MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coaval Structured version   Visualization version   GIF version

Theorem coaval 18037
Description: Value of composition for composable arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o · = (compa𝐶)
homdmcoa.h 𝐻 = (Homa𝐶)
homdmcoa.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
homdmcoa.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
coaval.x = (comp‘𝐶)
Assertion
Ref Expression
coaval (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)

Proof of Theorem coaval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homdmcoa.o . . 3 · = (compa𝐶)
2 eqid 2730 . . 3 (Arrow‘𝐶) = (Arrow‘𝐶)
3 coaval.x . . 3 = (comp‘𝐶)
41, 2, 3coafval 18033 . 2 · = (𝑔 ∈ (Arrow‘𝐶), 𝑓 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
5 homdmcoa.h . . . . 5 𝐻 = (Homa𝐶)
62, 5homarw 18015 . . . 4 (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶)
7 homdmcoa.g . . . 4 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
86, 7sselid 3947 . . 3 (𝜑𝐺 ∈ (Arrow‘𝐶))
9 fveqeq2 6870 . . . 4 ( = 𝐹 → ((coda) = (doma𝑔) ↔ (coda𝐹) = (doma𝑔)))
102, 5homarw 18015 . . . . 5 (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶)
11 homdmcoa.f . . . . . 6 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
1211adantr 480 . . . . 5 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ (𝑋𝐻𝑌))
1310, 12sselid 3947 . . . 4 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ (Arrow‘𝐶))
145homacd 18010 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
1512, 14syl 17 . . . . 5 ((𝜑𝑔 = 𝐺) → (coda𝐹) = 𝑌)
16 simpr 484 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
1716fveq2d 6865 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝑔) = (doma𝐺))
187adantr 480 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝐺 ∈ (𝑌𝐻𝑍))
195homadm 18009 . . . . . . 7 (𝐺 ∈ (𝑌𝐻𝑍) → (doma𝐺) = 𝑌)
2018, 19syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝐺) = 𝑌)
2117, 20eqtrd 2765 . . . . 5 ((𝜑𝑔 = 𝐺) → (doma𝑔) = 𝑌)
2215, 21eqtr4d 2768 . . . 4 ((𝜑𝑔 = 𝐺) → (coda𝐹) = (doma𝑔))
239, 13, 22elrabd 3664 . . 3 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)})
24 otex 5428 . . . 4 ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ ∈ V
2524a1i 11 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ ∈ V)
26 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
2726fveq2d 6865 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑓) = (doma𝐹))
285homadm 18009 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)
2912, 28syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝐹) = 𝑋)
3029adantrr 717 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝐹) = 𝑋)
3127, 30eqtrd 2765 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑓) = 𝑋)
3216fveq2d 6865 . . . . . 6 ((𝜑𝑔 = 𝐺) → (coda𝑔) = (coda𝐺))
335homacd 18010 . . . . . . 7 (𝐺 ∈ (𝑌𝐻𝑍) → (coda𝐺) = 𝑍)
3418, 33syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (coda𝐺) = 𝑍)
3532, 34eqtrd 2765 . . . . 5 ((𝜑𝑔 = 𝐺) → (coda𝑔) = 𝑍)
3635adantrr 717 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (coda𝑔) = 𝑍)
3721adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑔) = 𝑌)
3831, 37opeq12d 4848 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (doma𝑔)⟩ = ⟨𝑋, 𝑌⟩)
3938, 36oveq12d 7408 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔)) = (⟨𝑋, 𝑌 𝑍))
40 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
4140fveq2d 6865 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
4226fveq2d 6865 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
4339, 41, 42oveq123d 7411 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓)) = ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹)))
4431, 36, 43oteq123d 4855 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
458, 23, 25, 44ovmpodv2 7550 . 2 (𝜑 → ( · = (𝑔 ∈ (Arrow‘𝐶), 𝑓 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩))
464, 45mpi 20 1 (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cop 4598  cotp 4600  cfv 6514  (class class class)co 7390  cmpo 7392  2nd c2nd 7970  compcco 17239  domacdoma 17989  codaccoda 17990  Arrowcarw 17991  Homachoma 17992  compaccoa 18023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-doma 17993  df-coda 17994  df-homa 17995  df-arw 17996  df-coa 18025
This theorem is referenced by:  coa2  18038  coahom  18039  arwlid  18041  arwrid  18042  arwass  18043
  Copyright terms: Public domain W3C validator