Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26lem3 Structured version   Visualization version   GIF version

Theorem jm2.26lem3 38245
Description: Lemma for jm2.26 38246. Use acongrep 38224 to find K', M' ~ K, M in [ 0,N ]. Thus Y(K') ~ Y(M') and both are small; K' = M' on pain of contradicting 2.24, so K ~ M. (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.26lem3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 = 𝑀)

Proof of Theorem jm2.26lem3
StepHypRef Expression
1 simplll 791 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐴 ∈ (ℤ‘2))
2 elfzelz 12549 . . . . . . . . . . . 12 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
32adantr 472 . . . . . . . . . . 11 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℤ)
43ad2antlr 718 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾 ∈ ℤ)
5 rmyabs 38202 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (abs‘(𝐴 Yrm 𝐾)) = (𝐴 Yrm (abs‘𝐾)))
61, 4, 5syl2anc 579 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘(𝐴 Yrm 𝐾)) = (𝐴 Yrm (abs‘𝐾)))
73zred 11729 . . . . . . . . . . . 12 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
87ad2antlr 718 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾 ∈ ℝ)
9 elfzle1 12551 . . . . . . . . . . . . 13 (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾)
109adantr 472 . . . . . . . . . . . 12 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 0 ≤ 𝐾)
1110ad2antlr 718 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 0 ≤ 𝐾)
128, 11absidd 14446 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘𝐾) = 𝐾)
1312oveq2d 6858 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm (abs‘𝐾)) = (𝐴 Yrm 𝐾))
146, 13eqtrd 2799 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘(𝐴 Yrm 𝐾)) = (𝐴 Yrm 𝐾))
15 elfzelz 12549 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
1615adantl 473 . . . . . . . . . . 11 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℤ)
1716ad2antlr 718 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑀 ∈ ℤ)
18 rmyabs 38202 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
191, 17, 18syl2anc 579 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
2016zred 11729 . . . . . . . . . . . 12 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℝ)
2120ad2antlr 718 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑀 ∈ ℝ)
22 elfzle1 12551 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝑁) → 0 ≤ 𝑀)
2322adantl 473 . . . . . . . . . . . 12 ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 0 ≤ 𝑀)
2423ad2antlr 718 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 0 ≤ 𝑀)
2521, 24absidd 14446 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘𝑀) = 𝑀)
2625oveq2d 6858 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm (abs‘𝑀)) = (𝐴 Yrm 𝑀))
2719, 26eqtrd 2799 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm 𝑀))
2814, 27oveq12d 6860 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) = ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)))
29 frmy 38156 . . . . . . . . . . . 12 Yrm :((ℤ‘2) × ℤ)⟶ℤ
3029fovcl 6963 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
311, 4, 30syl2anc 579 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ∈ ℤ)
3231zred 11729 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ∈ ℝ)
3329fovcl 6963 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
341, 17, 33syl2anc 579 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑀) ∈ ℤ)
3534zred 11729 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑀) ∈ ℝ)
3632, 35readdcld 10323 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ∈ ℝ)
37 simpllr 793 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑁 ∈ ℕ)
3837nnzd 11728 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑁 ∈ ℤ)
39 peano2zm 11667 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
4038, 39syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝑁 − 1) ∈ ℤ)
4129fovcl 6963 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
421, 40, 41syl2anc 579 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
4342zred 11729 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm (𝑁 − 1)) ∈ ℝ)
4429fovcl 6963 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
451, 38, 44syl2anc 579 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑁) ∈ ℤ)
4645zred 11729 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑁) ∈ ℝ)
4743, 46readdcld 10323 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) ∈ ℝ)
48 frmx 38155 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
4948fovcl 6963 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
501, 38, 49syl2anc 579 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Xrm 𝑁) ∈ ℕ0)
5150nn0red 11599 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Xrm 𝑁) ∈ ℝ)
52 elfzle2 12552 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1))
5352adantl 473 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → 𝐾 ≤ (𝑁 − 1))
54 lermy 38199 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝐾 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1))))
551, 4, 40, 54syl3anc 1490 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐾 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1))))
5655adantr 472 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝐾 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1))))
5753, 56mpbid 223 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)))
58 simplrr 796 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑀 ∈ (0...𝑁))
59 elfzle2 12552 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝑁) → 𝑀𝑁)
6058, 59syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑀𝑁)
61 lermy 38199 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)))
621, 17, 38, 61syl3anc 1490 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)))
6360, 62mpbid 223 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁))
6463adantr 472 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁))
65 le2add 10764 . . . . . . . . . . . 12 ((((𝐴 Yrm 𝐾) ∈ ℝ ∧ (𝐴 Yrm 𝑀) ∈ ℝ) ∧ ((𝐴 Yrm (𝑁 − 1)) ∈ ℝ ∧ (𝐴 Yrm 𝑁) ∈ ℝ)) → (((𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
6632, 35, 43, 46, 65syl22anc 867 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (((𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
6766adantr 472 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (((𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
6857, 64, 67mp2and 690 . . . . . . . . 9 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))
6931zcnd 11730 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ∈ ℂ)
7034zcnd 11730 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝑀) ∈ ℂ)
7169, 70addcomd 10492 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)))
7271adantr 472 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)))
73 id 22 . . . . . . . . . . . . . . . . . . 19 (𝐾𝑀𝐾𝑀)
7473necomd 2992 . . . . . . . . . . . . . . . . . 18 (𝐾𝑀𝑀𝐾)
7574adantr 472 . . . . . . . . . . . . . . . . 17 ((𝐾𝑀𝐾 = 𝑁) → 𝑀𝐾)
76 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝐾𝑀𝐾 = 𝑁) → 𝐾 = 𝑁)
7775, 76neeqtrd 3006 . . . . . . . . . . . . . . . 16 ((𝐾𝑀𝐾 = 𝑁) → 𝑀𝑁)
7877neneqd 2942 . . . . . . . . . . . . . . 15 ((𝐾𝑀𝐾 = 𝑁) → ¬ 𝑀 = 𝑁)
7978adantll 705 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → ¬ 𝑀 = 𝑁)
80 nnnn0 11546 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
81 nn0uz 11922 . . . . . . . . . . . . . . . . 17 0 = (ℤ‘0)
8280, 81syl6eleq 2854 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
8382ad4antlr 726 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → 𝑁 ∈ (ℤ‘0))
84 simprr 789 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 𝑀 ∈ (0...𝑁))
8584ad2antrr 717 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → 𝑀 ∈ (0...𝑁))
86 fzm1 12627 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘0) → (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁)))
8786biimpa 468 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘0) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁))
8883, 85, 87syl2anc 579 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → (𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁))
89 orel2 914 . . . . . . . . . . . . . 14 𝑀 = 𝑁 → ((𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁) → 𝑀 ∈ (0...(𝑁 − 1))))
9079, 88, 89sylc 65 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → 𝑀 ∈ (0...(𝑁 − 1)))
91 elfzle2 12552 . . . . . . . . . . . . 13 (𝑀 ∈ (0...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1))
9290, 91syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → 𝑀 ≤ (𝑁 − 1))
93 lermy 38199 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1))))
941, 17, 40, 93syl3anc 1490 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝑀 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1))))
9594adantr 472 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → (𝑀 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1))))
9692, 95mpbid 223 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)))
97 simplrl 795 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾 ∈ (0...𝑁))
98 elfzle2 12552 . . . . . . . . . . . . . 14 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
9997, 98syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾𝑁)
100 lermy 38199 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)))
1011, 4, 38, 100syl3anc 1490 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐾𝑁 ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)))
10299, 101mpbid 223 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁))
103102adantr 472 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁))
104 le2add 10764 . . . . . . . . . . . . 13 ((((𝐴 Yrm 𝑀) ∈ ℝ ∧ (𝐴 Yrm 𝐾) ∈ ℝ) ∧ ((𝐴 Yrm (𝑁 − 1)) ∈ ℝ ∧ (𝐴 Yrm 𝑁) ∈ ℝ)) → (((𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
10535, 32, 43, 46, 104syl22anc 867 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (((𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
106105adantr 472 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → (((𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))))
10796, 103, 106mp2and 690 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))
10872, 107eqbrtrd 4831 . . . . . . . . 9 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) ∧ 𝐾 = 𝑁) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))
10937nnnn0d 11598 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑁 ∈ ℕ0)
110109, 81syl6eleq 2854 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑁 ∈ (ℤ‘0))
111 fzm1 12627 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ (0...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
112111biimpa 468 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘0) ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...(𝑁 − 1)) ∨ 𝐾 = 𝑁))
113110, 97, 112syl2anc 579 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐾 ∈ (0...(𝑁 − 1)) ∨ 𝐾 = 𝑁))
11468, 108, 113mpjaodan 981 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))
115 jm2.24 38207 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
1161, 38, 115syl2anc 579 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
11736, 47, 51, 114, 116lelttrd 10449 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) < (𝐴 Xrm 𝑁))
11828, 117eqbrtrd 4831 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
119 simpr 477 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾𝑀)
120 rmyeq 38198 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 = 𝑀 ↔ (𝐴 Yrm 𝐾) = (𝐴 Yrm 𝑀)))
121120necon3bid 2981 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀)))
1221, 4, 17, 121syl3anc 1490 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐾𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀)))
123119, 122mpbid 223 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀))
1247ad2antlr 718 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 ∈ ℝ)
125 0red 10297 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 0 ∈ ℝ)
126 simpr 477 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 = -𝑀)
12722ad2antll 720 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 0 ≤ 𝑀)
12820adantl 473 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 𝑀 ∈ ℝ)
129128le0neg2d 10854 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (0 ≤ 𝑀 ↔ -𝑀 ≤ 0))
130127, 129mpbid 223 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → -𝑀 ≤ 0)
131130adantr 472 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → -𝑀 ≤ 0)
132126, 131eqbrtrd 4831 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 ≤ 0)
13310ad2antlr 718 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 0 ≤ 𝐾)
134 letri3 10377 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐾 = 0 ↔ (𝐾 ≤ 0 ∧ 0 ≤ 𝐾)))
135134biimpar 469 . . . . . . . . . . . . 13 (((𝐾 ∈ ℝ ∧ 0 ∈ ℝ) ∧ (𝐾 ≤ 0 ∧ 0 ≤ 𝐾)) → 𝐾 = 0)
136124, 125, 132, 133, 135syl22anc 867 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 = 0)
137 simpr 477 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝐾 = 0)
138 simplr 785 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝐾 = -𝑀)
139138, 137eqtr3d 2801 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → -𝑀 = 0)
140128recnd 10322 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 𝑀 ∈ ℂ)
141140ad2antrr 717 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝑀 ∈ ℂ)
142141negeq0d 10638 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → (𝑀 = 0 ↔ -𝑀 = 0))
143139, 142mpbird 248 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝑀 = 0)
144137, 143eqtr4d 2802 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝐾 = 𝑀)
145136, 144mpdan 678 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 = 𝑀)
146145ex 401 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾 = -𝑀𝐾 = 𝑀))
147146necon3d 2958 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾𝑀𝐾 ≠ -𝑀))
148147imp 395 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝐾 ≠ -𝑀)
14958, 15syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → 𝑀 ∈ ℤ)
150149znegcld 11731 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → -𝑀 ∈ ℤ)
151 rmyeq 38198 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (𝐾 = -𝑀 ↔ (𝐴 Yrm 𝐾) = (𝐴 Yrm -𝑀)))
152151necon3bid 2981 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (𝐾 ≠ -𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm -𝑀)))
1531, 4, 150, 152syl3anc 1490 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐾 ≠ -𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm -𝑀)))
154148, 153mpbid 223 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm -𝑀))
155 rmyneg 38170 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
1561, 17, 155syl2anc 579 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
157154, 156neeqtrd 3006 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))
158118, 123, 1573jca 1158 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾𝑀) → (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀)))
159158ex 401 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾𝑀 → (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))))
160 simplll 791 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝐴 ∈ (ℤ‘2))
1613ad2antlr 718 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝐾 ∈ ℤ)
162160, 161, 30syl2anc 579 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ∈ ℤ)
163162zcnd 11730 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ∈ ℂ)
16416ad2antlr 718 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝑀 ∈ ℤ)
165160, 164, 33syl2anc 579 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝑀) ∈ ℤ)
166165zcnd 11730 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝑀) ∈ ℂ)
167163, 166negsubd 10652 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))
168167fveq2d 6379 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) = (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))))
169166negcld 10633 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → -(𝐴 Yrm 𝑀) ∈ ℂ)
170163, 169addcld 10313 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀)) ∈ ℂ)
171170abscld 14460 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) ∈ ℝ)
172163abscld 14460 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘(𝐴 Yrm 𝐾)) ∈ ℝ)
173166abscld 14460 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℝ)
174172, 173readdcld 10323 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) ∈ ℝ)
175 nnz 11646 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
176175adantl 473 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
177176ad2antrr 717 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝑁 ∈ ℤ)
