Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpell14qr2 | Structured version Visualization version GIF version |
Description: A number is a positive Pell solution iff it is positive and a Pell solution, justifying our name choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
Ref | Expression |
---|---|
elpell14qr2 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pell14qrss1234 40678 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) | |
2 | 1 | sselda 3921 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell1234QR‘𝐷)) |
3 | pell14qrgt0 40681 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴) | |
4 | 2, 3 | jca 512 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) |
5 | 0re 10977 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
6 | pell1234qrre 40674 | . . . . . . 7 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) | |
7 | ltnsym 11073 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → ¬ 𝐴 < 0)) | |
8 | 5, 6, 7 | sylancr 587 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (0 < 𝐴 → ¬ 𝐴 < 0)) |
9 | 8 | impr 455 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ 𝐴 < 0) |
10 | 6 | adantrr 714 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ) |
11 | 10 | lt0neg1d 11544 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (𝐴 < 0 ↔ 0 < -𝐴)) |
12 | 9, 11 | mtbid 324 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ 0 < -𝐴) |
13 | pell14qrgt0 40681 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ -𝐴 ∈ (Pell14QR‘𝐷)) → 0 < -𝐴) | |
14 | 13 | ex 413 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (-𝐴 ∈ (Pell14QR‘𝐷) → 0 < -𝐴)) |
15 | 14 | adantr 481 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (-𝐴 ∈ (Pell14QR‘𝐷) → 0 < -𝐴)) |
16 | 12, 15 | mtod 197 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ -𝐴 ∈ (Pell14QR‘𝐷)) |
17 | pell1234qrdich 40683 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))) | |
18 | 17 | adantrr 714 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))) |
19 | orel2 888 | . . 3 ⊢ (¬ -𝐴 ∈ (Pell14QR‘𝐷) → ((𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷))) | |
20 | 16, 18, 19 | sylc 65 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 𝐴 ∈ (Pell14QR‘𝐷)) |
21 | 4, 20 | impbida 798 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∈ wcel 2106 ∖ cdif 3884 class class class wbr 5074 ‘cfv 6433 ℝcr 10870 0cc0 10871 < clt 11009 -cneg 11206 ℕcn 11973 ◻NNcsquarenn 40658 Pell1234QRcpell1234qr 40660 Pell14QRcpell14qr 40661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-pell14qr 40665 df-pell1234qr 40666 |
This theorem is referenced by: pell14qrmulcl 40685 pell14qrreccl 40686 |
Copyright terms: Public domain | W3C validator |