpbi 230 . . . . . . . . . . 11 ¬ 3 ≤ 1
102 elfzle1 13429 . . . . . . . . . . 11 (1 ∈ (3...𝐽) → 3 ≤ 1)
103101, 102mto 197 . . . . . . . . . 10 ¬ 1 ∈ (3...𝐽)
104103a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ 1 ∈ (3...𝐽))
105104intnanrd 489 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ (1 ∈ (3...𝐽) ∧ ¬ 2 ∥ 1))
106 breq2 5097 . . . . . . . . . 10 (𝑏 = 1 → (2 ∥ 𝑏 ↔ 2 ∥ 1))
107106notbid 318 . . . . . . . . 9 (𝑏 = 1 → (¬ 2 ∥ 𝑏 ↔ ¬ 2 ∥ 1))
108107elrab 3643 . . . . . . . 8 (1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (1 ∈ (3...𝐽) ∧ ¬ 2 ∥ 1))
109105, 108sylnibr 329 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ 1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏})
110 disjsn 4663 . . . . . . 7 (({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∩ {1}) = ∅ ↔ ¬ 1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏})
111109, 110sylibr 234 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∩ {1}) = ∅)
112 simpr 484 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 = 1) → 𝑎 = 1)
113112olcd 874 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 = 1) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
114 3z 12511 . . . . . . . . . . . . . 14 3 ∈ ℤ
115114a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 3 ∈ ℤ)
116 nnz 12496 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → 𝐽 ∈ ℤ)
1171163ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 ∈ ℤ)
118117ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝐽 ∈ ℤ)
119 elfzelz 13426 . . . . . . . . . . . . . . 15 (𝑎 ∈ (0...𝐽) → 𝑎 ∈ ℤ)
120119adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎 ∈ ℤ)
121120ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ ℤ)
122 elfznn0 13522 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (0...𝐽) → 𝑎 ∈ ℕ0)
123122adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎 ∈ ℕ0)
124123ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ ℕ0)
125 simplrr 777 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → ¬ 2 ∥ 𝑎)
126 simpr 484 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ≠ 1)
127 elnn1uz2 12825 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ ↔ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2)))
128 df-ne 2930 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ≠ 1 ↔ ¬ 𝑎 = 1)
129128biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ≠ 1 → ¬ 𝑎 = 1)
1301293ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → ¬ 𝑎 = 1)
131130pm2.21d 121 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → (𝑎 = 1 → 3 ≤ 𝑎))
132131imp 406 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 1) → 3 ≤ 𝑎)
133 uzp1 12775 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (ℤ‘2) → (𝑎 = 2 ∨ 𝑎 ∈ (ℤ‘(2 + 1))))
134 1z 12508 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℤ
135 dvdsmul1 16190 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → 2 ∥ (2 · 1))
13638, 134, 135mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 2 ∥ (2 · 1)
137 2t1e2 12290 . . . . . . . . . . . . . . . . . . . . . 22 (2 · 1) = 2
138136, 137breqtri 5118 . . . . . . . . . . . . . . . . . . . . 21 2 ∥ 2
139 breq2 5097 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 2 → (2 ∥ 𝑎 ↔ 2 ∥ 2))
140139adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → (2 ∥ 𝑎 ↔ 2 ∥ 2))
141138, 140mpbiri 258 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → 2 ∥ 𝑎)
142 simpl2 1193 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → ¬ 2 ∥ 𝑎)
143141, 142pm2.21dd 195 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → 3 ≤ 𝑎)
144 eluzle 12751 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (ℤ‘3) → 3 ≤ 𝑎)
145 2p1e3 12269 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = 3
146145fveq2i 6831 . . . . . . . . . . . . . . . . . . . . 21 (ℤ‘(2 + 1)) = (ℤ‘3)
147144, 146eleq2s 2851 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (ℤ‘(2 + 1)) → 3 ≤ 𝑎)
148147adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ (ℤ‘(2 + 1))) → 3 ≤ 𝑎)
149143, 148jaodan 959 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ (𝑎 = 2 ∨ 𝑎 ∈ (ℤ‘(2 + 1)))) → 3 ≤ 𝑎)
150133, 149sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ (ℤ‘2)) → 3 ≤ 𝑎)
151132, 150jaodan 959 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2))) → 3 ≤ 𝑎)
152127, 151sylan2b 594 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ ℕ) → 3 ≤ 𝑎)
153 dvds0 16184 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℤ → 2 ∥ 0)
15438, 153ax-mp 5 . . . . . . . . . . . . . . . . . 18 2 ∥ 0
155 breq2 5097 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (2 ∥ 𝑎 ↔ 2 ∥ 0))
156154, 155mpbiri 258 . . . . . . . . . . . . . . . . 17 (𝑎 = 0 → 2 ∥ 𝑎)
157156adantl 481 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → 2 ∥ 𝑎)
158 simpl2 1193 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → ¬ 2 ∥ 𝑎)
159157, 158pm2.21dd 195 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → 3 ≤ 𝑎)
160 elnn0 12390 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
161160biimpi 216 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
1621613ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
163152, 159, 162mpjaodan 960 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → 3 ≤ 𝑎)
164124, 125, 126, 163syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 3 ≤ 𝑎)
165 elfzle2 13430 . . . . . . . . . . . . . . 15 (𝑎 ∈ (0...𝐽) → 𝑎𝐽)
166165adantr 480 . . . . . . . . . . . . . 14 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎𝐽)
167166ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎𝐽)
168115, 118, 121, 164, 167elfzd 13417 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ (3...𝐽))
169168, 125jca 511 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎))
170169orcd 873 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
171113, 170pm2.61dane 3016 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
172 nn0uz 12776 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
17391, 172eleqtri 2831 . . . . . . . . . . . . . 14 3 ∈ (ℤ‘0)
174 fzss1 13465 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘0) → (3...𝐽) ⊆ (0...𝐽))
175173, 174ax-mp 5 . . . . . . . . . . . . 13 (3...𝐽) ⊆ (0...𝐽)
176175sseli 3926 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ (0...𝐽))
177176anim1i 615 . . . . . . . . . . 11 ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
178177adantl 481 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎)) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
179 0zd 12487 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 0 ∈ ℤ)
180117adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 𝐽 ∈ ℤ)
181 1zzd 12509 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ∈ ℤ)
182 0le1 11647 . . . . . . . . . . . . 13 0 ≤ 1
183182a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 0 ≤ 1)
184 nnge1 12160 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
1851843ad2ant3 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 1 ≤ 𝐽)
186185adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ≤ 𝐽)
187179, 180, 181, 183, 186elfzd 13417 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ∈ (0...𝐽))
18834a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → ¬ 2 ∥ 1)
189 eleq1 2821 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑎 ∈ (0...𝐽) ↔ 1 ∈ (0...𝐽)))
190 breq2 5097 . . . . . . . . . . . . . 14 (𝑎 = 1 → (2 ∥ 𝑎 ↔ 2 ∥ 1))
191190notbid 318 . . . . . . . . . . . . 13 (𝑎 = 1 → (¬ 2 ∥ 𝑎 ↔ ¬ 2 ∥ 1))
192189, 191anbi12d 632 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ (1 ∈ (0...𝐽) ∧ ¬ 2 ∥ 1)))
193192adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ (1 ∈ (0...𝐽) ∧ ¬ 2 ∥ 1)))
194187, 188, 193mpbir2and 713 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
195178, 194jaodan 959 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1)) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
196171, 195impbida 800 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1)))
19730elrab 3643 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
198 elun 4102 . . . . . . . . 9 (𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}) ↔ (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∨ 𝑎 ∈ {1}))
199 velsn 4591 . . . . . . . . . 10 (𝑎 ∈ {1} ↔ 𝑎 = 1)
20031, 199orbi12i 914 . . . . . . . . 9 ((𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∨ 𝑎 ∈ {1}) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
201198, 200bitri 275 . . . . . . . 8 (𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
202196, 197, 2013bitr4g 314 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ 𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1})))
203202eqrdv 2731 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} = ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}))
204 fzfi 13881 . . . . . . . 8 (0...𝐽) ∈ Fin
205 ssrab2 4029 . . . . . . . 8 {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (0...𝐽)
206 ssfi 9089 . . . . . . . 8 (((0...𝐽) ∈ Fin ∧ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (0...𝐽)) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
207204, 205, 206mp2an 692 . . . . . . 7 {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin
208207a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
209205sseli 3926 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ (0...𝐽))
210209, 119syl 17 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℤ)
2117, 210, 11syl2an 596 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℕ0)
212211nn0cnd 12451 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℂ)
213173adant3 1132 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
214213nn0cnd 12451 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℂ)
215214adantr 480 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℂ)
216209adantl 481 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ (0...𝐽))
217 fznn0sub 13458 . . . . . . . . . 10 (𝑎 ∈ (0...𝐽) → (𝐽𝑎) ∈ ℕ0)
218216, 217syl 17 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽𝑎) ∈ ℕ0)
219215, 218expcld 14055 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℂ)
22090zcnd 12584 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
221209, 122syl 17 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℕ0)
222 expcl 13988 . . . . . . . . . 10 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 𝑎 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑𝑎) ∈ ℂ)
223220, 221, 222syl2an 596 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑𝑎) ∈ ℂ)
224 rmspecpos 43034 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
225224rpcnd 12938 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
2262253ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴↑2) − 1) ∈ ℂ)
227197simprbi 496 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 𝑎)
228 1zzd 12509 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 1 ∈ ℤ)
22934a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 1)
230210, 227, 228, 229, 36syl22anc 838 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∥ (𝑎 − 1))
23138a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℤ)
23240a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ≠ 0)
233210, 42syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℤ)
234231, 232, 233, 44syl3anc 1373 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
235230, 234mpbid 232 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℤ)
236233zred 12583 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℝ)
237156a1i 11 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (0...𝐽) → (𝑎 = 0 → 2 ∥ 𝑎))
238237con3dimp 408 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → ¬ 𝑎 = 0)
239197, 238sylbi 217 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 𝑎 = 0)
240221, 161syl 17 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
241 orel2 890 . . . . . . . . . . . . . . 15 𝑎 = 0 → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → 𝑎 ∈ ℕ))
242239, 240, 241sylc 65 . . . . . . . . . . . . . 14 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℕ)
243242, 58syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℕ0)
244243nn0ge0d 12452 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ (𝑎 − 1))
24562a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℝ)
24664a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 < 2)
247236, 244, 245, 246, 66syl22anc 838 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ ((𝑎 − 1) / 2))
248235, 247, 68sylanbrc 583 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℕ0)
249 expcl 13988 . . . . . . . . . 10 ((((𝐴↑2) − 1) ∈ ℂ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
250226, 248, 249syl2an 596 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
251223, 250mulcld 11139 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) ∈ ℂ)
252219, 251mulcld 11139 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))) ∈ ℂ)
253212, 252mulcld 11139 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) ∈ ℂ)
254111, 203, 208, 253fsumsplit 15650 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) + Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))))
255 expcl 13988 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
256220, 91, 255sylancl 586 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
25788zcnd 12584 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℂ)
2585, 256, 257fsummulc1 15694 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
25912nn0cnd 12451 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℂ)
260214adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℂ)
261260, 22expcld 14055 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℂ)
262226, 69, 249syl2an 596 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
263 expcl 13988 . . . . . . . . . . . . 13 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ (𝑎 − 3) ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℂ)
264220, 82, 263syl2an 596 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℂ)
265262, 264mulcld 11139 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) ∈ ℂ)
266261, 265mulcld 11139 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) ∈ ℂ)
267256adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
268259, 266, 267mulassd 11142 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐽C𝑎) · ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3))))
269261, 265, 267mulassd 11142 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3))))
270262, 264, 267mulassd 11142 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3)) = ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3))))
271264, 267mulcld 11139 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) ∈ ℂ)
272262, 271mulcomd 11140 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3))) = ((((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
273220adantr 480 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Yrm 𝑁) ∈ ℂ)
27491a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 3 ∈ ℕ0)
275273, 274, 83expaddd 14057 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑((𝑎 − 3) + 3)) = (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)))
27610adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ ℤ)
277276zcnd 12584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ ℂ)
278 3cn 12213 . . . . . . . . . . . . . . . . 17 3 ∈ ℂ
279 npcan 11376 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑎 − 3) + 3) = 𝑎)
280277, 278, 279sylancl 586 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝑎 − 3) + 3) = 𝑎)
281280oveq2d 7368 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑((𝑎 − 3) + 3)) = ((𝐴 Yrm 𝑁)↑𝑎))
282275, 281eqtr3d 2770 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐴 Yrm 𝑁)↑𝑎))
283282oveq1d 7367 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) = (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
284270, 272, 2833eqtrd 2772 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
285284oveq2d 7368 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))
286269, 285eqtrd 2768 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))
287286oveq2d 7368 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3))) = ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
288268, 287eqtrd 2768 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
289288sumeq2dv 15611 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
290258, 289eqtr2d 2769 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
291 1nn 12143 . . . . . . 7 1 ∈ ℕ
292 bccl 14231 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0 ∧ 1 ∈ ℤ) → (𝐽C1) ∈ ℕ0)
2936, 134, 292sylancl 586 . . . . . . . . . 10 (𝐽 ∈ ℕ → (𝐽C1) ∈ ℕ0)
294293nn0cnd 12451 . . . . . . . . 9 (𝐽 ∈ ℕ → (𝐽C1) ∈ ℂ)
2952943ad2ant3 1135 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽C1) ∈ ℂ)
296 nnm1nn0 12429 . . . . . . . . . . 11 (𝐽 ∈ ℕ → (𝐽 − 1) ∈ ℕ0)
2972963ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽 − 1) ∈ ℕ0)
298214, 297expcld 14055 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑(𝐽 − 1)) ∈ ℂ)
299 1nn0 12404 . . . . . . . . . . 11 1 ∈ ℕ0
300 expcl 13988 . . . . . . . . . . 11 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑1) ∈ ℂ)
301220, 299, 300sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑1) ∈ ℂ)
302 1m1e0 12204 . . . . . . . . . . . . . 14 (1 − 1) = 0
303302oveq1i 7362 . . . . . . . . . . . . 13 ((1 − 1) / 2) = (0 / 2)
304 2cn 12207 . . . . . . . . . . . . . 14 2 ∈ ℂ
305304, 40div0i 11862 . . . . . . . . . . . . 13 (0 / 2) = 0
306303, 305eqtri 2756 . . . . . . . . . . . 12 ((1 − 1) / 2) = 0
307 0nn0 12403 . . . . . . . . . . . 12 0 ∈ ℕ0
308306, 307eqeltri 2829 . . . . . . . . . . 11 ((1 − 1) / 2) ∈ ℕ0
309 expcl 13988 . . . . . . . . . . 11 ((((𝐴↑2) − 1) ∈ ℂ ∧ ((1 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) ∈ ℂ)
310226, 308, 309sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) ∈ ℂ)
311301, 310mulcld 11139 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))) ∈ ℂ)
312298, 311mulcld 11139 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))) ∈ ℂ)
313295, 312mulcld 11139 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))) ∈ ℂ)
314 oveq2 7360 . . . . . . . . 9 (𝑎 = 1 → (𝐽C𝑎) = (𝐽C1))
315 oveq2 7360 . . . . . . . . . . 11 (𝑎 = 1 → (𝐽𝑎) = (𝐽 − 1))
316315oveq2d 7368 . . . . . . . . . 10 (𝑎 = 1 → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) = ((𝐴 Xrm 𝑁)↑(𝐽 − 1)))
317 oveq2 7360 . . . . . . . . . . 11 (𝑎 = 1 → ((𝐴 Yrm 𝑁)↑𝑎) = ((𝐴 Yrm 𝑁)↑1))
318 oveq1 7359 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑎 − 1) = (1 − 1))
319318oveq1d 7367 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑎 − 1) / 2) = ((1 − 1) / 2))
320319oveq2d 7368 . . . . . . . . . . 11 (𝑎 = 1 → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) = (((𝐴↑2) − 1)↑((1 − 1) / 2)))
321317, 320oveq12d 7370 . . . . . . . . . 10 (𝑎 = 1 → (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) = (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))
322316, 321oveq12d 7370 . . . . . . . . 9 (𝑎 = 1 → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))) = (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))
323314, 322oveq12d 7370 . . . . . . . 8 (𝑎 = 1 → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
324323sumsn 15655 . . . . . . 7 ((1 ∈ ℕ ∧ ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))) ∈ ℂ) → Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
325291, 313, 324sylancr 587 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
326290, 325oveq12d 7370 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) + Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))) = ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
32797, 254, 3263eqtrd 2772 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm (𝑁 · 𝐽)) = ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
328 bcn1 14222 . . . . . . 7 (𝐽 ∈ ℕ0 → (𝐽C1) = 𝐽)
3297, 328syl 17 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽C1) = 𝐽)
330329eqcomd 2739 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 = (𝐽C1))
331220exp1d 14050 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑1) = (𝐴 Yrm 𝑁))
332306a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((1 − 1) / 2) = 0)
333332oveq2d 7368 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) = (((𝐴↑2) − 1)↑0))
334226exp0d 14049 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑0) = 1)
335333, 334eqtrd 2768 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) = 1)
336331, 335oveq12d 7370 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))) = ((𝐴 Yrm 𝑁) · 1))
337220mulridd 11136 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁))
338336, 337eqtr2d 2769 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) = (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))
339338oveq2d 7368 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)) = (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))
340330, 339oveq12d 7370 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
341327, 340oveq12d 7370 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))) = (((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) − ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
3425, 257fsumcl 15642 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℂ)
343342, 256mulcld 11139 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) ∈ ℂ)
344343, 313pncand 11480 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) − ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
345341, 344eqtrd 2768 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
34695, 345breqtrrd 5121 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  {crab 3396  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352  Fincfn 8875  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cle 11154  cmin 11351   / cdiv 11781  cn 12132  2c2 12187  3c3 12188  0cn0 12388  cz 12475  cuz 12738  ...cfz 13409  cexp 13970  Ccbc 14211  Σcsu 15595  cdvds 16165  NNcsquarenn 42954   Xrm crmx 43018   Yrm crmy 43019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-dvds 16166  df-gcd 16408  df-numer 16648  df-denom 16649  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-squarenn 42959  df-pell1qr 42960  df-pell14qr 42961  df-pell1234qr 42962  df-pellfund 42963  df-rmx 43020  df-rmy 43021
This theorem is referenced by:  jm2.20nn  43115
  Copyright terms: Public domain W3C validator