MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coaval Structured version   Visualization version   GIF version

Theorem coaval 18014
Description: Value of composition for composable arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o Β· = (compaβ€˜πΆ)
homdmcoa.h 𝐻 = (Homaβ€˜πΆ)
homdmcoa.f (πœ‘ β†’ 𝐹 ∈ (π‘‹π»π‘Œ))
homdmcoa.g (πœ‘ β†’ 𝐺 ∈ (π‘Œπ»π‘))
coaval.x βˆ™ = (compβ€˜πΆ)
Assertion
Ref Expression
coaval (πœ‘ β†’ (𝐺 Β· 𝐹) = βŸ¨π‘‹, 𝑍, ((2nd β€˜πΊ)(βŸ¨π‘‹, π‘ŒβŸ© βˆ™ 𝑍)(2nd β€˜πΉ))⟩)

Proof of Theorem coaval
Dummy variables 𝑓 𝑔 β„Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homdmcoa.o . . 3 Β· = (compaβ€˜πΆ)
2 eqid 2732 . . 3 (Arrowβ€˜πΆ) = (Arrowβ€˜πΆ)
3 coaval.x . . 3 βˆ™ = (compβ€˜πΆ)
41, 2, 3coafval 18010 . 2 Β· = (𝑔 ∈ (Arrowβ€˜πΆ), 𝑓 ∈ {β„Ž ∈ (Arrowβ€˜πΆ) ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
5 homdmcoa.h . . . . 5 𝐻 = (Homaβ€˜πΆ)
62, 5homarw 17992 . . . 4 (π‘Œπ»π‘) βŠ† (Arrowβ€˜πΆ)
7 homdmcoa.g . . . 4 (πœ‘ β†’ 𝐺 ∈ (π‘Œπ»π‘))
86, 7sselid 3979 . . 3 (πœ‘ β†’ 𝐺 ∈ (Arrowβ€˜πΆ))
9 fveqeq2 6897 . . . 4 (β„Ž = 𝐹 β†’ ((codaβ€˜β„Ž) = (domaβ€˜π‘”) ↔ (codaβ€˜πΉ) = (domaβ€˜π‘”)))
102, 5homarw 17992 . . . . 5 (π‘‹π»π‘Œ) βŠ† (Arrowβ€˜πΆ)
11 homdmcoa.f . . . . . 6 (πœ‘ β†’ 𝐹 ∈ (π‘‹π»π‘Œ))
1211adantr 481 . . . . 5 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ 𝐹 ∈ (π‘‹π»π‘Œ))
1310, 12sselid 3979 . . . 4 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ 𝐹 ∈ (Arrowβ€˜πΆ))
145homacd 17987 . . . . . 6 (𝐹 ∈ (π‘‹π»π‘Œ) β†’ (codaβ€˜πΉ) = π‘Œ)
1512, 14syl 17 . . . . 5 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (codaβ€˜πΉ) = π‘Œ)
16 simpr 485 . . . . . . 7 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ 𝑔 = 𝐺)
1716fveq2d 6892 . . . . . 6 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (domaβ€˜π‘”) = (domaβ€˜πΊ))
187adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ 𝐺 ∈ (π‘Œπ»π‘))
195homadm 17986 . . . . . . 7 (𝐺 ∈ (π‘Œπ»π‘) β†’ (domaβ€˜πΊ) = π‘Œ)
2018, 19syl 17 . . . . . 6 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (domaβ€˜πΊ) = π‘Œ)
2117, 20eqtrd 2772 . . . . 5 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (domaβ€˜π‘”) = π‘Œ)
2215, 21eqtr4d 2775 . . . 4 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (codaβ€˜πΉ) = (domaβ€˜π‘”))
239, 13, 22elrabd 3684 . . 3 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ 𝐹 ∈ {β„Ž ∈ (Arrowβ€˜πΆ) ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)})
24 otex 5464 . . . 4 ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩ ∈ V
2524a1i 11 . . 3 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩ ∈ V)
26 simprr 771 . . . . . 6 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ 𝑓 = 𝐹)
2726fveq2d 6892 . . . . 5 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (domaβ€˜π‘“) = (domaβ€˜πΉ))
285homadm 17986 . . . . . . 7 (𝐹 ∈ (π‘‹π»π‘Œ) β†’ (domaβ€˜πΉ) = 𝑋)
2912, 28syl 17 . . . . . 6 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (domaβ€˜πΉ) = 𝑋)
3029adantrr 715 . . . . 5 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (domaβ€˜πΉ) = 𝑋)
3127, 30eqtrd 2772 . . . 4 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (domaβ€˜π‘“) = 𝑋)
3216fveq2d 6892 . . . . . 6 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (codaβ€˜π‘”) = (codaβ€˜πΊ))
335homacd 17987 . . . . . . 7 (𝐺 ∈ (π‘Œπ»π‘) β†’ (codaβ€˜πΊ) = 𝑍)
3418, 33syl 17 . . . . . 6 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (codaβ€˜πΊ) = 𝑍)
3532, 34eqtrd 2772 . . . . 5 ((πœ‘ ∧ 𝑔 = 𝐺) β†’ (codaβ€˜π‘”) = 𝑍)
3635adantrr 715 . . . 4 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (codaβ€˜π‘”) = 𝑍)
3721adantrr 715 . . . . . . 7 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (domaβ€˜π‘”) = π‘Œ)
3831, 37opeq12d 4880 . . . . . 6 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ ⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ = βŸ¨π‘‹, π‘ŒβŸ©)
3938, 36oveq12d 7423 . . . . 5 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”)) = (βŸ¨π‘‹, π‘ŒβŸ© βˆ™ 𝑍))
40 simprl 769 . . . . . 6 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ 𝑔 = 𝐺)
4140fveq2d 6892 . . . . 5 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (2nd β€˜π‘”) = (2nd β€˜πΊ))
4226fveq2d 6892 . . . . 5 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (2nd β€˜π‘“) = (2nd β€˜πΉ))
4339, 41, 42oveq123d 7426 . . . 4 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“)) = ((2nd β€˜πΊ)(βŸ¨π‘‹, π‘ŒβŸ© βˆ™ 𝑍)(2nd β€˜πΉ)))
4431, 36, 43oteq123d 4887 . . 3 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩ = βŸ¨π‘‹, 𝑍, ((2nd β€˜πΊ)(βŸ¨π‘‹, π‘ŒβŸ© βˆ™ 𝑍)(2nd β€˜πΉ))⟩)
458, 23, 25, 44ovmpodv2 7562 . 2 (πœ‘ β†’ ( Β· = (𝑔 ∈ (Arrowβ€˜πΆ), 𝑓 ∈ {β„Ž ∈ (Arrowβ€˜πΆ) ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩) β†’ (𝐺 Β· 𝐹) = βŸ¨π‘‹, 𝑍, ((2nd β€˜πΊ)(βŸ¨π‘‹, π‘ŒβŸ© βˆ™ 𝑍)(2nd β€˜πΉ))⟩))
464, 45mpi 20 1 (πœ‘ β†’ (𝐺 Β· 𝐹) = βŸ¨π‘‹, 𝑍, ((2nd β€˜πΊ)(βŸ¨π‘‹, π‘ŒβŸ© βˆ™ 𝑍)(2nd β€˜πΉ))⟩)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474  βŸ¨cop 4633  βŸ¨cotp 4635  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  2nd c2nd 7970  compcco 17205  domacdoma 17966  codaccoda 17967  Arrowcarw 17968  Homachoma 17969  compaccoa 18000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-ot 4636  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-doma 17970  df-coda 17971  df-homa 17972  df-arw 17973  df-coa 18002
This theorem is referenced by:  coa2  18015  coahom  18016  arwlid  18018  arwrid  18019  arwass  18020
  Copyright terms: Public domain W3C validator