Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval2012 | Structured version Visualization version GIF version |
Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackval2012 | ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval2 46272 | . 2 ⊢ (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) | |
2 | oveq2 7315 | . . . . . 6 ⊢ (𝑛 = 0 → (2 · 𝑛) = (2 · 0)) | |
3 | 2 | oveq1d 7322 | . . . . 5 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3)) |
4 | 2t0e0 12192 | . . . . . . 7 ⊢ (2 · 0) = 0 | |
5 | 4 | oveq1i 7317 | . . . . . 6 ⊢ ((2 · 0) + 3) = (0 + 3) |
6 | 3cn 12104 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
7 | 6 | addid2i 11213 | . . . . . 6 ⊢ (0 + 3) = 3 |
8 | 5, 7 | eqtri 2764 | . . . . 5 ⊢ ((2 · 0) + 3) = 3 |
9 | 3, 8 | eqtrdi 2792 | . . . 4 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = 3) |
10 | 0nn0 12298 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | 10 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0) |
12 | 3nn0 12301 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0) |
14 | 1, 9, 11, 13 | fvmptd3 6930 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3) |
15 | oveq2 7315 | . . . . . 6 ⊢ (𝑛 = 1 → (2 · 𝑛) = (2 · 1)) | |
16 | 15 | oveq1d 7322 | . . . . 5 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3)) |
17 | 2t1e2 12186 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
18 | 17 | oveq1i 7317 | . . . . . 6 ⊢ ((2 · 1) + 3) = (2 + 3) |
19 | 2cn 12098 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
20 | 3p2e5 12174 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
21 | 6, 19, 20 | addcomli 11217 | . . . . . 6 ⊢ (2 + 3) = 5 |
22 | 18, 21 | eqtri 2764 | . . . . 5 ⊢ ((2 · 1) + 3) = 5 |
23 | 16, 22 | eqtrdi 2792 | . . . 4 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = 5) |
24 | 1nn0 12299 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
25 | 24 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0) |
26 | 5nn0 12303 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
27 | 26 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0) |
28 | 1, 23, 25, 27 | fvmptd3 6930 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5) |
29 | oveq2 7315 | . . . . . 6 ⊢ (𝑛 = 2 → (2 · 𝑛) = (2 · 2)) | |
30 | 29 | oveq1d 7322 | . . . . 5 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3)) |
31 | 2t2e4 12187 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
32 | 31 | oveq1i 7317 | . . . . . 6 ⊢ ((2 · 2) + 3) = (4 + 3) |
33 | 4p3e7 12177 | . . . . . 6 ⊢ (4 + 3) = 7 | |
34 | 32, 33 | eqtri 2764 | . . . . 5 ⊢ ((2 · 2) + 3) = 7 |
35 | 30, 34 | eqtrdi 2792 | . . . 4 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = 7) |
36 | 2nn0 12300 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
37 | 36 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0) |
38 | 7nn0 12305 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
39 | 38 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0) |
40 | 1, 35, 37, 39 | fvmptd3 6930 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7) |
41 | 14, 28, 40 | oteq123d 4824 | . 2 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉) |
42 | 1, 41 | ax-mp 5 | 1 ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 〈cotp 4573 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 0cc0 10921 1c1 10922 + caddc 10924 · cmul 10926 2c2 12078 3c3 12079 4c4 12080 5c5 12081 7c7 12083 ℕ0cn0 12283 Ackcack 46248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-ot 4574 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-n0 12284 df-z 12370 df-uz 12633 df-seq 13772 df-itco 46249 df-ack 46250 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |