| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval2012 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.) |
| Ref | Expression |
|---|---|
| ackval2012 | ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval2 48629 | . 2 ⊢ (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) | |
| 2 | oveq2 7418 | . . . . . 6 ⊢ (𝑛 = 0 → (2 · 𝑛) = (2 · 0)) | |
| 3 | 2 | oveq1d 7425 | . . . . 5 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3)) |
| 4 | 2t0e0 12414 | . . . . . . 7 ⊢ (2 · 0) = 0 | |
| 5 | 4 | oveq1i 7420 | . . . . . 6 ⊢ ((2 · 0) + 3) = (0 + 3) |
| 6 | 3cn 12326 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 7 | 6 | addlidi 11428 | . . . . . 6 ⊢ (0 + 3) = 3 |
| 8 | 5, 7 | eqtri 2759 | . . . . 5 ⊢ ((2 · 0) + 3) = 3 |
| 9 | 3, 8 | eqtrdi 2787 | . . . 4 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = 3) |
| 10 | 0nn0 12521 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0) |
| 12 | 3nn0 12524 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0) |
| 14 | 1, 9, 11, 13 | fvmptd3 7014 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3) |
| 15 | oveq2 7418 | . . . . . 6 ⊢ (𝑛 = 1 → (2 · 𝑛) = (2 · 1)) | |
| 16 | 15 | oveq1d 7425 | . . . . 5 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3)) |
| 17 | 2t1e2 12408 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
| 18 | 17 | oveq1i 7420 | . . . . . 6 ⊢ ((2 · 1) + 3) = (2 + 3) |
| 19 | 2cn 12320 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 20 | 3p2e5 12396 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 21 | 6, 19, 20 | addcomli 11432 | . . . . . 6 ⊢ (2 + 3) = 5 |
| 22 | 18, 21 | eqtri 2759 | . . . . 5 ⊢ ((2 · 1) + 3) = 5 |
| 23 | 16, 22 | eqtrdi 2787 | . . . 4 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = 5) |
| 24 | 1nn0 12522 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0) |
| 26 | 5nn0 12526 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0) |
| 28 | 1, 23, 25, 27 | fvmptd3 7014 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5) |
| 29 | oveq2 7418 | . . . . . 6 ⊢ (𝑛 = 2 → (2 · 𝑛) = (2 · 2)) | |
| 30 | 29 | oveq1d 7425 | . . . . 5 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3)) |
| 31 | 2t2e4 12409 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
| 32 | 31 | oveq1i 7420 | . . . . . 6 ⊢ ((2 · 2) + 3) = (4 + 3) |
| 33 | 4p3e7 12399 | . . . . . 6 ⊢ (4 + 3) = 7 | |
| 34 | 32, 33 | eqtri 2759 | . . . . 5 ⊢ ((2 · 2) + 3) = 7 |
| 35 | 30, 34 | eqtrdi 2787 | . . . 4 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = 7) |
| 36 | 2nn0 12523 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 37 | 36 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0) |
| 38 | 7nn0 12528 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
| 39 | 38 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0) |
| 40 | 1, 35, 37, 39 | fvmptd3 7014 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7) |
| 41 | 14, 28, 40 | oteq123d 4869 | . 2 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉) |
| 42 | 1, 41 | ax-mp 5 | 1 ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 〈cotp 4614 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 2c2 12300 3c3 12301 4c4 12302 5c5 12303 7c7 12305 ℕ0cn0 12506 Ackcack 48605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-ot 4615 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-itco 48606 df-ack 48607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |