| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval2012 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.) |
| Ref | Expression |
|---|---|
| ackval2012 | ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval2 48720 | . 2 ⊢ (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) | |
| 2 | oveq2 7354 | . . . . . 6 ⊢ (𝑛 = 0 → (2 · 𝑛) = (2 · 0)) | |
| 3 | 2 | oveq1d 7361 | . . . . 5 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3)) |
| 4 | 2t0e0 12289 | . . . . . . 7 ⊢ (2 · 0) = 0 | |
| 5 | 4 | oveq1i 7356 | . . . . . 6 ⊢ ((2 · 0) + 3) = (0 + 3) |
| 6 | 3cn 12206 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 7 | 6 | addlidi 11301 | . . . . . 6 ⊢ (0 + 3) = 3 |
| 8 | 5, 7 | eqtri 2754 | . . . . 5 ⊢ ((2 · 0) + 3) = 3 |
| 9 | 3, 8 | eqtrdi 2782 | . . . 4 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = 3) |
| 10 | 0nn0 12396 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0) |
| 12 | 3nn0 12399 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0) |
| 14 | 1, 9, 11, 13 | fvmptd3 6952 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3) |
| 15 | oveq2 7354 | . . . . . 6 ⊢ (𝑛 = 1 → (2 · 𝑛) = (2 · 1)) | |
| 16 | 15 | oveq1d 7361 | . . . . 5 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3)) |
| 17 | 2t1e2 12283 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
| 18 | 17 | oveq1i 7356 | . . . . . 6 ⊢ ((2 · 1) + 3) = (2 + 3) |
| 19 | 2cn 12200 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 20 | 3p2e5 12271 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 21 | 6, 19, 20 | addcomli 11305 | . . . . . 6 ⊢ (2 + 3) = 5 |
| 22 | 18, 21 | eqtri 2754 | . . . . 5 ⊢ ((2 · 1) + 3) = 5 |
| 23 | 16, 22 | eqtrdi 2782 | . . . 4 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = 5) |
| 24 | 1nn0 12397 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0) |
| 26 | 5nn0 12401 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0) |
| 28 | 1, 23, 25, 27 | fvmptd3 6952 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5) |
| 29 | oveq2 7354 | . . . . . 6 ⊢ (𝑛 = 2 → (2 · 𝑛) = (2 · 2)) | |
| 30 | 29 | oveq1d 7361 | . . . . 5 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3)) |
| 31 | 2t2e4 12284 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
| 32 | 31 | oveq1i 7356 | . . . . . 6 ⊢ ((2 · 2) + 3) = (4 + 3) |
| 33 | 4p3e7 12274 | . . . . . 6 ⊢ (4 + 3) = 7 | |
| 34 | 32, 33 | eqtri 2754 | . . . . 5 ⊢ ((2 · 2) + 3) = 7 |
| 35 | 30, 34 | eqtrdi 2782 | . . . 4 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = 7) |
| 36 | 2nn0 12398 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 37 | 36 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0) |
| 38 | 7nn0 12403 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
| 39 | 38 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0) |
| 40 | 1, 35, 37, 39 | fvmptd3 6952 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7) |
| 41 | 14, 28, 40 | oteq123d 4840 | . 2 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉) |
| 42 | 1, 41 | ax-mp 5 | 1 ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 〈cotp 4584 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 2c2 12180 3c3 12181 4c4 12182 5c5 12183 7c7 12185 ℕ0cn0 12381 Ackcack 48696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-itco 48697 df-ack 48698 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |