Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26lem3 Structured version   Visualization version   GIF version

Theorem jm2.26lem3 40823
Description: Lemma for jm2.26 40824. Use acongrep 40802 to find K', M' ~ K, M in [ 0,N ]. Thus Y(K') ~ Y(M') and both are small; K' = M' on pain of contradicting 2.24, so K ~ M. (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.26lem3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 = 𝑀)

Proof of Theorem jm2.26lem3
StepHypRef Expression
1 simplll 772 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐴 ∈ (ℤ‘2))
2 elfzelz 13256 . . . . . . . . . . . 12 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
32adantr 481 . . . . . . . . . . 11 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℤ)
43ad2antlr 724 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾 ∈ ℤ)
5 rmyabs 40780 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (abs‘(𝐴 Yrm 𝐾)) = (𝐴 Yrm (abs‘𝐾)))
61, 4, 5syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘(𝐴 Yrm 𝐾)) = (𝐴 Yrm (abs‘𝐾)))
73zred 12426 . . . . . . . . . . . 12 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
87ad2antlr 724 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾 ∈ ℝ)
9 elfzle1 13259 . . . . . . . . . . . . 13 (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾)
109adantr 481 . . . . . . . . . . . 12 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 0 ≤ 𝐾)
1110ad2antlr 724 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 0 ≤ 𝐾)
128, 11absidd 15134 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘𝐾) = 𝐾)
1312oveq2d 7291 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm (abs‘𝐾)) = (𝐴 Yrm 𝐾))
146, 13eqtrd 2778 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘(𝐴 Yrm 𝐾)) = (𝐴 Yrm 𝐾))
15 elfzelz 13256 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
1615adantl 482 . . . . . . . . . . 11 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℤ)
1716ad2antlr 724 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑀 ∈ ℤ)
18 rmyabs 40780 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
191, 17, 18syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
2016zred 12426 . . . . . . . . . . . 12 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℝ)
2120ad2antlr 724 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑀 ∈ ℝ)
22 elfzle1 13259 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝑁) → 0 ≤ 𝑀)
2322adantl 482 . . . . . . . . . . . 12 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 0 ≤ 𝑀)
2423ad2antlr 724 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 0 ≤ 𝑀)
2521, 24absidd 15134 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘𝑀) = 𝑀)
2625oveq2d 7291 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm (abs‘𝑀)) = (𝐴 Yrm 𝑀))
2719, 26eqtrd 2778 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm 𝑀))
2814, 27oveq12d 7293 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) = ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)))
29 frmy 40736 . . . . . . . . . . . 12 Yrm :((ℤ‘2) × ℤ)⟶ℤ
3029fovcl 7402 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
311, 4, 30syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ∈ ℤ)
3231zred 12426 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ∈ ℝ)
3329fovcl 7402 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
341, 17, 33syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑀) ∈ ℤ)
3534zred 12426 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑀) ∈ ℝ)
3632, 35readdcld 11004 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ∈ ℝ)
37 simpllr 773 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑁 ∈ ℕ)
3837nnzd 12425 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑁 ∈ ℤ)
39 peano2zm 12363 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
4038, 39syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝑁 − 1) ∈ ℤ)
4129fovcl 7402 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
421, 40, 41syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
4342zred 12426 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm (𝑁 − 1)) ∈ ℝ)
4429fovcl 7402 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
451, 38, 44syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑁) ∈ ℤ)
4645zred 12426 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑁) ∈ ℝ)
4743, 46readdcld 11004 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) ∈ ℝ)
48 frmx 40735 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
4948fovcl 7402 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
501, 38, 49syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Xrm 𝑁) ∈ ℕ0)
5150nn0red 12294 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Xrm 𝑁) ∈ ℝ)
52 elfzle2 13260 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1))
5352adantl 482 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → 𝐾 ≤ (𝑁 − 1))
54 lermy 40777 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝐾 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1))))
551, 4, 40, 54syl3anc 1370 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐾 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1))))
5655adantr 481 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝐾 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1))))
5753, 56mpbid 231 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)))
58 simplrr 775 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑀 ∈ (0...𝑁))
59 elfzle2 13260 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝑁) → 𝑀𝑁)
6058, 59syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑀𝑁)
61 lermy 40777 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)))
621, 17, 38, 61syl3anc 1370 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)))
6360, 62mpbid 231 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁))
6463adantr 481 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁))
65 le2add 11457 . . . . . . . . . . . 12 ((((𝐴 Yrm 𝐾) ∈ ℝ ∧ (𝐴 Yrm 𝑀) ∈ ℝ) ∧ ((𝐴 Yrm (𝑁 − 1)) ∈ ℝ ∧ (𝐴 Yrm 𝑁) ∈ ℝ)) → (((𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
6632, 35, 43, 46, 65syl22anc 836 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (((𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
6766adantr 481 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (((𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
6857, 64, 67mp2and 696 . . . . . . . . 9 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))
6931zcnd 12427 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ∈ ℂ)
7034zcnd 12427 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑀) ∈ ℂ)
7169, 70addcomd 11177 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)))
7271adantr 481 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)))
73 id 22 . . . . . . . . . . . . . . . . . . 19 (𝐾𝑀𝐾𝑀)
7473necomd 2999 . . . . . . . . . . . . . . . . . 18 (𝐾𝑀𝑀𝐾)
7574adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐾𝑀𝐾 = 𝑁) → 𝑀𝐾)
76 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝐾𝑀𝐾 = 𝑁) → 𝐾 = 𝑁)
7775, 76neeqtrd 3013 . . . . . . . . . . . . . . . 16 ((𝐾𝑀𝐾 = 𝑁) → 𝑀𝑁)
7877neneqd 2948 . . . . . . . . . . . . . . 15 ((𝐾𝑀𝐾 = 𝑁) → ¬ 𝑀 = 𝑁)
7978adantll 711 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → ¬ 𝑀 = 𝑁)
80 nnnn0 12240 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
81 nn0uz 12620 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
8280, 81eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
8382ad4antlr 730 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → 𝑁 ∈ (ℤ‘0))
84 simprr 770 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 𝑀 ∈ (0...𝑁))
8584ad2antrr 723 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → 𝑀 ∈ (0...𝑁))
86 fzm1 13336 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘0) → (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁)))
8786biimpa 477 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘0) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁))
8883, 85, 87syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → (𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁))
89 orel2 888 . . . . . . . . . . . . . 14 𝑀 = 𝑁 → ((𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁) → 𝑀 ∈ (0...(𝑁 − 1))))
9079, 88, 89sylc 65 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → 𝑀 ∈ (0...(𝑁 − 1)))
91 elfzle2 13260 . . . . . . . . . . . . 13 (𝑀 ∈ (0...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1))
9290, 91syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → 𝑀 ≤ (𝑁 − 1))
93 lermy 40777 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1))))
941, 17, 40, 93syl3anc 1370 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝑀 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1))))
9594adantr 481 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → (𝑀 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1))))
9692, 95mpbid 231 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)))
97 simplrl 774 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾 ∈ (0...𝑁))
98 elfzle2 13260 . . . . . . . . . . . . . 14 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
9997, 98syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾𝑁)
100 lermy 40777 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)))
1011, 4, 38, 100syl3anc 1370 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐾𝑁 ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)))
10299, 101mpbid 231 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁))
103102adantr 481 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁))
104 le2add 11457 . . . . . . . . . . . . 13 ((((𝐴 Yrm 𝑀) ∈ ℝ ∧ (𝐴 Yrm 𝐾) ∈ ℝ) ∧ ((𝐴 Yrm (𝑁 − 1)) ∈ ℝ ∧ (𝐴 Yrm 𝑁) ∈ ℝ)) → (((𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
10535, 32, 43, 46, 104syl22anc 836 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (((𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
106105adantr 481 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → (((𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
10796, 103, 106mp2and 696 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))
10872, 107eqbrtrd 5096 . . . . . . . . 9 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))
10937nnnn0d 12293 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑁 ∈ ℕ0)
110109, 81eleqtrdi 2849 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑁 ∈ (ℤ‘0))
111 fzm1 13336 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ (0...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
112111biimpa 477 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘0) ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...(𝑁 − 1)) ∨ 𝐾 = 𝑁))
113110, 97, 112syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐾 ∈ (0...(𝑁 − 1)) ∨ 𝐾 = 𝑁))
11468, 108, 113mpjaodan 956 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))
115 jm2.24 40785 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
1161, 38, 115syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
11736, 47, 51, 114, 116lelttrd 11133 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) < (𝐴 Xrm 𝑁))
11828, 117eqbrtrd 5096 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
119 simpr 485 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾𝑀)
120 rmyeq 40776 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 = 𝑀 ↔ (𝐴 Yrm 𝐾) = (𝐴 Yrm 𝑀)))
121120necon3bid 2988 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀)))
1221, 4, 17, 121syl3anc 1370 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐾𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀)))
123119, 122mpbid 231 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀))
1247ad2antlr 724 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 ∈ ℝ)
125 0red 10978 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 0 ∈ ℝ)
126 simpr 485 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 = -𝑀)
12722ad2antll 726 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 0 ≤ 𝑀)
12820adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 𝑀 ∈ ℝ)
129128le0neg2d 11547 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (0 ≤ 𝑀 ↔ -𝑀 ≤ 0))
130127, 129mpbid 231 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → -𝑀 ≤ 0)
131130adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → -𝑀 ≤ 0)
132126, 131eqbrtrd 5096 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 ≤ 0)
13310ad2antlr 724 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 0 ≤ 𝐾)
134 letri3 11060 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐾 = 0 ↔ (𝐾 ≤ 0 ∧ 0 ≤ 𝐾)))
135134biimpar 478 . . . . . . . . . . . . 13 (((𝐾 ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐾 ≤ 0 ∧ 0 ≤ 𝐾)) → 𝐾 = 0)
136124, 125, 132, 133, 135syl22anc 836 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 = 0)
137 simpr 485 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝐾 = 0)
138 simplr 766 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝐾 = -𝑀)
139138, 137eqtr3d 2780 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → -𝑀 = 0)
140128recnd 11003 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 𝑀 ∈ ℂ)
141140ad2antrr 723 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝑀 ∈ ℂ)
142141negeq0d 11324 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → (𝑀 = 0 ↔ -𝑀 = 0))
143139, 142mpbird 256 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝑀 = 0)
144137, 143eqtr4d 2781 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝐾 = 𝑀)
145136, 144mpdan 684 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 = 𝑀)
146145ex 413 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾 = -𝑀𝐾 = 𝑀))
147146necon3d 2964 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾𝑀𝐾 ≠ -𝑀))
148147imp 407 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾 ≠ -𝑀)
14958, 15syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑀 ∈ ℤ)
150149znegcld 12428 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → -𝑀 ∈ ℤ)
151 rmyeq 40776 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (𝐾 = -𝑀 ↔ (𝐴 Yrm 𝐾) = (𝐴 Yrm -𝑀)))
152151necon3bid 2988 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (𝐾 ≠ -𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm -𝑀)))
1531, 4, 150, 152syl3anc 1370 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐾 ≠ -𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm -𝑀)))
154148, 153mpbid 231 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm -𝑀))
155 rmyneg 40750 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
1561, 17, 155syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
157154, 156neeqtrd 3013 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))
158118, 123, 1573jca 1127 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀)))
159158ex 413 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾𝑀 → (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))))
160 simplll 772 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝐴 ∈ (ℤ‘2))
1613ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝐾 ∈ ℤ)
162160, 161, 30syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ∈ ℤ)
163162zcnd 12427 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ∈ ℂ)
16416ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝑀 ∈ ℤ)
165160, 164, 33syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝑀) ∈ ℤ)
166165zcnd 12427 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝑀) ∈ ℂ)
167163, 166negsubd 11338 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))
168167fveq2d 6778 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) = (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))))
169166negcld 11319 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → -(𝐴 Yrm 𝑀) ∈ ℂ)
170163, 169addcld 10994 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀)) ∈ ℂ)
171170abscld 15148 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) ∈ ℝ)
172163abscld 15148 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘(𝐴 Yrm 𝐾)) ∈ ℝ)
173166abscld 15148 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℝ)
174172, 173readdcld 11004 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) ∈ ℝ)
175 nnz 12342 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
176175adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
177176ad2antrr 723 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝑁 ∈ ℤ)
17849nn0zd 12424 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
179160, 177, 178syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Xrm 𝑁) ∈ ℤ)
180179zred 12426 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Xrm 𝑁) ∈ ℝ)
181163, 169abstrid 15168 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) ≤ ((abs‘(𝐴 Yrm 𝐾)) + (abs‘-(𝐴 Yrm 𝑀))))
182 absneg 14989 . . . . . . . . . . . . . . 15 ((𝐴 Yrm 𝑀) ∈ ℂ → (abs‘-(𝐴 Yrm 𝑀)) = (abs‘(𝐴 Yrm 𝑀)))
183182eqcomd 2744 . . . . . . . . . . . . . 14 ((𝐴 Yrm 𝑀) ∈ ℂ → (abs‘(𝐴 Yrm 𝑀)) = (abs‘-(𝐴 Yrm 𝑀)))
184166, 183syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘(𝐴 Yrm 𝑀)) = (abs‘-(𝐴 Yrm 𝑀)))
185184oveq2d 7291 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) = ((abs‘(𝐴 Yrm 𝐾)) + (abs‘-(𝐴 Yrm 𝑀))))
186181, 185breqtrrd 5102 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) ≤ ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))))
187 simpr1 1193 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
188171, 174, 180, 186, 187lelttrd 11133 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
189168, 188eqbrtrrd 5098 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
190162, 165zsubcld 12431 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∈ ℤ)
191190zcnd 12427 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∈ ℂ)
192191abscld 15148 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) ∈ ℝ)
193192, 180ltnled 11122 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ↔ ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))))
194189, 193mpbid 231 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))))
195 simpr2 1194 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀))
196163, 166, 195subne0d 11341 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ≠ 0)
197 dvdsleabs 16020 . . . . . . . . 9 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ≠ 0) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))))
198179, 190, 196, 197syl3anc 1370 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))))
199194, 198mtod 197 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))
200163, 166subnegd 11339 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)))
201200fveq2d 6778 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) = (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))))
202163, 166addcld 10994 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ∈ ℂ)
203202abscld 15148 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) ∈ ℝ)
204163, 166abstrid 15168 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) ≤ ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))))
205203, 174, 180, 204, 187lelttrd 11133 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
206201, 205eqbrtrd 5096 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
207165znegcld 12428 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → -(𝐴 Yrm 𝑀) ∈ ℤ)
208162, 207zsubcld 12431 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∈ ℤ)
209208zcnd 12427 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∈ ℂ)
210209abscld 15148 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ∈ ℝ)
211210, 180ltnled 11122 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ↔ ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
212206, 211mpbid 231 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
213 simpr3 1195 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))
214163, 169, 213subne0d 11341 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ≠ 0)
215 dvdsleabs 16020 . . . . . . . . 9 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ≠ 0) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
216179, 208, 214, 215syl3anc 1370 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
217212, 216mtod 197 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))
218199, 217jca 512 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∧ ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
219 pm4.56 986 . . . . . 6 ((¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∧ ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
220218, 219sylib 217 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
221220ex 413 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → ((((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀)) → ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
222159, 221syld 47 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾𝑀 → ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
223222necon4ad 2962 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → 𝐾 = 𝑀))
2242233impia 1116 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  -cneg 11206  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  abscabs 14945  cdvds 15963   Xrm crmx 40722   Yrm crmy 40723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-numer 16439  df-denom 16440  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-squarenn 40663  df-pell1qr 40664  df-pell14qr 40665  df-pell1234qr 40666  df-pellfund 40667  df-rmx 40724  df-rmy 40725
This theorem is referenced by:  jm2.26  40824
  Copyright terms: Public domain W3C validator