Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpell1qr2 Structured version   Visualization version   GIF version

Theorem elpell1qr2 42975
Description: The first quadrant solutions are precisely the positive Pell solutions which are at least one. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
elpell1qr2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)))

Proof of Theorem elpell1qr2
StepHypRef Expression
1 pell1qrss14 42971 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
21sselda 3929 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷))
3 pell1qrge1 42973 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 1 ≤ 𝐴)
42, 3jca 511 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴))
5 1red 11113 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ∈ ℝ)
6 pell14qrre 42960 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
75, 6leloed 11256 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴)))
85, 6ltnled 11260 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 < 𝐴 ↔ ¬ 𝐴 ≤ 1))
98biimpa 476 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ 𝐴 ≤ 1)
10 1div1e1 11812 . . . . . . . . . . . . 13 (1 / 1) = 1
1110eqcomi 2740 . . . . . . . . . . . 12 1 = (1 / 1)
1211a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 1 = (1 / 1))
1312breq2d 5101 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ 1 ↔ 𝐴 ≤ (1 / 1)))
146adantr 480 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
15 pell14qrgt0 42962 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴)
1615adantr 480 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 0 < 𝐴)
17 1red 11113 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 1 ∈ ℝ)
18 0lt1 11639 . . . . . . . . . . . 12 0 < 1
1918a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 0 < 1)
20 lerec2 12010 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (𝐴 ≤ (1 / 1) ↔ 1 ≤ (1 / 𝐴)))
2114, 16, 17, 19, 20syl22anc 838 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ (1 / 1) ↔ 1 ≤ (1 / 𝐴)))
2213, 21bitrd 279 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ 1 ↔ 1 ≤ (1 / 𝐴)))
239, 22mtbid 324 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ 1 ≤ (1 / 𝐴))
24 simplll 774 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
25 pell1qrge1 42973 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 1 ≤ (1 / 𝐴))
2624, 25sylancom 588 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 1 ≤ (1 / 𝐴))
2723, 26mtand 815 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ (Pell1QR‘𝐷))
28 pell14qrdich 42972 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
2928adantr 480 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
30 orel2 890 . . . . . . 7 (¬ (1 / 𝐴) ∈ (Pell1QR‘𝐷) → ((𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 𝐴 ∈ (Pell1QR‘𝐷)))
3127, 29, 30sylc 65 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷))
32 simpr 484 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 1 = 𝐴)
33 pell1qr1 42974 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))
3433ad2antrr 726 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 1 ∈ (Pell1QR‘𝐷))
3532, 34eqeltrrd 2832 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷))
3631, 35jaodan 959 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (1 < 𝐴 ∨ 1 = 𝐴)) → 𝐴 ∈ (Pell1QR‘𝐷))
3736ex 412 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((1 < 𝐴 ∨ 1 = 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷)))
387, 37sylbid 240 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ 𝐴𝐴 ∈ (Pell1QR‘𝐷)))
3938impr 454 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)) → 𝐴 ∈ (Pell1QR‘𝐷))
404, 39impbida 800 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  cdif 3894   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   < clt 11146  cle 11147   / cdiv 11774  cn 12125  NNcsquarenn 42939  Pell1QRcpell1qr 42940  Pell14QRcpell14qr 42942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-pell1qr 42945  df-pell14qr 42946  df-pell1234qr 42947
This theorem is referenced by:  pell14qrgap  42978  pellfundglb  42988
  Copyright terms: Public domain W3C validator