![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpell14qr2 | Structured version Visualization version GIF version |
Description: A number is a positive Pell solution iff it is positive and a Pell solution, justifying our name choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
Ref | Expression |
---|---|
elpell14qr2 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pell14qrss1234 38263 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) | |
2 | 1 | sselda 3827 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell1234QR‘𝐷)) |
3 | pell14qrgt0 38266 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴) | |
4 | 2, 3 | jca 507 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) |
5 | 0re 10365 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
6 | pell1234qrre 38259 | . . . . . . 7 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) | |
7 | ltnsym 10461 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → ¬ 𝐴 < 0)) | |
8 | 5, 6, 7 | sylancr 581 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (0 < 𝐴 → ¬ 𝐴 < 0)) |
9 | 8 | impr 448 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ 𝐴 < 0) |
10 | 6 | adantrr 708 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ) |
11 | 10 | lt0neg1d 10928 | . . . . 5 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (𝐴 < 0 ↔ 0 < -𝐴)) |
12 | 9, 11 | mtbid 316 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ 0 < -𝐴) |
13 | pell14qrgt0 38266 | . . . . . 6 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ -𝐴 ∈ (Pell14QR‘𝐷)) → 0 < -𝐴) | |
14 | 13 | ex 403 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (-𝐴 ∈ (Pell14QR‘𝐷) → 0 < -𝐴)) |
15 | 14 | adantr 474 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (-𝐴 ∈ (Pell14QR‘𝐷) → 0 < -𝐴)) |
16 | 12, 15 | mtod 190 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ -𝐴 ∈ (Pell14QR‘𝐷)) |
17 | pell1234qrdich 38268 | . . . 4 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))) | |
18 | 17 | adantrr 708 | . . 3 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷))) |
19 | orel2 919 | . . 3 ⊢ (¬ -𝐴 ∈ (Pell14QR‘𝐷) → ((𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷))) | |
20 | 16, 18, 19 | sylc 65 | . 2 ⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 𝐴 ∈ (Pell14QR‘𝐷)) |
21 | 4, 20 | impbida 835 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 878 ∈ wcel 2164 ∖ cdif 3795 class class class wbr 4875 ‘cfv 6127 ℝcr 10258 0cc0 10259 < clt 10398 -cneg 10593 ℕcn 11357 ◻NNcsquarenn 38243 Pell1234QRcpell1234qr 38245 Pell14QRcpell14qr 38246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-sup 8623 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-n0 11626 df-z 11712 df-uz 11976 df-rp 12120 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-pell14qr 38250 df-pell1234qr 38251 |
This theorem is referenced by: pell14qrmulcl 38270 pell14qrreccl 38271 |
Copyright terms: Public domain | W3C validator |