![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval2012 | Structured version Visualization version GIF version |
Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackval2012 | ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval2 48416 | . 2 ⊢ (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) | |
2 | oveq2 7456 | . . . . . 6 ⊢ (𝑛 = 0 → (2 · 𝑛) = (2 · 0)) | |
3 | 2 | oveq1d 7463 | . . . . 5 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3)) |
4 | 2t0e0 12462 | . . . . . . 7 ⊢ (2 · 0) = 0 | |
5 | 4 | oveq1i 7458 | . . . . . 6 ⊢ ((2 · 0) + 3) = (0 + 3) |
6 | 3cn 12374 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
7 | 6 | addlidi 11478 | . . . . . 6 ⊢ (0 + 3) = 3 |
8 | 5, 7 | eqtri 2768 | . . . . 5 ⊢ ((2 · 0) + 3) = 3 |
9 | 3, 8 | eqtrdi 2796 | . . . 4 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = 3) |
10 | 0nn0 12568 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | 10 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0) |
12 | 3nn0 12571 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0) |
14 | 1, 9, 11, 13 | fvmptd3 7052 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3) |
15 | oveq2 7456 | . . . . . 6 ⊢ (𝑛 = 1 → (2 · 𝑛) = (2 · 1)) | |
16 | 15 | oveq1d 7463 | . . . . 5 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3)) |
17 | 2t1e2 12456 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
18 | 17 | oveq1i 7458 | . . . . . 6 ⊢ ((2 · 1) + 3) = (2 + 3) |
19 | 2cn 12368 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
20 | 3p2e5 12444 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
21 | 6, 19, 20 | addcomli 11482 | . . . . . 6 ⊢ (2 + 3) = 5 |
22 | 18, 21 | eqtri 2768 | . . . . 5 ⊢ ((2 · 1) + 3) = 5 |
23 | 16, 22 | eqtrdi 2796 | . . . 4 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = 5) |
24 | 1nn0 12569 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
25 | 24 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0) |
26 | 5nn0 12573 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
27 | 26 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0) |
28 | 1, 23, 25, 27 | fvmptd3 7052 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5) |
29 | oveq2 7456 | . . . . . 6 ⊢ (𝑛 = 2 → (2 · 𝑛) = (2 · 2)) | |
30 | 29 | oveq1d 7463 | . . . . 5 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3)) |
31 | 2t2e4 12457 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
32 | 31 | oveq1i 7458 | . . . . . 6 ⊢ ((2 · 2) + 3) = (4 + 3) |
33 | 4p3e7 12447 | . . . . . 6 ⊢ (4 + 3) = 7 | |
34 | 32, 33 | eqtri 2768 | . . . . 5 ⊢ ((2 · 2) + 3) = 7 |
35 | 30, 34 | eqtrdi 2796 | . . . 4 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = 7) |
36 | 2nn0 12570 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
37 | 36 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0) |
38 | 7nn0 12575 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
39 | 38 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0) |
40 | 1, 35, 37, 39 | fvmptd3 7052 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7) |
41 | 14, 28, 40 | oteq123d 4912 | . 2 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉) |
42 | 1, 41 | ax-mp 5 | 1 ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 〈cotp 4656 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 2c2 12348 3c3 12349 4c4 12350 5c5 12351 7c7 12353 ℕ0cn0 12553 Ackcack 48392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-itco 48393 df-ack 48394 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |