![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpell14qr2 | Structured version Visualization version GIF version |
Description: A number is a positive Pell solution iff it is positive and a Pell solution, justifying our name choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
Ref | Expression |
---|---|
elpell14qr2 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pell14qrss1234 42340 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) | |
2 | 1 | sselda 3972 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell1234QR‘𝐷)) |
3 | pell14qrgt0 42343 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴) | |
4 | 2, 3 | jca 510 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) |
5 | 0re 11244 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
6 | pell1234qrre 42336 | . . . . . . 7 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) | |
7 | ltnsym 11340 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → ¬ 𝐴 < 0)) | |
8 | 5, 6, 7 | sylancr 585 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (0 < 𝐴 → ¬ 𝐴 < 0)) |
9 | 8 | impr 453 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ 𝐴 < 0) |
10 | 6 | adantrr 715 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ) |
11 | 10 | lt0neg1d 11811 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (𝐴 < 0 ↔ 0 < -𝐴)) |
12 | 9, 11 | mtbid 323 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ 0 < -𝐴) |
13 | pell14qrgt0 42343 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ -𝐴 ∈ (Pell14QR‘𝐷)) → 0 < -𝐴) | |
14 | 13 | ex 411 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (-𝐴 ∈ (Pell14QR‘𝐷) → 0 < -𝐴)) |
15 | 14 | adantr 479 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (-𝐴 ∈ (Pell14QR‘𝐷) → 0 < -𝐴)) |
16 | 12, 15 | mtod 197 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ -𝐴 ∈ (Pell14QR‘𝐷)) |
17 | pell1234qrdich 42345 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))) | |
18 | 17 | adantrr 715 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))) |
19 | orel2 888 | . . 3 ⊢ (¬ -𝐴 ∈ (Pell14QR‘𝐷) → ((𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷))) | |
20 | 16, 18, 19 | sylc 65 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 𝐴 ∈ (Pell14QR‘𝐷)) |
21 | 4, 20 | impbida 799 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∈ wcel 2098 ∖ cdif 3937 class class class wbr 5143 ‘cfv 6542 ℝcr 11135 0cc0 11136 < clt 11276 -cneg 11473 ℕcn 12240 ◻NNcsquarenn 42320 Pell1234QRcpell1234qr 42322 Pell14QRcpell14qr 42323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-seq 13997 df-exp 14057 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-pell14qr 42327 df-pell1234qr 42328 |
This theorem is referenced by: pell14qrmulcl 42347 pell14qrreccl 42348 |
Copyright terms: Public domain | W3C validator |