Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval2012 Structured version   Visualization version   GIF version

Theorem ackval2012 45455
Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval2012 ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩

Proof of Theorem ackval2012
StepHypRef Expression
1 ackval2 45446 . 2 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
2 oveq2 7151 . . . . . 6 (𝑛 = 0 → (2 · 𝑛) = (2 · 0))
32oveq1d 7158 . . . . 5 (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3))
4 2t0e0 11828 . . . . . . 7 (2 · 0) = 0
54oveq1i 7153 . . . . . 6 ((2 · 0) + 3) = (0 + 3)
6 3cn 11740 . . . . . . 7 3 ∈ ℂ
76addid2i 10851 . . . . . 6 (0 + 3) = 3
85, 7eqtri 2782 . . . . 5 ((2 · 0) + 3) = 3
93, 8eqtrdi 2810 . . . 4 (𝑛 = 0 → ((2 · 𝑛) + 3) = 3)
10 0nn0 11934 . . . . 5 0 ∈ ℕ0
1110a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0)
12 3nn0 11937 . . . . 5 3 ∈ ℕ0
1312a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0)
141, 9, 11, 13fvmptd3 6775 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3)
15 oveq2 7151 . . . . . 6 (𝑛 = 1 → (2 · 𝑛) = (2 · 1))
1615oveq1d 7158 . . . . 5 (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3))
17 2t1e2 11822 . . . . . . 7 (2 · 1) = 2
1817oveq1i 7153 . . . . . 6 ((2 · 1) + 3) = (2 + 3)
19 2cn 11734 . . . . . . 7 2 ∈ ℂ
20 3p2e5 11810 . . . . . . 7 (3 + 2) = 5
216, 19, 20addcomli 10855 . . . . . 6 (2 + 3) = 5
2218, 21eqtri 2782 . . . . 5 ((2 · 1) + 3) = 5
2316, 22eqtrdi 2810 . . . 4 (𝑛 = 1 → ((2 · 𝑛) + 3) = 5)
24 1nn0 11935 . . . . 5 1 ∈ ℕ0
2524a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0)
26 5nn0 11939 . . . . 5 5 ∈ ℕ0
2726a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0)
281, 23, 25, 27fvmptd3 6775 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5)
29 oveq2 7151 . . . . . 6 (𝑛 = 2 → (2 · 𝑛) = (2 · 2))
3029oveq1d 7158 . . . . 5 (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3))
31 2t2e4 11823 . . . . . . 7 (2 · 2) = 4
3231oveq1i 7153 . . . . . 6 ((2 · 2) + 3) = (4 + 3)
33 4p3e7 11813 . . . . . 6 (4 + 3) = 7
3432, 33eqtri 2782 . . . . 5 ((2 · 2) + 3) = 7
3530, 34eqtrdi 2810 . . . 4 (𝑛 = 2 → ((2 · 𝑛) + 3) = 7)
36 2nn0 11936 . . . . 5 2 ∈ ℕ0
3736a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0)
38 7nn0 11941 . . . . 5 7 ∈ ℕ0
3938a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0)
401, 35, 37, 39fvmptd3 6775 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7)
4114, 28, 40oteq123d 4771 . 2 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩)
421, 41ax-mp 5 1 ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2112  cotp 4523  cmpt 5105  cfv 6328  (class class class)co 7143  0cc0 10560  1c1 10561   + caddc 10563   · cmul 10565  2c2 11714  3c3 11715  4c4 11716  5c5 11717  7c7 11719  0cn0 11919  Ackcack 45422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-ot 4524  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-n0 11920  df-z 12006  df-uz 12268  df-seq 13404  df-itco 45423  df-ack 45424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator