| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval2012 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.) |
| Ref | Expression |
|---|---|
| ackval2012 | ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval2 48671 | . 2 ⊢ (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) | |
| 2 | oveq2 7361 | . . . . . 6 ⊢ (𝑛 = 0 → (2 · 𝑛) = (2 · 0)) | |
| 3 | 2 | oveq1d 7368 | . . . . 5 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3)) |
| 4 | 2t0e0 12310 | . . . . . . 7 ⊢ (2 · 0) = 0 | |
| 5 | 4 | oveq1i 7363 | . . . . . 6 ⊢ ((2 · 0) + 3) = (0 + 3) |
| 6 | 3cn 12227 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 7 | 6 | addlidi 11322 | . . . . . 6 ⊢ (0 + 3) = 3 |
| 8 | 5, 7 | eqtri 2752 | . . . . 5 ⊢ ((2 · 0) + 3) = 3 |
| 9 | 3, 8 | eqtrdi 2780 | . . . 4 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = 3) |
| 10 | 0nn0 12417 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0) |
| 12 | 3nn0 12420 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0) |
| 14 | 1, 9, 11, 13 | fvmptd3 6957 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3) |
| 15 | oveq2 7361 | . . . . . 6 ⊢ (𝑛 = 1 → (2 · 𝑛) = (2 · 1)) | |
| 16 | 15 | oveq1d 7368 | . . . . 5 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3)) |
| 17 | 2t1e2 12304 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
| 18 | 17 | oveq1i 7363 | . . . . . 6 ⊢ ((2 · 1) + 3) = (2 + 3) |
| 19 | 2cn 12221 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 20 | 3p2e5 12292 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 21 | 6, 19, 20 | addcomli 11326 | . . . . . 6 ⊢ (2 + 3) = 5 |
| 22 | 18, 21 | eqtri 2752 | . . . . 5 ⊢ ((2 · 1) + 3) = 5 |
| 23 | 16, 22 | eqtrdi 2780 | . . . 4 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = 5) |
| 24 | 1nn0 12418 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0) |
| 26 | 5nn0 12422 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0) |
| 28 | 1, 23, 25, 27 | fvmptd3 6957 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5) |
| 29 | oveq2 7361 | . . . . . 6 ⊢ (𝑛 = 2 → (2 · 𝑛) = (2 · 2)) | |
| 30 | 29 | oveq1d 7368 | . . . . 5 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3)) |
| 31 | 2t2e4 12305 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
| 32 | 31 | oveq1i 7363 | . . . . . 6 ⊢ ((2 · 2) + 3) = (4 + 3) |
| 33 | 4p3e7 12295 | . . . . . 6 ⊢ (4 + 3) = 7 | |
| 34 | 32, 33 | eqtri 2752 | . . . . 5 ⊢ ((2 · 2) + 3) = 7 |
| 35 | 30, 34 | eqtrdi 2780 | . . . 4 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = 7) |
| 36 | 2nn0 12419 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 37 | 36 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0) |
| 38 | 7nn0 12424 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
| 39 | 38 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0) |
| 40 | 1, 35, 37, 39 | fvmptd3 6957 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7) |
| 41 | 14, 28, 40 | oteq123d 4842 | . 2 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉) |
| 42 | 1, 41 | ax-mp 5 | 1 ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 〈cotp 4587 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 2c2 12201 3c3 12202 4c4 12203 5c5 12204 7c7 12206 ℕ0cn0 12402 Ackcack 48647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-ot 4588 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-n0 12403 df-z 12490 df-uz 12754 df-seq 13927 df-itco 48648 df-ack 48649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |