MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coaval Structured version   Visualization version   GIF version

Theorem coaval 17954
Description: Value of composition for composable arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o · = (compa𝐶)
homdmcoa.h 𝐻 = (Homa𝐶)
homdmcoa.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
homdmcoa.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
coaval.x = (comp‘𝐶)
Assertion
Ref Expression
coaval (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)

Proof of Theorem coaval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homdmcoa.o . . 3 · = (compa𝐶)
2 eqid 2736 . . 3 (Arrow‘𝐶) = (Arrow‘𝐶)
3 coaval.x . . 3 = (comp‘𝐶)
41, 2, 3coafval 17950 . 2 · = (𝑔 ∈ (Arrow‘𝐶), 𝑓 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
5 homdmcoa.h . . . . 5 𝐻 = (Homa𝐶)
62, 5homarw 17932 . . . 4 (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶)
7 homdmcoa.g . . . 4 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
86, 7sselid 3942 . . 3 (𝜑𝐺 ∈ (Arrow‘𝐶))
9 fveqeq2 6851 . . . 4 ( = 𝐹 → ((coda) = (doma𝑔) ↔ (coda𝐹) = (doma𝑔)))
102, 5homarw 17932 . . . . 5 (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶)
11 homdmcoa.f . . . . . 6 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
1211adantr 481 . . . . 5 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ (𝑋𝐻𝑌))
1310, 12sselid 3942 . . . 4 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ (Arrow‘𝐶))
145homacd 17927 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
1512, 14syl 17 . . . . 5 ((𝜑𝑔 = 𝐺) → (coda𝐹) = 𝑌)
16 simpr 485 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
1716fveq2d 6846 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝑔) = (doma𝐺))
187adantr 481 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝐺 ∈ (𝑌𝐻𝑍))
195homadm 17926 . . . . . . 7 (𝐺 ∈ (𝑌𝐻𝑍) → (doma𝐺) = 𝑌)
2018, 19syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝐺) = 𝑌)
2117, 20eqtrd 2776 . . . . 5 ((𝜑𝑔 = 𝐺) → (doma𝑔) = 𝑌)
2215, 21eqtr4d 2779 . . . 4 ((𝜑𝑔 = 𝐺) → (coda𝐹) = (doma𝑔))
239, 13, 22elrabd 3647 . . 3 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)})
24 otex 5422 . . . 4 ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ ∈ V
2524a1i 11 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ ∈ V)
26 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
2726fveq2d 6846 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑓) = (doma𝐹))
285homadm 17926 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)
2912, 28syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝐹) = 𝑋)
3029adantrr 715 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝐹) = 𝑋)
3127, 30eqtrd 2776 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑓) = 𝑋)
3216fveq2d 6846 . . . . . 6 ((𝜑𝑔 = 𝐺) → (coda𝑔) = (coda𝐺))
335homacd 17927 . . . . . . 7 (𝐺 ∈ (𝑌𝐻𝑍) → (coda𝐺) = 𝑍)
3418, 33syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (coda𝐺) = 𝑍)
3532, 34eqtrd 2776 . . . . 5 ((𝜑𝑔 = 𝐺) → (coda𝑔) = 𝑍)
3635adantrr 715 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (coda𝑔) = 𝑍)
3721adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑔) = 𝑌)
3831, 37opeq12d 4838 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (doma𝑔)⟩ = ⟨𝑋, 𝑌⟩)
3938, 36oveq12d 7375 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔)) = (⟨𝑋, 𝑌 𝑍))
40 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
4140fveq2d 6846 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
4226fveq2d 6846 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
4339, 41, 42oveq123d 7378 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓)) = ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹)))
4431, 36, 43oteq123d 4845 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
458, 23, 25, 44ovmpodv2 7513 . 2 (𝜑 → ( · = (𝑔 ∈ (Arrow‘𝐶), 𝑓 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩))
464, 45mpi 20 1 (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  cop 4592  cotp 4594  cfv 6496  (class class class)co 7357  cmpo 7359  2nd c2nd 7920  compcco 17145  domacdoma 17906  codaccoda 17907  Arrowcarw 17908  Homachoma 17909  compaccoa 17940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-ot 4595  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-doma 17910  df-coda 17911  df-homa 17912  df-arw 17913  df-coa 17942
This theorem is referenced by:  coa2  17955  coahom  17956  arwlid  17958  arwrid  17959  arwass  17960
  Copyright terms: Public domain W3C validator