MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coaval Structured version   Visualization version   GIF version

Theorem coaval 17387
Description: Value of composition for composable arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o · = (compa𝐶)
homdmcoa.h 𝐻 = (Homa𝐶)
homdmcoa.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
homdmcoa.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
coaval.x = (comp‘𝐶)
Assertion
Ref Expression
coaval (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)

Proof of Theorem coaval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homdmcoa.o . . 3 · = (compa𝐶)
2 eqid 2759 . . 3 (Arrow‘𝐶) = (Arrow‘𝐶)
3 coaval.x . . 3 = (comp‘𝐶)
41, 2, 3coafval 17383 . 2 · = (𝑔 ∈ (Arrow‘𝐶), 𝑓 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
5 homdmcoa.h . . . . 5 𝐻 = (Homa𝐶)
62, 5homarw 17365 . . . 4 (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶)
7 homdmcoa.g . . . 4 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
86, 7sseldi 3891 . . 3 (𝜑𝐺 ∈ (Arrow‘𝐶))
9 fveqeq2 6668 . . . 4 ( = 𝐹 → ((coda) = (doma𝑔) ↔ (coda𝐹) = (doma𝑔)))
102, 5homarw 17365 . . . . 5 (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶)
11 homdmcoa.f . . . . . 6 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
1211adantr 485 . . . . 5 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ (𝑋𝐻𝑌))
1310, 12sseldi 3891 . . . 4 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ (Arrow‘𝐶))
145homacd 17360 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
1512, 14syl 17 . . . . 5 ((𝜑𝑔 = 𝐺) → (coda𝐹) = 𝑌)
16 simpr 489 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
1716fveq2d 6663 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝑔) = (doma𝐺))
187adantr 485 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝐺 ∈ (𝑌𝐻𝑍))
195homadm 17359 . . . . . . 7 (𝐺 ∈ (𝑌𝐻𝑍) → (doma𝐺) = 𝑌)
2018, 19syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝐺) = 𝑌)
2117, 20eqtrd 2794 . . . . 5 ((𝜑𝑔 = 𝐺) → (doma𝑔) = 𝑌)
2215, 21eqtr4d 2797 . . . 4 ((𝜑𝑔 = 𝐺) → (coda𝐹) = (doma𝑔))
239, 13, 22elrabd 3605 . . 3 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)})
24 otex 5326 . . . 4 ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ ∈ V
2524a1i 11 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ ∈ V)
26 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
2726fveq2d 6663 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑓) = (doma𝐹))
285homadm 17359 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)
2912, 28syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝐹) = 𝑋)
3029adantrr 717 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝐹) = 𝑋)
3127, 30eqtrd 2794 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑓) = 𝑋)
3216fveq2d 6663 . . . . . 6 ((𝜑𝑔 = 𝐺) → (coda𝑔) = (coda𝐺))
335homacd 17360 . . . . . . 7 (𝐺 ∈ (𝑌𝐻𝑍) → (coda𝐺) = 𝑍)
3418, 33syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (coda𝐺) = 𝑍)
3532, 34eqtrd 2794 . . . . 5 ((𝜑𝑔 = 𝐺) → (coda𝑔) = 𝑍)
3635adantrr 717 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (coda𝑔) = 𝑍)
3721adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑔) = 𝑌)
3831, 37opeq12d 4772 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (doma𝑔)⟩ = ⟨𝑋, 𝑌⟩)
3938, 36oveq12d 7169 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔)) = (⟨𝑋, 𝑌 𝑍))
40 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
4140fveq2d 6663 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
4226fveq2d 6663 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
4339, 41, 42oveq123d 7172 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓)) = ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹)))
4431, 36, 43oteq123d 4779 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
458, 23, 25, 44ovmpodv2 7304 . 2 (𝜑 → ( · = (𝑔 ∈ (Arrow‘𝐶), 𝑓 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩))
464, 45mpi 20 1 (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  {crab 3075  Vcvv 3410  cop 4529  cotp 4531  cfv 6336  (class class class)co 7151  cmpo 7153  2nd c2nd 7693  compcco 16628  domacdoma 17339  codaccoda 17340  Arrowcarw 17341  Homachoma 17342  compaccoa 17373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-ot 4532  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7694  df-2nd 7695  df-doma 17343  df-coda 17344  df-homa 17345  df-arw 17346  df-coa 17375
This theorem is referenced by:  coa2  17388  coahom  17389  arwlid  17391  arwrid  17392  arwass  17393
  Copyright terms: Public domain W3C validator