| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval2012 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.) |
| Ref | Expression |
|---|---|
| ackval2012 | ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval2 48844 | . 2 ⊢ (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) | |
| 2 | oveq2 7363 | . . . . . 6 ⊢ (𝑛 = 0 → (2 · 𝑛) = (2 · 0)) | |
| 3 | 2 | oveq1d 7370 | . . . . 5 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3)) |
| 4 | 2t0e0 12300 | . . . . . . 7 ⊢ (2 · 0) = 0 | |
| 5 | 4 | oveq1i 7365 | . . . . . 6 ⊢ ((2 · 0) + 3) = (0 + 3) |
| 6 | 3cn 12217 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 7 | 6 | addlidi 11312 | . . . . . 6 ⊢ (0 + 3) = 3 |
| 8 | 5, 7 | eqtri 2756 | . . . . 5 ⊢ ((2 · 0) + 3) = 3 |
| 9 | 3, 8 | eqtrdi 2784 | . . . 4 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = 3) |
| 10 | 0nn0 12407 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0) |
| 12 | 3nn0 12410 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0) |
| 14 | 1, 9, 11, 13 | fvmptd3 6961 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3) |
| 15 | oveq2 7363 | . . . . . 6 ⊢ (𝑛 = 1 → (2 · 𝑛) = (2 · 1)) | |
| 16 | 15 | oveq1d 7370 | . . . . 5 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3)) |
| 17 | 2t1e2 12294 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
| 18 | 17 | oveq1i 7365 | . . . . . 6 ⊢ ((2 · 1) + 3) = (2 + 3) |
| 19 | 2cn 12211 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 20 | 3p2e5 12282 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 21 | 6, 19, 20 | addcomli 11316 | . . . . . 6 ⊢ (2 + 3) = 5 |
| 22 | 18, 21 | eqtri 2756 | . . . . 5 ⊢ ((2 · 1) + 3) = 5 |
| 23 | 16, 22 | eqtrdi 2784 | . . . 4 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = 5) |
| 24 | 1nn0 12408 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0) |
| 26 | 5nn0 12412 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0) |
| 28 | 1, 23, 25, 27 | fvmptd3 6961 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5) |
| 29 | oveq2 7363 | . . . . . 6 ⊢ (𝑛 = 2 → (2 · 𝑛) = (2 · 2)) | |
| 30 | 29 | oveq1d 7370 | . . . . 5 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3)) |
| 31 | 2t2e4 12295 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
| 32 | 31 | oveq1i 7365 | . . . . . 6 ⊢ ((2 · 2) + 3) = (4 + 3) |
| 33 | 4p3e7 12285 | . . . . . 6 ⊢ (4 + 3) = 7 | |
| 34 | 32, 33 | eqtri 2756 | . . . . 5 ⊢ ((2 · 2) + 3) = 7 |
| 35 | 30, 34 | eqtrdi 2784 | . . . 4 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = 7) |
| 36 | 2nn0 12409 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 37 | 36 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0) |
| 38 | 7nn0 12414 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
| 39 | 38 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0) |
| 40 | 1, 35, 37, 39 | fvmptd3 6961 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7) |
| 41 | 14, 28, 40 | oteq123d 4841 | . 2 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉) |
| 42 | 1, 41 | ax-mp 5 | 1 ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 〈cotp 4585 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 2c2 12191 3c3 12192 4c4 12193 5c5 12194 7c7 12196 ℕ0cn0 12392 Ackcack 48820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-n0 12393 df-z 12480 df-uz 12743 df-seq 13916 df-itco 48821 df-ack 48822 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |