Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval2012 Structured version   Visualization version   GIF version

Theorem ackval2012 48425
Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval2012 ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩

Proof of Theorem ackval2012
StepHypRef Expression
1 ackval2 48416 . 2 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
2 oveq2 7456 . . . . . 6 (𝑛 = 0 → (2 · 𝑛) = (2 · 0))
32oveq1d 7463 . . . . 5 (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3))
4 2t0e0 12462 . . . . . . 7 (2 · 0) = 0
54oveq1i 7458 . . . . . 6 ((2 · 0) + 3) = (0 + 3)
6 3cn 12374 . . . . . . 7 3 ∈ ℂ
76addlidi 11478 . . . . . 6 (0 + 3) = 3
85, 7eqtri 2768 . . . . 5 ((2 · 0) + 3) = 3
93, 8eqtrdi 2796 . . . 4 (𝑛 = 0 → ((2 · 𝑛) + 3) = 3)
10 0nn0 12568 . . . . 5 0 ∈ ℕ0
1110a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0)
12 3nn0 12571 . . . . 5 3 ∈ ℕ0
1312a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0)
141, 9, 11, 13fvmptd3 7052 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3)
15 oveq2 7456 . . . . . 6 (𝑛 = 1 → (2 · 𝑛) = (2 · 1))
1615oveq1d 7463 . . . . 5 (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3))
17 2t1e2 12456 . . . . . . 7 (2 · 1) = 2
1817oveq1i 7458 . . . . . 6 ((2 · 1) + 3) = (2 + 3)
19 2cn 12368 . . . . . . 7 2 ∈ ℂ
20 3p2e5 12444 . . . . . . 7 (3 + 2) = 5
216, 19, 20addcomli 11482 . . . . . 6 (2 + 3) = 5
2218, 21eqtri 2768 . . . . 5 ((2 · 1) + 3) = 5
2316, 22eqtrdi 2796 . . . 4 (𝑛 = 1 → ((2 · 𝑛) + 3) = 5)
24 1nn0 12569 . . . . 5 1 ∈ ℕ0
2524a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0)
26 5nn0 12573 . . . . 5 5 ∈ ℕ0
2726a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0)
281, 23, 25, 27fvmptd3 7052 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5)
29 oveq2 7456 . . . . . 6 (𝑛 = 2 → (2 · 𝑛) = (2 · 2))
3029oveq1d 7463 . . . . 5 (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3))
31 2t2e4 12457 . . . . . . 7 (2 · 2) = 4
3231oveq1i 7458 . . . . . 6 ((2 · 2) + 3) = (4 + 3)
33 4p3e7 12447 . . . . . 6 (4 + 3) = 7
3432, 33eqtri 2768 . . . . 5 ((2 · 2) + 3) = 7
3530, 34eqtrdi 2796 . . . 4 (𝑛 = 2 → ((2 · 𝑛) + 3) = 7)
36 2nn0 12570 . . . . 5 2 ∈ ℕ0
3736a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0)
38 7nn0 12575 . . . . 5 7 ∈ ℕ0
3938a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0)
401, 35, 37, 39fvmptd3 7052 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7)
4114, 28, 40oteq123d 4912 . 2 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩)
421, 41ax-mp 5 1 ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  cotp 4656  cmpt 5249  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  2c2 12348  3c3 12349  4c4 12350  5c5 12351  7c7 12353  0cn0 12553  Ackcack 48392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-itco 48393  df-ack 48394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator