MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coaval Structured version   Visualization version   GIF version

Theorem coaval 17783
Description: Value of composition for composable arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homdmcoa.o · = (compa𝐶)
homdmcoa.h 𝐻 = (Homa𝐶)
homdmcoa.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
homdmcoa.g (𝜑𝐺 ∈ (𝑌𝐻𝑍))
coaval.x = (comp‘𝐶)
Assertion
Ref Expression
coaval (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)

Proof of Theorem coaval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 homdmcoa.o . . 3 · = (compa𝐶)
2 eqid 2738 . . 3 (Arrow‘𝐶) = (Arrow‘𝐶)
3 coaval.x . . 3 = (comp‘𝐶)
41, 2, 3coafval 17779 . 2 · = (𝑔 ∈ (Arrow‘𝐶), 𝑓 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
5 homdmcoa.h . . . . 5 𝐻 = (Homa𝐶)
62, 5homarw 17761 . . . 4 (𝑌𝐻𝑍) ⊆ (Arrow‘𝐶)
7 homdmcoa.g . . . 4 (𝜑𝐺 ∈ (𝑌𝐻𝑍))
86, 7sselid 3919 . . 3 (𝜑𝐺 ∈ (Arrow‘𝐶))
9 fveqeq2 6783 . . . 4 ( = 𝐹 → ((coda) = (doma𝑔) ↔ (coda𝐹) = (doma𝑔)))
102, 5homarw 17761 . . . . 5 (𝑋𝐻𝑌) ⊆ (Arrow‘𝐶)
11 homdmcoa.f . . . . . 6 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
1211adantr 481 . . . . 5 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ (𝑋𝐻𝑌))
1310, 12sselid 3919 . . . 4 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ (Arrow‘𝐶))
145homacd 17756 . . . . . 6 (𝐹 ∈ (𝑋𝐻𝑌) → (coda𝐹) = 𝑌)
1512, 14syl 17 . . . . 5 ((𝜑𝑔 = 𝐺) → (coda𝐹) = 𝑌)
16 simpr 485 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝑔 = 𝐺)
1716fveq2d 6778 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝑔) = (doma𝐺))
187adantr 481 . . . . . . 7 ((𝜑𝑔 = 𝐺) → 𝐺 ∈ (𝑌𝐻𝑍))
195homadm 17755 . . . . . . 7 (𝐺 ∈ (𝑌𝐻𝑍) → (doma𝐺) = 𝑌)
2018, 19syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝐺) = 𝑌)
2117, 20eqtrd 2778 . . . . 5 ((𝜑𝑔 = 𝐺) → (doma𝑔) = 𝑌)
2215, 21eqtr4d 2781 . . . 4 ((𝜑𝑔 = 𝐺) → (coda𝐹) = (doma𝑔))
239, 13, 22elrabd 3626 . . 3 ((𝜑𝑔 = 𝐺) → 𝐹 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)})
24 otex 5380 . . . 4 ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ ∈ V
2524a1i 11 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ ∈ V)
26 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
2726fveq2d 6778 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑓) = (doma𝐹))
285homadm 17755 . . . . . . 7 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)
2912, 28syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (doma𝐹) = 𝑋)
3029adantrr 714 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝐹) = 𝑋)
3127, 30eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑓) = 𝑋)
3216fveq2d 6778 . . . . . 6 ((𝜑𝑔 = 𝐺) → (coda𝑔) = (coda𝐺))
335homacd 17756 . . . . . . 7 (𝐺 ∈ (𝑌𝐻𝑍) → (coda𝐺) = 𝑍)
3418, 33syl 17 . . . . . 6 ((𝜑𝑔 = 𝐺) → (coda𝐺) = 𝑍)
3532, 34eqtrd 2778 . . . . 5 ((𝜑𝑔 = 𝐺) → (coda𝑔) = 𝑍)
3635adantrr 714 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (coda𝑔) = 𝑍)
3721adantrr 714 . . . . . . 7 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (doma𝑔) = 𝑌)
3831, 37opeq12d 4812 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (doma𝑔)⟩ = ⟨𝑋, 𝑌⟩)
3938, 36oveq12d 7293 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔)) = (⟨𝑋, 𝑌 𝑍))
40 simprl 768 . . . . . 6 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
4140fveq2d 6778 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑔) = (2nd𝐺))
4226fveq2d 6778 . . . . 5 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (2nd𝑓) = (2nd𝐹))
4339, 41, 42oveq123d 7296 . . . 4 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓)) = ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹)))
4431, 36, 43oteq123d 4819 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
458, 23, 25, 44ovmpodv2 7431 . 2 (𝜑 → ( · = (𝑔 ∈ (Arrow‘𝐶), 𝑓 ∈ { ∈ (Arrow‘𝐶) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩))
464, 45mpi 20 1 (𝜑 → (𝐺 · 𝐹) = ⟨𝑋, 𝑍, ((2nd𝐺)(⟨𝑋, 𝑌 𝑍)(2nd𝐹))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cop 4567  cotp 4569  cfv 6433  (class class class)co 7275  cmpo 7277  2nd c2nd 7830  compcco 16974  domacdoma 17735  codaccoda 17736  Arrowcarw 17737  Homachoma 17738  compaccoa 17769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-doma 17739  df-coda 17740  df-homa 17741  df-arw 17742  df-coa 17771
This theorem is referenced by:  coa2  17784  coahom  17785  arwlid  17787  arwrid  17788  arwass  17789
  Copyright terms: Public domain W3C validator