Proof of Theorem jm2.26lem3
Step | Hyp | Ref
| Expression |
1 | | simplll 771 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝐴 ∈
(ℤ≥‘2)) |
2 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) |
3 | 2 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℤ) |
4 | 3 | ad2antlr 723 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝐾 ∈ ℤ) |
5 | | rmyabs 40696 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (abs‘(𝐴 Yrm 𝐾)) = (𝐴 Yrm (abs‘𝐾))) |
6 | 1, 4, 5 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (abs‘(𝐴 Yrm 𝐾)) = (𝐴 Yrm (abs‘𝐾))) |
7 | 3 | zred 12355 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝐾 ∈ ℝ) |
8 | 7 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝐾 ∈ ℝ) |
9 | | elfzle1 13188 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾) |
10 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 0 ≤ 𝐾) |
11 | 10 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 0 ≤ 𝐾) |
12 | 8, 11 | absidd 15062 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (abs‘𝐾) = 𝐾) |
13 | 12 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm (abs‘𝐾)) = (𝐴 Yrm 𝐾)) |
14 | 6, 13 | eqtrd 2778 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (abs‘(𝐴 Yrm 𝐾)) = (𝐴 Yrm 𝐾)) |
15 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ) |
16 | 15 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℤ) |
17 | 16 | ad2antlr 723 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝑀 ∈ ℤ) |
18 | | rmyabs 40696 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀))) |
19 | 1, 17, 18 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀))) |
20 | 16 | zred 12355 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℝ) |
21 | 20 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝑀 ∈ ℝ) |
22 | | elfzle1 13188 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (0...𝑁) → 0 ≤ 𝑀) |
23 | 22 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) → 0 ≤ 𝑀) |
24 | 23 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 0 ≤ 𝑀) |
25 | 21, 24 | absidd 15062 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (abs‘𝑀) = 𝑀) |
26 | 25 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm (abs‘𝑀)) = (𝐴 Yrm 𝑀)) |
27 | 19, 26 | eqtrd 2778 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm 𝑀)) |
28 | 14, 27 | oveq12d 7273 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) = ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) |
29 | | frmy 40652 |
. . . . . . . . . . . 12
⊢
Yrm :((ℤ≥‘2) ×
ℤ)⟶ℤ |
30 | 29 | fovcl 7380 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ) |
31 | 1, 4, 30 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝐾) ∈ ℤ) |
32 | 31 | zred 12355 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝐾) ∈ ℝ) |
33 | 29 | fovcl 7380 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ) |
34 | 1, 17, 33 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝑀) ∈ ℤ) |
35 | 34 | zred 12355 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝑀) ∈ ℝ) |
36 | 32, 35 | readdcld 10935 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ∈ ℝ) |
37 | | simpllr 772 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝑁 ∈ ℕ) |
38 | 37 | nnzd 12354 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝑁 ∈ ℤ) |
39 | | peano2zm 12293 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝑁 − 1) ∈ ℤ) |
41 | 29 | fovcl 7380 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈
ℤ) |
42 | 1, 40, 41 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm (𝑁 − 1)) ∈
ℤ) |
43 | 42 | zred 12355 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm (𝑁 − 1)) ∈
ℝ) |
44 | 29 | fovcl 7380 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
45 | 1, 38, 44 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝑁) ∈ ℤ) |
46 | 45 | zred 12355 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝑁) ∈ ℝ) |
47 | 43, 46 | readdcld 10935 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) ∈ ℝ) |
48 | | frmx 40651 |
. . . . . . . . . . 11
⊢
Xrm :((ℤ≥‘2) ×
ℤ)⟶ℕ0 |
49 | 48 | fovcl 7380 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈
ℕ0) |
50 | 1, 38, 49 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Xrm 𝑁) ∈
ℕ0) |
51 | 50 | nn0red 12224 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Xrm 𝑁) ∈ ℝ) |
52 | | elfzle2 13189 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1)) |
53 | 52 | adantl 481 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → 𝐾 ≤ (𝑁 − 1)) |
54 | | lermy 40693 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝐾 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)))) |
55 | 1, 4, 40, 54 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐾 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)))) |
56 | 55 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝐾 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)))) |
57 | 53, 56 | mpbid 231 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1))) |
58 | | simplrr 774 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝑀 ∈ (0...𝑁)) |
59 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ≤ 𝑁) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝑀 ≤ 𝑁) |
61 | | lermy 40693 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁))) |
62 | 1, 17, 38, 61 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝑀 ≤ 𝑁 ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁))) |
63 | 60, 62 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) |
64 | 63 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) |
65 | | le2add 11387 |
. . . . . . . . . . . 12
⊢ ((((𝐴 Yrm 𝐾) ∈ ℝ ∧ (𝐴 Yrm 𝑀) ∈ ℝ) ∧ ((𝐴 Yrm (𝑁 − 1)) ∈ ℝ
∧ (𝐴 Yrm
𝑁) ∈ ℝ)) →
(((𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))) |
66 | 32, 35, 43, 46, 65 | syl22anc 835 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (((𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))) |
67 | 66 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (((𝐴 Yrm 𝐾) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))) |
68 | 57, 64, 67 | mp2and 695 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 ∈ (0...(𝑁 − 1))) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))) |
69 | 31 | zcnd 12356 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝐾) ∈ ℂ) |
70 | 34 | zcnd 12356 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝑀) ∈ ℂ) |
71 | 69, 70 | addcomd 11107 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾))) |
72 | 71 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾))) |
73 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ≠ 𝑀 → 𝐾 ≠ 𝑀) |
74 | 73 | necomd 2998 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ≠ 𝑀 → 𝑀 ≠ 𝐾) |
75 | 74 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 = 𝑁) → 𝑀 ≠ 𝐾) |
76 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 = 𝑁) → 𝐾 = 𝑁) |
77 | 75, 76 | neeqtrd 3012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 = 𝑁) → 𝑀 ≠ 𝑁) |
78 | 77 | neneqd 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 = 𝑁) → ¬ 𝑀 = 𝑁) |
79 | 78 | adantll 710 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → ¬ 𝑀 = 𝑁) |
80 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
81 | | nn0uz 12549 |
. . . . . . . . . . . . . . . . 17
⊢
ℕ0 = (ℤ≥‘0) |
82 | 80, 81 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘0)) |
83 | 82 | ad4antlr 729 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → 𝑁 ∈
(ℤ≥‘0)) |
84 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 𝑀 ∈ (0...𝑁)) |
85 | 84 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → 𝑀 ∈ (0...𝑁)) |
86 | | fzm1 13265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁))) |
87 | 86 | biimpa 476 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁)) |
88 | 83, 85, 87 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → (𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁)) |
89 | | orel2 887 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑀 = 𝑁 → ((𝑀 ∈ (0...(𝑁 − 1)) ∨ 𝑀 = 𝑁) → 𝑀 ∈ (0...(𝑁 − 1)))) |
90 | 79, 88, 89 | sylc 65 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → 𝑀 ∈ (0...(𝑁 − 1))) |
91 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (0...(𝑁 − 1)) → 𝑀 ≤ (𝑁 − 1)) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → 𝑀 ≤ (𝑁 − 1)) |
93 | | lermy 40693 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (𝑀 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)))) |
94 | 1, 17, 40, 93 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝑀 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)))) |
95 | 94 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → (𝑀 ≤ (𝑁 − 1) ↔ (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)))) |
96 | 92, 95 | mpbid 231 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → (𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1))) |
97 | | simplrl 773 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝐾 ∈ (0...𝑁)) |
98 | | elfzle2 13189 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ≤ 𝑁) |
99 | 97, 98 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝐾 ≤ 𝑁) |
100 | | lermy 40693 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁))) |
101 | 1, 4, 38, 100 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐾 ≤ 𝑁 ↔ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁))) |
102 | 99, 101 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) |
103 | 102 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) |
104 | | le2add 11387 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 Yrm 𝑀) ∈ ℝ ∧ (𝐴 Yrm 𝐾) ∈ ℝ) ∧ ((𝐴 Yrm (𝑁 − 1)) ∈ ℝ
∧ (𝐴 Yrm
𝑁) ∈ ℝ)) →
(((𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))) |
105 | 35, 32, 43, 46, 104 | syl22anc 835 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (((𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))) |
106 | 105 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → (((𝐴 Yrm 𝑀) ≤ (𝐴 Yrm (𝑁 − 1)) ∧ (𝐴 Yrm 𝐾) ≤ (𝐴 Yrm 𝑁)) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)))) |
107 | 96, 103, 106 | mp2and 695 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → ((𝐴 Yrm 𝑀) + (𝐴 Yrm 𝐾)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))) |
108 | 72, 107 | eqbrtrd 5092 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) ∧ 𝐾 = 𝑁) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))) |
109 | 37 | nnnn0d 12223 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝑁 ∈
ℕ0) |
110 | 109, 81 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝑁 ∈
(ℤ≥‘0)) |
111 | | fzm1 13265 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘0) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ (0...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) |
112 | 111 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘0) ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...(𝑁 − 1)) ∨ 𝐾 = 𝑁)) |
113 | 110, 97, 112 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐾 ∈ (0...(𝑁 − 1)) ∨ 𝐾 = 𝑁)) |
114 | 68, 108, 113 | mpjaodan 955 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ≤ ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁))) |
115 | | jm2.24 40701 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) |
116 | 1, 38, 115 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁)) |
117 | 36, 47, 51, 114, 116 | lelttrd 11063 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) < (𝐴 Xrm 𝑁)) |
118 | 28, 117 | eqbrtrd 5092 |
. . . . . 6
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁)) |
119 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝐾 ≠ 𝑀) |
120 | | rmyeq 40692 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 = 𝑀 ↔ (𝐴 Yrm 𝐾) = (𝐴 Yrm 𝑀))) |
121 | 120 | necon3bid 2987 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 ≠ 𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀))) |
122 | 1, 4, 17, 121 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐾 ≠ 𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀))) |
123 | 119, 122 | mpbid 231 |
. . . . . 6
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀)) |
124 | 7 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 ∈ ℝ) |
125 | | 0red 10909 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 0 ∈ ℝ) |
126 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 = -𝑀) |
127 | 22 | ad2antll 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 0 ≤ 𝑀) |
128 | 20 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 𝑀 ∈ ℝ) |
129 | 128 | le0neg2d 11477 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (0 ≤ 𝑀 ↔ -𝑀 ≤ 0)) |
130 | 127, 129 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → -𝑀 ≤ 0) |
131 | 130 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → -𝑀 ≤ 0) |
132 | 126, 131 | eqbrtrd 5092 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 ≤ 0) |
133 | 10 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 0 ≤ 𝐾) |
134 | | letri3 10991 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐾 = 0
↔ (𝐾 ≤ 0 ∧ 0
≤ 𝐾))) |
135 | 134 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℝ ∧ 0 ∈
ℝ) ∧ (𝐾 ≤ 0
∧ 0 ≤ 𝐾)) →
𝐾 = 0) |
136 | 124, 125,
132, 133, 135 | syl22anc 835 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 = 0) |
137 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝐾 = 0) |
138 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝐾 = -𝑀) |
139 | 138, 137 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → -𝑀 = 0) |
140 | 128 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → 𝑀 ∈ ℂ) |
141 | 140 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝑀 ∈ ℂ) |
142 | 141 | negeq0d 11254 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → (𝑀 = 0 ↔ -𝑀 = 0)) |
143 | 139, 142 | mpbird 256 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝑀 = 0) |
144 | 137, 143 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) ∧ 𝐾 = 0) → 𝐾 = 𝑀) |
145 | 136, 144 | mpdan 683 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 = -𝑀) → 𝐾 = 𝑀) |
146 | 145 | ex 412 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾 = -𝑀 → 𝐾 = 𝑀)) |
147 | 146 | necon3d 2963 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾 ≠ 𝑀 → 𝐾 ≠ -𝑀)) |
148 | 147 | imp 406 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝐾 ≠ -𝑀) |
149 | 58, 15 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → 𝑀 ∈ ℤ) |
150 | 149 | znegcld 12357 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → -𝑀 ∈ ℤ) |
151 | | rmyeq 40692 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐾 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (𝐾 = -𝑀 ↔ (𝐴 Yrm 𝐾) = (𝐴 Yrm -𝑀))) |
152 | 151 | necon3bid 2987 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐾 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (𝐾 ≠ -𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm -𝑀))) |
153 | 1, 4, 150, 152 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐾 ≠ -𝑀 ↔ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm -𝑀))) |
154 | 148, 153 | mpbid 231 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm -𝑀)) |
155 | | rmyneg 40666 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀)) |
156 | 1, 17, 155 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀)) |
157 | 154, 156 | neeqtrd 3012 |
. . . . . 6
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀)) |
158 | 118, 123,
157 | 3jca 1126 |
. . . . 5
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ 𝐾 ≠ 𝑀) → (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) |
159 | 158 | ex 412 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾 ≠ 𝑀 → (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀)))) |
160 | | simplll 771 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝐴 ∈
(ℤ≥‘2)) |
161 | 3 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝐾 ∈ ℤ) |
162 | 160, 161,
30 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ∈ ℤ) |
163 | 162 | zcnd 12356 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ∈ ℂ) |
164 | 16 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝑀 ∈ ℤ) |
165 | 160, 164,
33 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝑀) ∈ ℤ) |
166 | 165 | zcnd 12356 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝑀) ∈ ℂ) |
167 | 163, 166 | negsubd 11268 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) |
168 | 167 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) = (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))) |
169 | 166 | negcld 11249 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → -(𝐴 Yrm 𝑀) ∈ ℂ) |
170 | 163, 169 | addcld 10925 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀)) ∈ ℂ) |
171 | 170 | abscld 15076 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) ∈ ℝ) |
172 | 163 | abscld 15076 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘(𝐴 Yrm 𝐾)) ∈ ℝ) |
173 | 166 | abscld 15076 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℝ) |
174 | 172, 173 | readdcld 10935 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) ∈ ℝ) |
175 | | nnz 12272 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
176 | 175 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
177 | 176 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → 𝑁 ∈ ℤ) |
178 | 49 | nn0zd 12353 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ) |
179 | 160, 177,
178 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Xrm 𝑁) ∈ ℤ) |
180 | 179 | zred 12355 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Xrm 𝑁) ∈ ℝ) |
181 | 163, 169 | abstrid 15096 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) ≤ ((abs‘(𝐴 Yrm 𝐾)) + (abs‘-(𝐴 Yrm 𝑀)))) |
182 | | absneg 14917 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 Yrm 𝑀) ∈ ℂ →
(abs‘-(𝐴
Yrm 𝑀)) =
(abs‘(𝐴
Yrm 𝑀))) |
183 | 182 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 Yrm 𝑀) ∈ ℂ →
(abs‘(𝐴
Yrm 𝑀)) =
(abs‘-(𝐴
Yrm 𝑀))) |
184 | 166, 183 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘(𝐴 Yrm 𝑀)) = (abs‘-(𝐴 Yrm 𝑀))) |
185 | 184 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) = ((abs‘(𝐴 Yrm 𝐾)) + (abs‘-(𝐴 Yrm 𝑀)))) |
186 | 181, 185 | breqtrrd 5098 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) ≤ ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀)))) |
187 | | simpr1 1192 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁)) |
188 | 171, 174,
180, 186, 187 | lelttrd 11063 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + -(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁)) |
189 | 168, 188 | eqbrtrrd 5094 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁)) |
190 | 162, 165 | zsubcld 12360 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∈ ℤ) |
191 | 190 | zcnd 12356 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∈ ℂ) |
192 | 191 | abscld 15076 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) ∈ ℝ) |
193 | 192, 180 | ltnled 11052 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ↔ ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))))) |
194 | 189, 193 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)))) |
195 | | simpr2 1193 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀)) |
196 | 163, 166,
195 | subne0d 11271 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ≠ 0) |
197 | | dvdsleabs 15948 |
. . . . . . . . 9
⊢ (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ≠ 0) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))))) |
198 | 179, 190,
196, 197 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))))) |
199 | 194, 198 | mtod 197 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀))) |
200 | 163, 166 | subnegd 11269 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) |
201 | 200 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) = (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)))) |
202 | 163, 166 | addcld 10925 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀)) ∈ ℂ) |
203 | 202 | abscld 15076 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) ∈ ℝ) |
204 | 163, 166 | abstrid 15096 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) ≤ ((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀)))) |
205 | 203, 174,
180, 204, 187 | lelttrd 11063 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) + (𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁)) |
206 | 201, 205 | eqbrtrd 5092 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁)) |
207 | 165 | znegcld 12357 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → -(𝐴 Yrm 𝑀) ∈ ℤ) |
208 | 162, 207 | zsubcld 12360 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∈ ℤ) |
209 | 208 | zcnd 12356 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∈ ℂ) |
210 | 209 | abscld 15076 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ∈ ℝ) |
211 | 210, 180 | ltnled 11052 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ↔ ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
212 | 206, 211 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) |
213 | | simpr3 1194 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀)) |
214 | 163, 169,
213 | subne0d 11271 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ≠ 0) |
215 | | dvdsleabs 15948 |
. . . . . . . . 9
⊢ (((𝐴 Xrm 𝑁) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∈ ℤ ∧ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ≠ 0) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
216 | 179, 208,
214, 215 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) → (𝐴 Xrm 𝑁) ≤ (abs‘((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
217 | 212, 216 | mtod 197 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) |
218 | 199, 217 | jca 511 |
. . . . . 6
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → (¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∧ ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) |
219 | | pm4.56 985 |
. . . . . 6
⊢ ((¬
(𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∧ ¬ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) |
220 | 218, 219 | sylib 217 |
. . . . 5
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) ∧ (((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀))) → ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) |
221 | 220 | ex 412 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → ((((abs‘(𝐴 Yrm 𝐾)) + (abs‘(𝐴 Yrm 𝑀))) < (𝐴 Xrm 𝑁) ∧ (𝐴 Yrm 𝐾) ≠ (𝐴 Yrm 𝑀) ∧ (𝐴 Yrm 𝐾) ≠ -(𝐴 Yrm 𝑀)) → ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
222 | 159, 221 | syld 47 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (𝐾 ≠ 𝑀 → ¬ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) |
223 | 222 | necon4ad 2961 |
. 2
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → 𝐾 = 𝑀)) |
224 | 223 | 3impia 1115 |
1
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ 𝑀 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 = 𝑀) |