Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval2012 | Structured version Visualization version GIF version |
Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackval2012 | ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval2 45454 | . 2 ⊢ (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) | |
2 | oveq2 7159 | . . . . . 6 ⊢ (𝑛 = 0 → (2 · 𝑛) = (2 · 0)) | |
3 | 2 | oveq1d 7166 | . . . . 5 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3)) |
4 | 2t0e0 11836 | . . . . . . 7 ⊢ (2 · 0) = 0 | |
5 | 4 | oveq1i 7161 | . . . . . 6 ⊢ ((2 · 0) + 3) = (0 + 3) |
6 | 3cn 11748 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
7 | 6 | addid2i 10859 | . . . . . 6 ⊢ (0 + 3) = 3 |
8 | 5, 7 | eqtri 2782 | . . . . 5 ⊢ ((2 · 0) + 3) = 3 |
9 | 3, 8 | eqtrdi 2810 | . . . 4 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = 3) |
10 | 0nn0 11942 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | 10 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0) |
12 | 3nn0 11945 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0) |
14 | 1, 9, 11, 13 | fvmptd3 6783 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3) |
15 | oveq2 7159 | . . . . . 6 ⊢ (𝑛 = 1 → (2 · 𝑛) = (2 · 1)) | |
16 | 15 | oveq1d 7166 | . . . . 5 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3)) |
17 | 2t1e2 11830 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
18 | 17 | oveq1i 7161 | . . . . . 6 ⊢ ((2 · 1) + 3) = (2 + 3) |
19 | 2cn 11742 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
20 | 3p2e5 11818 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
21 | 6, 19, 20 | addcomli 10863 | . . . . . 6 ⊢ (2 + 3) = 5 |
22 | 18, 21 | eqtri 2782 | . . . . 5 ⊢ ((2 · 1) + 3) = 5 |
23 | 16, 22 | eqtrdi 2810 | . . . 4 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = 5) |
24 | 1nn0 11943 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
25 | 24 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0) |
26 | 5nn0 11947 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
27 | 26 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0) |
28 | 1, 23, 25, 27 | fvmptd3 6783 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5) |
29 | oveq2 7159 | . . . . . 6 ⊢ (𝑛 = 2 → (2 · 𝑛) = (2 · 2)) | |
30 | 29 | oveq1d 7166 | . . . . 5 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3)) |
31 | 2t2e4 11831 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
32 | 31 | oveq1i 7161 | . . . . . 6 ⊢ ((2 · 2) + 3) = (4 + 3) |
33 | 4p3e7 11821 | . . . . . 6 ⊢ (4 + 3) = 7 | |
34 | 32, 33 | eqtri 2782 | . . . . 5 ⊢ ((2 · 2) + 3) = 7 |
35 | 30, 34 | eqtrdi 2810 | . . . 4 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = 7) |
36 | 2nn0 11944 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
37 | 36 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0) |
38 | 7nn0 11949 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
39 | 38 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0) |
40 | 1, 35, 37, 39 | fvmptd3 6783 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7) |
41 | 14, 28, 40 | oteq123d 4779 | . 2 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉) |
42 | 1, 41 | ax-mp 5 | 1 ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 〈cotp 4531 ↦ cmpt 5113 ‘cfv 6336 (class class class)co 7151 0cc0 10568 1c1 10569 + caddc 10571 · cmul 10573 2c2 11722 3c3 11723 4c4 11724 5c5 11725 7c7 11727 ℕ0cn0 11927 Ackcack 45430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9130 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-ot 4532 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-n0 11928 df-z 12014 df-uz 12276 df-seq 13412 df-itco 45431 df-ack 45432 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |