Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpell1qr2 Structured version   Visualization version   GIF version

Theorem elpell1qr2 40232
 Description: The first quadrant solutions are precisely the positive Pell solutions which are at least one. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
elpell1qr2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)))

Proof of Theorem elpell1qr2
StepHypRef Expression
1 pell1qrss14 40228 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
21sselda 3895 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷))
3 pell1qrge1 40230 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 1 ≤ 𝐴)
42, 3jca 515 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴))
5 1red 10694 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ∈ ℝ)
6 pell14qrre 40217 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
75, 6leloed 10835 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴)))
85, 6ltnled 10839 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 < 𝐴 ↔ ¬ 𝐴 ≤ 1))
98biimpa 480 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ 𝐴 ≤ 1)
10 1div1e1 11382 . . . . . . . . . . . . 13 (1 / 1) = 1
1110eqcomi 2768 . . . . . . . . . . . 12 1 = (1 / 1)
1211a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 1 = (1 / 1))
1312breq2d 5049 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ 1 ↔ 𝐴 ≤ (1 / 1)))
146adantr 484 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
15 pell14qrgt0 40219 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴)
1615adantr 484 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 0 < 𝐴)
17 1red 10694 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 1 ∈ ℝ)
18 0lt1 11214 . . . . . . . . . . . 12 0 < 1
1918a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 0 < 1)
20 lerec2 11580 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (𝐴 ≤ (1 / 1) ↔ 1 ≤ (1 / 𝐴)))
2114, 16, 17, 19, 20syl22anc 837 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ (1 / 1) ↔ 1 ≤ (1 / 𝐴)))
2213, 21bitrd 282 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ 1 ↔ 1 ≤ (1 / 𝐴)))
239, 22mtbid 327 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ 1 ≤ (1 / 𝐴))
24 simplll 774 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
25 pell1qrge1 40230 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 1 ≤ (1 / 𝐴))
2624, 25sylancom 591 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 1 ≤ (1 / 𝐴))
2723, 26mtand 815 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ (Pell1QR‘𝐷))
28 pell14qrdich 40229 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
2928adantr 484 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
30 orel2 888 . . . . . . 7 (¬ (1 / 𝐴) ∈ (Pell1QR‘𝐷) → ((𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 𝐴 ∈ (Pell1QR‘𝐷)))
3127, 29, 30sylc 65 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷))
32 simpr 488 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 1 = 𝐴)
33 pell1qr1 40231 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))
3433ad2antrr 725 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 1 ∈ (Pell1QR‘𝐷))
3532, 34eqeltrrd 2854 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷))
3631, 35jaodan 955 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (1 < 𝐴 ∨ 1 = 𝐴)) → 𝐴 ∈ (Pell1QR‘𝐷))
3736ex 416 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((1 < 𝐴 ∨ 1 = 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷)))
387, 37sylbid 243 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ 𝐴𝐴 ∈ (Pell1QR‘𝐷)))
3938impr 458 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)) → 𝐴 ∈ (Pell1QR‘𝐷))
404, 39impbida 800 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1539   ∈ wcel 2112   ∖ cdif 3858   class class class wbr 5037  ‘cfv 6341  (class class class)co 7157  ℝcr 10588  0cc0 10589  1c1 10590   < clt 10727   ≤ cle 10728   / cdiv 11349  ℕcn 11688  ◻NNcsquarenn 40196  Pell1QRcpell1qr 40197  Pell14QRcpell14qr 40199 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-pre-sup 10667 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-er 8306  df-en 8542  df-dom 8543  df-sdom 8544  df-sup 8953  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-div 11350  df-nn 11689  df-2 11751  df-3 11752  df-n0 11949  df-z 12035  df-uz 12297  df-rp 12445  df-seq 13433  df-exp 13494  df-cj 14520  df-re 14521  df-im 14522  df-sqrt 14656  df-abs 14657  df-pell1qr 40202  df-pell14qr 40203  df-pell1234qr 40204 This theorem is referenced by:  pell14qrgap  40235  pellfundglb  40245
 Copyright terms: Public domain W3C validator