Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpell1qr2 Structured version   Visualization version   GIF version

Theorem elpell1qr2 39489
Description: The first quadrant solutions are precisely the positive Pell solutions which are at least one. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
elpell1qr2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)))

Proof of Theorem elpell1qr2
StepHypRef Expression
1 pell1qrss14 39485 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
21sselda 3967 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷))
3 pell1qrge1 39487 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → 1 ≤ 𝐴)
42, 3jca 514 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴))
5 1red 10642 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 1 ∈ ℝ)
6 pell14qrre 39474 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ)
75, 6leloed 10783 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ 𝐴 ↔ (1 < 𝐴 ∨ 1 = 𝐴)))
85, 6ltnled 10787 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 < 𝐴 ↔ ¬ 𝐴 ≤ 1))
98biimpa 479 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ 𝐴 ≤ 1)
10 1div1e1 11330 . . . . . . . . . . . . 13 (1 / 1) = 1
1110eqcomi 2830 . . . . . . . . . . . 12 1 = (1 / 1)
1211a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 1 = (1 / 1))
1312breq2d 5078 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ 1 ↔ 𝐴 ≤ (1 / 1)))
146adantr 483 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
15 pell14qrgt0 39476 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴)
1615adantr 483 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 0 < 𝐴)
17 1red 10642 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 1 ∈ ℝ)
18 0lt1 11162 . . . . . . . . . . . 12 0 < 1
1918a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 0 < 1)
20 lerec2 11528 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 ∈ ℝ ∧ 0 < 1)) → (𝐴 ≤ (1 / 1) ↔ 1 ≤ (1 / 𝐴)))
2114, 16, 17, 19, 20syl22anc 836 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ (1 / 1) ↔ 1 ≤ (1 / 𝐴)))
2213, 21bitrd 281 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ≤ 1 ↔ 1 ≤ (1 / 𝐴)))
239, 22mtbid 326 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ 1 ≤ (1 / 𝐴))
24 simplll 773 . . . . . . . . 9 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 𝐷 ∈ (ℕ ∖ ◻NN))
25 pell1qrge1 39487 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 1 ≤ (1 / 𝐴))
2624, 25sylancom 590 . . . . . . . 8 ((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) ∧ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 1 ≤ (1 / 𝐴))
2723, 26mtand 814 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ (Pell1QR‘𝐷))
28 pell14qrdich 39486 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
2928adantr 483 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → (𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)))
30 orel2 887 . . . . . . 7 (¬ (1 / 𝐴) ∈ (Pell1QR‘𝐷) → ((𝐴 ∈ (Pell1QR‘𝐷) ∨ (1 / 𝐴) ∈ (Pell1QR‘𝐷)) → 𝐴 ∈ (Pell1QR‘𝐷)))
3127, 29, 30sylc 65 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 < 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷))
32 simpr 487 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 1 = 𝐴)
33 pell1qr1 39488 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ (Pell1QR‘𝐷))
3433ad2antrr 724 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 1 ∈ (Pell1QR‘𝐷))
3532, 34eqeltrrd 2914 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ 1 = 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷))
3631, 35jaodan 954 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) ∧ (1 < 𝐴 ∨ 1 = 𝐴)) → 𝐴 ∈ (Pell1QR‘𝐷))
3736ex 415 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → ((1 < 𝐴 ∨ 1 = 𝐴) → 𝐴 ∈ (Pell1QR‘𝐷)))
387, 37sylbid 242 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (1 ≤ 𝐴𝐴 ∈ (Pell1QR‘𝐷)))
3938impr 457 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)) → 𝐴 ∈ (Pell1QR‘𝐷))
404, 39impbida 799 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ (Pell14QR‘𝐷) ∧ 1 ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  cdif 3933   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   < clt 10675  cle 10676   / cdiv 11297  cn 11638  NNcsquarenn 39453  Pell1QRcpell1qr 39454  Pell14QRcpell14qr 39456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-pell1qr 39459  df-pell14qr 39460  df-pell1234qr 39461
This theorem is referenced by:  pell14qrgap  39492  pellfundglb  39502
  Copyright terms: Public domain W3C validator