17849nn0zd 11727 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
179160, 177, 178syl2anc 579 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Xrm 𝑁) ∈ ℤ)
180179zred 11729 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Xrm 𝑁) ∈ ℝ)
181163, 169abstrid 14480 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) ≤ ((abs‘(𝐴 Yrm 𝐾)) + (abs‘-(𝐴 Yrm 𝑀))))
182 absneg 14302 . . . . . . . . . . . . . . 15 ((𝐴 Yrm 𝑀) ∈ ℂ → (abs‘-(𝐴 Yrm 𝑀)) = (abs‘(𝐴 Yrm 𝑀)))
183182eqcomd 2771 . . . . . . . . . . . . . 14 ((𝐴 Yrm 𝑀) ∈ ℂ → (abs‘(𝐴 Yrm 𝑀)) = (abs‘-(𝐴 Yrm 𝑀)))
184166, 183syl 17 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘(𝐴 Yrm 𝑀)) = (abs‘-(𝐴 Yrm 𝑀)))
185184oveq2d 6858 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) = ((abs‘(𝐴 Yrm 𝐾)) + (abs‘-(𝐴 Yrm 𝑀))))
186181, 185breqtrrd 4837 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) ≤ ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))))
187 simpr1 1248 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
188171, 174, 180, 186, 187lelttrd 10449 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
189168, 188eqbrtrrd 4833 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
190162, 165zsubcld 11734 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∈ ℤ)
191190zcnd 11730 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∈ ℂ)
192191abscld 14460 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) ∈ ℝ)
193192, 180ltnled 10438 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ↔ ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))))
194189, 193mpbid 223 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))))
195 simpr2 1250 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀))
196163, 166, 195subne0d 10655 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ≠ 0)
197 dvdsleabs 15318 . . . . . . . . 9 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ≠ 0) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))))
198179, 190, 196, 197syl3anc 1490 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))))
199194, 198mtod 189 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))
200163, 166subnegd 10653 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)))
201200fveq2d 6379 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) = (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))))
202163, 166addcld 10313 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ∈ ℂ)
203202abscld 14460 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) ∈ ℝ)
204163, 166abstrid 14480 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) ≤ ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))))
205203, 174, 180, 204, 187lelttrd 10449 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
206201, 205eqbrtrd 4831 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁))
207165znegcld 11731 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → -(𝐴 Yrm 𝑀) ∈ ℤ)
208162, 207zsubcld 11734 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∈ ℤ)
209208zcnd 11730 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∈ ℂ)
210209abscld 14460 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ∈ ℝ)
211210, 180ltnled 10438 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ↔ ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
212206, 211mpbid 223 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
213 simpr3 1252 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))
214163, 169, 213subne0d 10655 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ≠ 0)
215 dvdsleabs 15318 . . . . . . . . 9 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ≠ 0) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
216179, 208, 214, 215syl3anc 1490 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
217212, 216mtod 189 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))
218199, 217jca 507 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∧ ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
219 pm4.56 1011 . . . . . 6 ((¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∧ ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
220218, 219sylib 209 . . . . 5 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
221220ex 401 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → ((((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀)) → ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
222159, 221syld 47 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾𝑀 → ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
223222necon4ad 2956 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → 𝐾 = 𝑀))
2242233impia 1145 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4809  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   < clt 10328  cle 10329  cmin 10520  -cneg 10521  cn 11274  2c2 11327  0cn0 11538  cz 11624  cuz 11886  ...cfz 12533  abscabs 14259  cdvds 15265   Xrm crmx 38142   Yrm crmy 38143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-xnn0 11611  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14092  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-limsup 14487  df-clim 14504  df-rlim 14505  df-sum 14702  df-ef 15080  df-sin 15082  df-cos 15083  df-pi 15085  df-dvds 15266  df-gcd 15498  df-numer 15722  df-denom 15723  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594  df-squarenn 38083  df-pell1qr 38084  df-pell14qr 38085  df-pell1234qr 38086  df-pellfund 38087  df-rmx 38144  df-rmy 38145
This theorem is referenced by:  jm2.26  38246
  Copyright terms: Public domain W3C validator