Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval2012 Structured version   Visualization version   GIF version

Theorem ackval2012 48541
Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval2012 ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩

Proof of Theorem ackval2012
StepHypRef Expression
1 ackval2 48532 . 2 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
2 oveq2 7439 . . . . . 6 (𝑛 = 0 → (2 · 𝑛) = (2 · 0))
32oveq1d 7446 . . . . 5 (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3))
4 2t0e0 12433 . . . . . . 7 (2 · 0) = 0
54oveq1i 7441 . . . . . 6 ((2 · 0) + 3) = (0 + 3)
6 3cn 12345 . . . . . . 7 3 ∈ ℂ
76addlidi 11447 . . . . . 6 (0 + 3) = 3
85, 7eqtri 2763 . . . . 5 ((2 · 0) + 3) = 3
93, 8eqtrdi 2791 . . . 4 (𝑛 = 0 → ((2 · 𝑛) + 3) = 3)
10 0nn0 12539 . . . . 5 0 ∈ ℕ0
1110a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0)
12 3nn0 12542 . . . . 5 3 ∈ ℕ0
1312a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0)
141, 9, 11, 13fvmptd3 7039 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3)
15 oveq2 7439 . . . . . 6 (𝑛 = 1 → (2 · 𝑛) = (2 · 1))
1615oveq1d 7446 . . . . 5 (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3))
17 2t1e2 12427 . . . . . . 7 (2 · 1) = 2
1817oveq1i 7441 . . . . . 6 ((2 · 1) + 3) = (2 + 3)
19 2cn 12339 . . . . . . 7 2 ∈ ℂ
20 3p2e5 12415 . . . . . . 7 (3 + 2) = 5
216, 19, 20addcomli 11451 . . . . . 6 (2 + 3) = 5
2218, 21eqtri 2763 . . . . 5 ((2 · 1) + 3) = 5
2316, 22eqtrdi 2791 . . . 4 (𝑛 = 1 → ((2 · 𝑛) + 3) = 5)
24 1nn0 12540 . . . . 5 1 ∈ ℕ0
2524a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0)
26 5nn0 12544 . . . . 5 5 ∈ ℕ0
2726a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0)
281, 23, 25, 27fvmptd3 7039 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5)
29 oveq2 7439 . . . . . 6 (𝑛 = 2 → (2 · 𝑛) = (2 · 2))
3029oveq1d 7446 . . . . 5 (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3))
31 2t2e4 12428 . . . . . . 7 (2 · 2) = 4
3231oveq1i 7441 . . . . . 6 ((2 · 2) + 3) = (4 + 3)
33 4p3e7 12418 . . . . . 6 (4 + 3) = 7
3432, 33eqtri 2763 . . . . 5 ((2 · 2) + 3) = 7
3530, 34eqtrdi 2791 . . . 4 (𝑛 = 2 → ((2 · 𝑛) + 3) = 7)
36 2nn0 12541 . . . . 5 2 ∈ ℕ0
3736a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0)
38 7nn0 12546 . . . . 5 7 ∈ ℕ0
3938a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0)
401, 35, 37, 39fvmptd3 7039 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7)
4114, 28, 40oteq123d 4893 . 2 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩)
421, 41ax-mp 5 1 ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  cotp 4639  cmpt 5231  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  2c2 12319  3c3 12320  4c4 12321  5c5 12322  7c7 12324  0cn0 12524  Ackcack 48508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-itco 48509  df-ack 48510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator