Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.23 Structured version   Visualization version   GIF version

Theorem jm2.23 38995
Description: Lemma for jm2.20nn 38996. Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Assertion
Ref Expression
jm2.23 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))))

Proof of Theorem jm2.23
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 13155 . . . . . 6 (3...𝐽) ∈ Fin
2 ssrab2 3946 . . . . . 6 {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (3...𝐽)
3 ssfi 8533 . . . . . 6 (((3...𝐽) ∈ Fin ∧ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (3...𝐽)) → {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
41, 2, 3mp2an 679 . . . . 5 {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin
54a1i 11 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
6 nnnn0 11715 . . . . . . . 8 (𝐽 ∈ ℕ → 𝐽 ∈ ℕ0)
763ad2ant3 1115 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 ∈ ℕ0)
82sseli 3854 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ (3...𝐽))
9 elfzelz 12724 . . . . . . . 8 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℤ)
108, 9syl 17 . . . . . . 7 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℤ)
11 bccl 13497 . . . . . . 7 ((𝐽 ∈ ℕ0𝑎 ∈ ℤ) → (𝐽C𝑎) ∈ ℕ0)
127, 10, 11syl2an 586 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℕ0)
1312nn0zd 11898 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℤ)
14 simpl1 1171 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝐴 ∈ (ℤ‘2))
15 simpl2 1172 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑁 ∈ ℤ)
16 frmx 38912 . . . . . . . . . 10 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1716fovcl 7095 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1814, 15, 17syl2anc 576 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℕ0)
1918nn0zd 11898 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℤ)
208adantl 474 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ (3...𝐽))
21 fznn0sub 12755 . . . . . . . 8 (𝑎 ∈ (3...𝐽) → (𝐽𝑎) ∈ ℕ0)
2220, 21syl 17 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽𝑎) ∈ ℕ0)
23 zexpcl 13259 . . . . . . 7 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐽𝑎) ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℤ)
2419, 22, 23syl2anc 576 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℤ)
25 rmspecnonsq 38906 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2625eldifad 3841 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
2726nnzd 11899 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℤ)
28273ad2ant1 1113 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴↑2) − 1) ∈ ℤ)
29 breq2 4933 . . . . . . . . . . . . . 14 (𝑏 = 𝑎 → (2 ∥ 𝑏 ↔ 2 ∥ 𝑎))
3029notbid 310 . . . . . . . . . . . . 13 (𝑏 = 𝑎 → (¬ 2 ∥ 𝑏 ↔ ¬ 2 ∥ 𝑎))
3130elrab 3595 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎))
3231simprbi 489 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 𝑎)
33 1zzd 11826 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 1 ∈ ℤ)
34 n2dvds1 15577 . . . . . . . . . . . 12 ¬ 2 ∥ 1
3534a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 1)
36 omoe 15573 . . . . . . . . . . 11 (((𝑎 ∈ ℤ ∧ ¬ 2 ∥ 𝑎) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (𝑎 − 1))
3710, 32, 33, 35, 36syl22anc 826 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∥ (𝑎 − 1))
38 2z 11827 . . . . . . . . . . . 12 2 ∈ ℤ
3938a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℤ)
40 2ne0 11551 . . . . . . . . . . . 12 2 ≠ 0
4140a1i 11 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ≠ 0)
42 peano2zm 11838 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → (𝑎 − 1) ∈ ℤ)
4310, 42syl 17 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℤ)
44 dvdsval2 15470 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ (𝑎 − 1) ∈ ℤ) → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
4539, 41, 43, 44syl3anc 1351 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
4637, 45mpbid 224 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℤ)
4743zred 11900 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℝ)
48 0red 10443 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 0 ∈ ℝ)
49 3re 11520 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
5049a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 3 ∈ ℝ)
519zred 11900 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℝ)
52 3pos 11552 . . . . . . . . . . . . . . . 16 0 < 3
5352a1i 11 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 0 < 3)
54 elfzle1 12726 . . . . . . . . . . . . . . 15 (𝑎 ∈ (3...𝐽) → 3 ≤ 𝑎)
5548, 50, 51, 53, 54ltletrd 10600 . . . . . . . . . . . . . 14 (𝑎 ∈ (3...𝐽) → 0 < 𝑎)
56 elnnz 11803 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 0 < 𝑎))
579, 55, 56sylanbrc 575 . . . . . . . . . . . . 13 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ ℕ)
58 nnm1nn0 11750 . . . . . . . . . . . . 13 (𝑎 ∈ ℕ → (𝑎 − 1) ∈ ℕ0)
5957, 58syl 17 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → (𝑎 − 1) ∈ ℕ0)
6059nn0ge0d 11770 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → 0 ≤ (𝑎 − 1))
618, 60syl 17 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ (𝑎 − 1))
62 2re 11514 . . . . . . . . . . 11 2 ∈ ℝ
6362a1i 11 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℝ)
64 2pos 11550 . . . . . . . . . . 11 0 < 2
6564a1i 11 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 < 2)
66 divge0 11310 . . . . . . . . . 10 ((((𝑎 − 1) ∈ ℝ ∧ 0 ≤ (𝑎 − 1)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((𝑎 − 1) / 2))
6747, 61, 63, 65, 66syl22anc 826 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ ((𝑎 − 1) / 2))
68 elnn0z 11806 . . . . . . . . 9 (((𝑎 − 1) / 2) ∈ ℕ0 ↔ (((𝑎 − 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑎 − 1) / 2)))
6946, 67, 68sylanbrc 575 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℕ0)
70 zexpcl 13259 . . . . . . . 8 ((((𝐴↑2) − 1) ∈ ℤ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℤ)
7128, 69, 70syl2an 586 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℤ)
72 frmy 38913 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
7372fovcl 7095 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
7414, 15, 73syl2anc 576 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Yrm 𝑁) ∈ ℤ)
75 elfzel1 12723 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → 3 ∈ ℤ)
769, 75zsubcld 11905 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → (𝑎 − 3) ∈ ℤ)
77 subge0 10954 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 3 ∈ ℝ) → (0 ≤ (𝑎 − 3) ↔ 3 ≤ 𝑎))
7851, 49, 77sylancl 577 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → (0 ≤ (𝑎 − 3) ↔ 3 ≤ 𝑎))
7954, 78mpbird 249 . . . . . . . . . . 11 (𝑎 ∈ (3...𝐽) → 0 ≤ (𝑎 − 3))
80 elnn0z 11806 . . . . . . . . . . 11 ((𝑎 − 3) ∈ ℕ0 ↔ ((𝑎 − 3) ∈ ℤ ∧ 0 ≤ (𝑎 − 3)))
8176, 79, 80sylanbrc 575 . . . . . . . . . 10 (𝑎 ∈ (3...𝐽) → (𝑎 − 3) ∈ ℕ0)
828, 81syl 17 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 3) ∈ ℕ0)
8382adantl 474 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝑎 − 3) ∈ ℕ0)
84 zexpcl 13259 . . . . . . . 8 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ (𝑎 − 3) ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℤ)
8574, 83, 84syl2anc 576 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℤ)
8671, 85zmulcld 11906 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) ∈ ℤ)
8724, 86zmulcld 11906 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) ∈ ℤ)
8813, 87zmulcld 11906 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ)
895, 88fsumzcl 14952 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ)
90733adant3 1112 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
91 3nn0 11727 . . . 4 3 ∈ ℕ0
92 zexpcl 13259 . . . 4 (((𝐴 Yrm 𝑁) ∈ ℤ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
9390, 91, 92sylancl 577 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℤ)
94 dvdsmul2 15492 . . 3 ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℤ ∧ ((𝐴 Yrm 𝑁)↑3) ∈ ℤ) → ((𝐴 Yrm 𝑁)↑3) ∥ (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
9589, 93, 94syl2anc 576 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
96 jm2.22 38994 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ0) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
976, 96syl3an3 1145 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm (𝑁 · 𝐽)) = Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
98 1lt3 11620 . . . . . . . . . . . 12 1 < 3
99 1re 10439 . . . . . . . . . . . . 13 1 ∈ ℝ
10099, 49ltnlei 10561 . . . . . . . . . . . 12 (1 < 3 ↔ ¬ 3 ≤ 1)
10198, 100mpbi 222 . . . . . . . . . . 11 ¬ 3 ≤ 1
102 elfzle1 12726 . . . . . . . . . . 11 (1 ∈ (3...𝐽) → 3 ≤ 1)
103101, 102mto 189 . . . . . . . . . 10 ¬ 1 ∈ (3...𝐽)
104103a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ 1 ∈ (3...𝐽))
105104intnanrd 482 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ (1 ∈ (3...𝐽) ∧ ¬ 2 ∥ 1))
106 breq2 4933 . . . . . . . . . 10 (𝑏 = 1 → (2 ∥ 𝑏 ↔ 2 ∥ 1))
107106notbid 310 . . . . . . . . 9 (𝑏 = 1 → (¬ 2 ∥ 𝑏 ↔ ¬ 2 ∥ 1))
108107elrab 3595 . . . . . . . 8 (1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (1 ∈ (3...𝐽) ∧ ¬ 2 ∥ 1))
109105, 108sylnibr 321 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ¬ 1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏})
110 disjsn 4521 . . . . . . 7 (({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∩ {1}) = ∅ ↔ ¬ 1 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏})
111109, 110sylibr 226 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∩ {1}) = ∅)
112 simpr 477 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 = 1) → 𝑎 = 1)
113112olcd 860 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 = 1) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
114 elfznn0 12816 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (0...𝐽) → 𝑎 ∈ ℕ0)
115114adantr 473 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎 ∈ ℕ0)
116115ad2antlr 714 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ ℕ0)
117 simplrr 765 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → ¬ 2 ∥ 𝑎)
118 simpr 477 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ≠ 1)
119 elnn1uz2 12139 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ ↔ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2)))
120 df-ne 2968 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ≠ 1 ↔ ¬ 𝑎 = 1)
121120biimpi 208 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ≠ 1 → ¬ 𝑎 = 1)
1221213ad2ant3 1115 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → ¬ 𝑎 = 1)
123122pm2.21d 119 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → (𝑎 = 1 → 3 ≤ 𝑎))
124123imp 398 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 1) → 3 ≤ 𝑎)
125 uzp1 12093 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ (ℤ‘2) → (𝑎 = 2 ∨ 𝑎 ∈ (ℤ‘(2 + 1))))
126 1z 11825 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℤ
127 dvdsmul1 15491 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℤ ∧ 1 ∈ ℤ) → 2 ∥ (2 · 1))
12838, 126, 127mp2an 679 . . . . . . . . . . . . . . . . . . . . . 22 2 ∥ (2 · 1)
129 2t1e2 11610 . . . . . . . . . . . . . . . . . . . . . 22 (2 · 1) = 2
130128, 129breqtri 4954 . . . . . . . . . . . . . . . . . . . . 21 2 ∥ 2
131 breq2 4933 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 2 → (2 ∥ 𝑎 ↔ 2 ∥ 2))
132131adantl 474 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → (2 ∥ 𝑎 ↔ 2 ∥ 2))
133130, 132mpbiri 250 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → 2 ∥ 𝑎)
134 simpl2 1172 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → ¬ 2 ∥ 𝑎)
135133, 134pm2.21dd 187 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 2) → 3 ≤ 𝑎)
136 eluzle 12071 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 ∈ (ℤ‘3) → 3 ≤ 𝑎)
137 2p1e3 11589 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = 3
138137fveq2i 6502 . . . . . . . . . . . . . . . . . . . . 21 (ℤ‘(2 + 1)) = (ℤ‘3)
139136, 138eleq2s 2884 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (ℤ‘(2 + 1)) → 3 ≤ 𝑎)
140139adantl 474 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ (ℤ‘(2 + 1))) → 3 ≤ 𝑎)
141135, 140jaodan 940 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ (𝑎 = 2 ∨ 𝑎 ∈ (ℤ‘(2 + 1)))) → 3 ≤ 𝑎)
142125, 141sylan2 583 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ (ℤ‘2)) → 3 ≤ 𝑎)
143124, 142jaodan 940 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ (𝑎 = 1 ∨ 𝑎 ∈ (ℤ‘2))) → 3 ≤ 𝑎)
144119, 143sylan2b 584 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 ∈ ℕ) → 3 ≤ 𝑎)
145 dvds0 15485 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℤ → 2 ∥ 0)
14638, 145ax-mp 5 . . . . . . . . . . . . . . . . . 18 2 ∥ 0
147 breq2 4933 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (2 ∥ 𝑎 ↔ 2 ∥ 0))
148146, 147mpbiri 250 . . . . . . . . . . . . . . . . 17 (𝑎 = 0 → 2 ∥ 𝑎)
149148adantl 474 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → 2 ∥ 𝑎)
150 simpl2 1172 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → ¬ 2 ∥ 𝑎)
151149, 150pm2.21dd 187 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) ∧ 𝑎 = 0) → 3 ≤ 𝑎)
152 elnn0 11709 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
153152biimpi 208 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
1541533ad2ant1 1113 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
155144, 151, 154mpjaodan 941 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑎𝑎 ≠ 1) → 3 ≤ 𝑎)
156116, 117, 118, 155syl3anc 1351 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 3 ≤ 𝑎)
157 elfzle2 12727 . . . . . . . . . . . . . . 15 (𝑎 ∈ (0...𝐽) → 𝑎𝐽)
158157adantr 473 . . . . . . . . . . . . . 14 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎𝐽)
159158ad2antlr 714 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎𝐽)
160 elfzelz 12724 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (0...𝐽) → 𝑎 ∈ ℤ)
161160adantr 473 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → 𝑎 ∈ ℤ)
162161ad2antlr 714 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ ℤ)
163 3z 11828 . . . . . . . . . . . . . . 15 3 ∈ ℤ
164163a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 3 ∈ ℤ)
165 nnz 11817 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℕ → 𝐽 ∈ ℤ)
1661653ad2ant3 1115 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 ∈ ℤ)
167166ad2antrr 713 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝐽 ∈ ℤ)
168 elfz 12714 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑎 ∈ (3...𝐽) ↔ (3 ≤ 𝑎𝑎𝐽)))
169162, 164, 167, 168syl3anc 1351 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → (𝑎 ∈ (3...𝐽) ↔ (3 ≤ 𝑎𝑎𝐽)))
170156, 159, 169mpbir2and 700 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → 𝑎 ∈ (3...𝐽))
171170, 117jca 504 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎))
172171orcd 859 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) ∧ 𝑎 ≠ 1) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
173113, 172pm2.61dane 3055 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎)) → ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
174 nn0uz 12094 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
17591, 174eleqtri 2864 . . . . . . . . . . . . . 14 3 ∈ (ℤ‘0)
176 fzss1 12762 . . . . . . . . . . . . . 14 (3 ∈ (ℤ‘0) → (3...𝐽) ⊆ (0...𝐽))
177175, 176ax-mp 5 . . . . . . . . . . . . 13 (3...𝐽) ⊆ (0...𝐽)
178177sseli 3854 . . . . . . . . . . . 12 (𝑎 ∈ (3...𝐽) → 𝑎 ∈ (0...𝐽))
179178anim1i 605 . . . . . . . . . . 11 ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
180179adantl 474 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ (𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎)) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
181 0le1 10964 . . . . . . . . . . . . 13 0 ≤ 1
182181a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 0 ≤ 1)
183 nnge1 11468 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
1841833ad2ant3 1115 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 1 ≤ 𝐽)
185184adantr 473 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ≤ 𝐽)
186 1zzd 11826 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ∈ ℤ)
187 0zd 11805 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 0 ∈ ℤ)
188166adantr 473 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 𝐽 ∈ ℤ)
189 elfz 12714 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (1 ∈ (0...𝐽) ↔ (0 ≤ 1 ∧ 1 ≤ 𝐽)))
190186, 187, 188, 189syl3anc 1351 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → (1 ∈ (0...𝐽) ↔ (0 ≤ 1 ∧ 1 ≤ 𝐽)))
191182, 185, 190mpbir2and 700 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → 1 ∈ (0...𝐽))
19234a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → ¬ 2 ∥ 1)
193 eleq1 2853 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑎 ∈ (0...𝐽) ↔ 1 ∈ (0...𝐽)))
194 breq2 4933 . . . . . . . . . . . . . 14 (𝑎 = 1 → (2 ∥ 𝑎 ↔ 2 ∥ 1))
195194notbid 310 . . . . . . . . . . . . 13 (𝑎 = 1 → (¬ 2 ∥ 𝑎 ↔ ¬ 2 ∥ 1))
196193, 195anbi12d 621 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ (1 ∈ (0...𝐽) ∧ ¬ 2 ∥ 1)))
197196adantl 474 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ (1 ∈ (0...𝐽) ∧ ¬ 2 ∥ 1)))
198191, 192, 197mpbir2and 700 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 = 1) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
199180, 198jaodan 940 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1)) → (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
200173, 199impbida 788 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1)))
20130elrab 3595 . . . . . . . 8 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ (𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎))
202 elun 4014 . . . . . . . . 9 (𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}) ↔ (𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∨ 𝑎 ∈ {1}))
203 velsn 4457 . . . . . . . . . 10 (𝑎 ∈ {1} ↔ 𝑎 = 1)
20431, 203orbi12i 898 . . . . . . . . 9 ((𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∨ 𝑎 ∈ {1}) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
205202, 204bitri 267 . . . . . . . 8 (𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}) ↔ ((𝑎 ∈ (3...𝐽) ∧ ¬ 2 ∥ 𝑎) ∨ 𝑎 = 1))
206200, 201, 2053bitr4g 306 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ↔ 𝑎 ∈ ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1})))
207206eqrdv 2776 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} = ({𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ∪ {1}))
208 fzfi 13155 . . . . . . . 8 (0...𝐽) ∈ Fin
209 ssrab2 3946 . . . . . . . 8 {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (0...𝐽)
210 ssfi 8533 . . . . . . . 8 (((0...𝐽) ∈ Fin ∧ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ⊆ (0...𝐽)) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
211208, 209, 210mp2an 679 . . . . . . 7 {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin
212211a1i 11 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ∈ Fin)
213209sseli 3854 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ (0...𝐽))
214213, 160syl 17 . . . . . . . . 9 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℤ)
2157, 214, 11syl2an 586 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℕ0)
216215nn0cnd 11769 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℂ)
217173adant3 1112 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
218217nn0cnd 11769 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℂ)
219218adantr 473 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℂ)
220213adantl 474 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ (0...𝐽))
221 fznn0sub 12755 . . . . . . . . . 10 (𝑎 ∈ (0...𝐽) → (𝐽𝑎) ∈ ℕ0)
222220, 221syl 17 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽𝑎) ∈ ℕ0)
223219, 222expcld 13325 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℂ)
22490zcnd 11901 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
225213, 114syl 17 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℕ0)
226 expcl 13262 . . . . . . . . . 10 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 𝑎 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑𝑎) ∈ ℂ)
227224, 225, 226syl2an 586 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑𝑎) ∈ ℂ)
228 rmspecpos 38915 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℝ+)
229228rpcnd 12250 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
2302293ad2ant1 1113 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴↑2) − 1) ∈ ℂ)
231201simprbi 489 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 𝑎)
232 1zzd 11826 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 1 ∈ ℤ)
23334a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 2 ∥ 1)
234214, 231, 232, 233, 36syl22anc 826 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∥ (𝑎 − 1))
23538a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℤ)
23640a1i 11 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ≠ 0)
237214, 42syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℤ)
238235, 236, 237, 44syl3anc 1351 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (2 ∥ (𝑎 − 1) ↔ ((𝑎 − 1) / 2) ∈ ℤ))
239234, 238mpbid 224 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℤ)
240237zred 11900 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℝ)
241148a1i 11 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (0...𝐽) → (𝑎 = 0 → 2 ∥ 𝑎))
242241con3dimp 400 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ (0...𝐽) ∧ ¬ 2 ∥ 𝑎) → ¬ 𝑎 = 0)
243201, 242sylbi 209 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ¬ 𝑎 = 0)
244225, 153syl 17 . . . . . . . . . . . . . . 15 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 ∈ ℕ ∨ 𝑎 = 0))
245 orel2 874 . . . . . . . . . . . . . . 15 𝑎 = 0 → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → 𝑎 ∈ ℕ))
246243, 244, 245sylc 65 . . . . . . . . . . . . . 14 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 𝑎 ∈ ℕ)
247246, 58syl 17 . . . . . . . . . . . . 13 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → (𝑎 − 1) ∈ ℕ0)
248247nn0ge0d 11770 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ (𝑎 − 1))
24962a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 2 ∈ ℝ)
25064a1i 11 . . . . . . . . . . . 12 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 < 2)
251240, 248, 249, 250, 66syl22anc 826 . . . . . . . . . . 11 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → 0 ≤ ((𝑎 − 1) / 2))
252239, 251, 68sylanbrc 575 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} → ((𝑎 − 1) / 2) ∈ ℕ0)
253 expcl 13262 . . . . . . . . . 10 ((((𝐴↑2) − 1) ∈ ℂ ∧ ((𝑎 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
254230, 252, 253syl2an 586 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
255227, 254mulcld 10460 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) ∈ ℂ)
256223, 255mulcld 10460 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))) ∈ ℂ)
257216, 256mulcld 10460 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) ∈ ℂ)
258111, 207, 212, 257fsumsplit 14957 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (0...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) + Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))))
259 expcl 13262 . . . . . . . . 9 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
260224, 91, 259sylancl 577 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
26188zcnd 11901 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℂ)
2625, 260, 261fsummulc1 15000 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
26312nn0cnd 11769 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐽C𝑎) ∈ ℂ)
264218adantr 473 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Xrm 𝑁) ∈ ℂ)
265264, 22expcld 13325 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) ∈ ℂ)
266230, 69, 253syl2an 586 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) ∈ ℂ)
267 expcl 13262 . . . . . . . . . . . . 13 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ (𝑎 − 3) ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℂ)
268224, 82, 267syl2an 586 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑(𝑎 − 3)) ∈ ℂ)
269266, 268mulcld 10460 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) ∈ ℂ)
270265, 269mulcld 10460 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) ∈ ℂ)
271260adantr 473 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑3) ∈ ℂ)
272263, 270, 271mulassd 10463 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐽C𝑎) · ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3))))
273265, 269, 271mulassd 10463 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3))))
274266, 268, 271mulassd 10463 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3)) = ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3))))
275268, 271mulcld 10460 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) ∈ ℂ)
276266, 275mulcomd 10461 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3))) = ((((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
277224adantr 473 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (𝐴 Yrm 𝑁) ∈ ℂ)
27891a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 3 ∈ ℕ0)
279277, 278, 83expaddd 13327 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑((𝑎 − 3) + 3)) = (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)))
28010adantl 474 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ ℤ)
281280zcnd 11901 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → 𝑎 ∈ ℂ)
282 3cn 11521 . . . . . . . . . . . . . . . . 17 3 ∈ ℂ
283 npcan 10696 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑎 − 3) + 3) = 𝑎)
284281, 282, 283sylancl 577 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝑎 − 3) + 3) = 𝑎)
285284oveq2d 6992 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐴 Yrm 𝑁)↑((𝑎 − 3) + 3)) = ((𝐴 Yrm 𝑁)↑𝑎))
286279, 285eqtr3d 2816 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐴 Yrm 𝑁)↑𝑎))
287286oveq1d 6991 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Yrm 𝑁)↑(𝑎 − 3)) · ((𝐴 Yrm 𝑁)↑3)) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) = (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
288274, 276, 2873eqtrd 2818 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))
289288oveq2d 6992 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))) · ((𝐴 Yrm 𝑁)↑3))) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))
290273, 289eqtrd 2814 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3)) = (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))
291290oveq2d 6992 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → ((𝐽C𝑎) · ((((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3)))) · ((𝐴 Yrm 𝑁)↑3))) = ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
292272, 291eqtrd 2814 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) ∧ 𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏}) → (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
293292sumeq2dv 14920 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} (((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) = Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))))
294262, 293eqtr2d 2815 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
295 1nn 11452 . . . . . . 7 1 ∈ ℕ
296 bccl 13497 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0 ∧ 1 ∈ ℤ) → (𝐽C1) ∈ ℕ0)
2976, 126, 296sylancl 577 . . . . . . . . . 10 (𝐽 ∈ ℕ → (𝐽C1) ∈ ℕ0)
298297nn0cnd 11769 . . . . . . . . 9 (𝐽 ∈ ℕ → (𝐽C1) ∈ ℂ)
2992983ad2ant3 1115 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽C1) ∈ ℂ)
300 nnm1nn0 11750 . . . . . . . . . . 11 (𝐽 ∈ ℕ → (𝐽 − 1) ∈ ℕ0)
3013003ad2ant3 1115 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽 − 1) ∈ ℕ0)
302218, 301expcld 13325 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Xrm 𝑁)↑(𝐽 − 1)) ∈ ℂ)
303 1nn0 11725 . . . . . . . . . . 11 1 ∈ ℕ0
304 expcl 13262 . . . . . . . . . . 11 (((𝐴 Yrm 𝑁) ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑1) ∈ ℂ)
305224, 303, 304sylancl 577 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑1) ∈ ℂ)
306 1m1e0 11512 . . . . . . . . . . . . . 14 (1 − 1) = 0
307306oveq1i 6986 . . . . . . . . . . . . 13 ((1 − 1) / 2) = (0 / 2)
308 2cn 11515 . . . . . . . . . . . . . 14 2 ∈ ℂ
309308, 40div0i 11175 . . . . . . . . . . . . 13 (0 / 2) = 0
310307, 309eqtri 2802 . . . . . . . . . . . 12 ((1 − 1) / 2) = 0
311 0nn0 11724 . . . . . . . . . . . 12 0 ∈ ℕ0
312310, 311eqeltri 2862 . . . . . . . . . . 11 ((1 − 1) / 2) ∈ ℕ0
313 expcl 13262 . . . . . . . . . . 11 ((((𝐴↑2) − 1) ∈ ℂ ∧ ((1 − 1) / 2) ∈ ℕ0) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) ∈ ℂ)
314230, 312, 313sylancl 577 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) ∈ ℂ)
315305, 314mulcld 10460 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))) ∈ ℂ)
316302, 315mulcld 10460 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))) ∈ ℂ)
317299, 316mulcld 10460 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))) ∈ ℂ)
318 oveq2 6984 . . . . . . . . 9 (𝑎 = 1 → (𝐽C𝑎) = (𝐽C1))
319 oveq2 6984 . . . . . . . . . . 11 (𝑎 = 1 → (𝐽𝑎) = (𝐽 − 1))
320319oveq2d 6992 . . . . . . . . . 10 (𝑎 = 1 → ((𝐴 Xrm 𝑁)↑(𝐽𝑎)) = ((𝐴 Xrm 𝑁)↑(𝐽 − 1)))
321 oveq2 6984 . . . . . . . . . . 11 (𝑎 = 1 → ((𝐴 Yrm 𝑁)↑𝑎) = ((𝐴 Yrm 𝑁)↑1))
322 oveq1 6983 . . . . . . . . . . . . 13 (𝑎 = 1 → (𝑎 − 1) = (1 − 1))
323322oveq1d 6991 . . . . . . . . . . . 12 (𝑎 = 1 → ((𝑎 − 1) / 2) = ((1 − 1) / 2))
324323oveq2d 6992 . . . . . . . . . . 11 (𝑎 = 1 → (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) = (((𝐴↑2) − 1)↑((1 − 1) / 2)))
325321, 324oveq12d 6994 . . . . . . . . . 10 (𝑎 = 1 → (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))) = (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))
326320, 325oveq12d 6994 . . . . . . . . 9 (𝑎 = 1 → (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))) = (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))
327318, 326oveq12d 6994 . . . . . . . 8 (𝑎 = 1 → ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
328327sumsn 14961 . . . . . . 7 ((1 ∈ ℕ ∧ ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))) ∈ ℂ) → Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
329295, 317, 328sylancr 578 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
330294, 329oveq12d 6994 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2))))) + Σ𝑎 ∈ {1} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · (((𝐴 Yrm 𝑁)↑𝑎) · (((𝐴↑2) − 1)↑((𝑎 − 1) / 2)))))) = ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
33197, 258, 3303eqtrd 2818 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm (𝑁 · 𝐽)) = ((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
332 bcn1 13488 . . . . . . 7 (𝐽 ∈ ℕ0 → (𝐽C1) = 𝐽)
3337, 332syl 17 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽C1) = 𝐽)
334333eqcomd 2784 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → 𝐽 = (𝐽C1))
335224exp1d 13320 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑1) = (𝐴 Yrm 𝑁))
336310a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((1 − 1) / 2) = 0)
337336oveq2d 6992 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) = (((𝐴↑2) − 1)↑0))
338230exp0d 13319 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑0) = 1)
339337, 338eqtrd 2814 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴↑2) − 1)↑((1 − 1) / 2)) = 1)
340335, 339oveq12d 6994 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))) = ((𝐴 Yrm 𝑁) · 1))
341224mulid1d 10457 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁) · 1) = (𝐴 Yrm 𝑁))
342340, 341eqtr2d 2815 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐴 Yrm 𝑁) = (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))
343342oveq2d 6992 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)) = (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))
344334, 343oveq12d 6994 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁))) = ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2))))))
345331, 344oveq12d 6994 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))) = (((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) − ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))))
3465, 261fsumcl 14950 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) ∈ ℂ)
347346, 260mulcld 10460 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) ∈ ℂ)
348347, 317pncand 10799 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → (((Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)) + ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) − ((𝐽C1) · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (((𝐴 Yrm 𝑁)↑1) · (((𝐴↑2) − 1)↑((1 − 1) / 2)))))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
349345, 348eqtrd 2814 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))) = (Σ𝑎 ∈ {𝑏 ∈ (3...𝐽) ∣ ¬ 2 ∥ 𝑏} ((𝐽C𝑎) · (((𝐴 Xrm 𝑁)↑(𝐽𝑎)) · ((((𝐴↑2) − 1)↑((𝑎 − 1) / 2)) · ((𝐴 Yrm 𝑁)↑(𝑎 − 3))))) · ((𝐴 Yrm 𝑁)↑3)))
35095, 349breqtrrd 4957 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℕ) → ((𝐴 Yrm 𝑁)↑3) ∥ ((𝐴 Yrm (𝑁 · 𝐽)) − (𝐽 · (((𝐴 Xrm 𝑁)↑(𝐽 − 1)) · (𝐴 Yrm 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2050  wne 2967  {crab 3092  cun 3827  cin 3828  wss 3829  c0 4178  {csn 4441   class class class wbr 4929  cfv 6188  (class class class)co 6976  Fincfn 8306  cc 10333  cr 10334  0cc0 10335  1c1 10336   + caddc 10338   · cmul 10340   < clt 10474  cle 10475  cmin 10670   / cdiv 11098  cn 11439  2c2 11495  3c3 11496  0cn0 11707  cz 11793  cuz 12058  ...cfz 12708  cexp 13244  Ccbc 13477  Σcsu 14903  cdvds 15467  NNcsquarenn 38835   Xrm crmx 38899   Yrm crmy 38900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-omul 7910  df-er 8089  df-map 8208  df-pm 8209  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-fi 8670  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-acn 9165  df-cda 9388  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-xnn0 11780  df-z 11794  df-dec 11912  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ioo 12558  df-ioc 12559  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-mod 13053  df-seq 13185  df-exp 13245  df-fac 13449  df-bc 13478  df-hash 13506  df-shft 14287  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-limsup 14689  df-clim 14706  df-rlim 14707  df-sum 14904  df-ef 15281  df-sin 15283  df-cos 15284  df-pi 15286  df-dvds 15468  df-gcd 15704  df-numer 15931  df-denom 15932  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-hom 16445  df-cco 16446  df-rest 16552  df-topn 16553  df-0g 16571  df-gsum 16572  df-topgen 16573  df-pt 16574  df-prds 16577  df-xrs 16631  df-qtop 16636  df-imas 16637  df-xps 16639  df-mre 16715  df-mrc 16716  df-acs 16718  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-submnd 17804  df-mulg 18012  df-cntz 18218  df-cmn 18668  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-fbas 20244  df-fg 20245  df-cnfld 20248  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-cld 21331  df-ntr 21332  df-cls 21333  df-nei 21410  df-lp 21448  df-perf 21449  df-cn 21539  df-cnp 21540  df-haus 21627  df-tx 21874  df-hmeo 22067  df-fil 22158  df-fm 22250  df-flim 22251  df-flf 22252  df-xms 22633  df-ms 22634  df-tms 22635  df-cncf 23189  df-limc 24167  df-dv 24168  df-log 24841  df-squarenn 38840  df-pell1qr 38841  df-pell14qr 38842  df-pell1234qr 38843  df-pellfund 38844  df-rmx 38901  df-rmy 38902
This theorem is referenced by:  jm2.20nn  38996
  Copyright terms: Public domain W3C validator