MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coaval Structured version   Visualization version   GIF version

Theorem coaval 17970
Description: Value of composition for composable arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o · = (compa𝐶)
homdmcoa.h 𝐻 = (Homa𝐶)
homdmcoa.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
homdmcoa.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
coaval.x = (comp‘𝐶)
Assertion
Ref Expression
coaval (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)

Proof of Theorem coaval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homdmcoa.o . . 3 · = (compa𝐶)
2 eqid 2731 . . 3 (Arrow‘𝐶) = (Arrow‘𝐶)
3 coaval.x . . 3 = (comp‘𝐶)
41, 2, 3coafval 17966 . 2 · = (𝑔 ∈ (Arrow‘𝐶), 𝑓 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
5 homdmcoa.h . . . . 5 𝐻 = (Homa𝐶)
62, 5homarw 17948 . . . 4 (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶)
7 homdmcoa.g . . . 4 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
86, 7sselid 3927 . . 3 (𝜑𝐺 ∈ (Arrow‘𝐶))
9 fveqeq2 6826 . . . 4 ( = 𝐹 → ((coda) = (doma𝑔) ↔ (coda𝐹) = (doma𝑔)))
102, 5homarw 17948 . . . . 5 (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶)
11 homdmcoa.f . . . . . 6 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
1211adantr 480 . . . . 5 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ (𝑋𝐻𝑌))
1310, 12sselid 3927 . . . 4 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ (Arrow‘𝐶))
145homacd 17943 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
1512, 14syl 17 . . . . 5 ((𝜑𝑔 = 𝐺) → (coda𝐹) = 𝑌)
16 simpr 484 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
1716fveq2d 6821 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝑔) = (doma𝐺))
187adantr 480 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝐺 ∈ (𝑌𝐻𝑍))
195homadm 17942 . . . . . . 7 (𝐺 ∈ (𝑌𝐻𝑍) → (doma𝐺) = 𝑌)
2018, 19syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝐺) = 𝑌)
2117, 20eqtrd 2766 . . . . 5 ((𝜑𝑔 = 𝐺) → (doma𝑔) = 𝑌)
2215, 21eqtr4d 2769 . . . 4 ((𝜑𝑔 = 𝐺) → (coda𝐹) = (doma𝑔))
239, 13, 22elrabd 3644 . . 3 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)})
24 otex 5400 . . . 4 ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ ∈ V
2524a1i 11 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ ∈ V)
26 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
2726fveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑓) = (doma𝐹))
285homadm 17942 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)
2912, 28syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝐹) = 𝑋)
3029adantrr 717 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝐹) = 𝑋)
3127, 30eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑓) = 𝑋)
3216fveq2d 6821 . . . . . 6 ((𝜑𝑔 = 𝐺) → (coda𝑔) = (coda𝐺))
335homacd 17943 . . . . . . 7 (𝐺 ∈ (𝑌𝐻𝑍) → (coda𝐺) = 𝑍)
3418, 33syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (coda𝐺) = 𝑍)
3532, 34eqtrd 2766 . . . . 5 ((𝜑𝑔 = 𝐺) → (coda𝑔) = 𝑍)
3635adantrr 717 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (coda𝑔) = 𝑍)
3721adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑔) = 𝑌)
3831, 37opeq12d 4828 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (doma𝑔)⟩ = ⟨𝑋, 𝑌⟩)
3938, 36oveq12d 7359 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔)) = (⟨𝑋, 𝑌 𝑍))
40 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
4140fveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
4226fveq2d 6821 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
4339, 41, 42oveq123d 7362 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓)) = ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹)))
4431, 36, 43oteq123d 4835 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
458, 23, 25, 44ovmpodv2 7499 . 2 (𝜑 → ( · = (𝑔 ∈ (Arrow‘𝐶), 𝑓 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩))
464, 45mpi 20 1 (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cop 4577  cotp 4579  cfv 6476  (class class class)co 7341  cmpo 7343  2nd c2nd 7915  compcco 17168  domacdoma 17922  codaccoda 17923  Arrowcarw 17924  Homachoma 17925  compaccoa 17956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-ot 4580  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-doma 17926  df-coda 17927  df-homa 17928  df-arw 17929  df-coa 17958
This theorem is referenced by:  coa2  17971  coahom  17972  arwlid  17974  arwrid  17975  arwass  17976
  Copyright terms: Public domain W3C validator