Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval2012 Structured version   Visualization version   GIF version

Theorem ackval2012 45989
Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval2012 ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩

Proof of Theorem ackval2012
StepHypRef Expression
1 ackval2 45980 . 2 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
2 oveq2 7276 . . . . . 6 (𝑛 = 0 → (2 · 𝑛) = (2 · 0))
32oveq1d 7283 . . . . 5 (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3))
4 2t0e0 12125 . . . . . . 7 (2 · 0) = 0
54oveq1i 7278 . . . . . 6 ((2 · 0) + 3) = (0 + 3)
6 3cn 12037 . . . . . . 7 3 ∈ ℂ
76addid2i 11146 . . . . . 6 (0 + 3) = 3
85, 7eqtri 2767 . . . . 5 ((2 · 0) + 3) = 3
93, 8eqtrdi 2795 . . . 4 (𝑛 = 0 → ((2 · 𝑛) + 3) = 3)
10 0nn0 12231 . . . . 5 0 ∈ ℕ0
1110a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0)
12 3nn0 12234 . . . . 5 3 ∈ ℕ0
1312a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0)
141, 9, 11, 13fvmptd3 6892 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3)
15 oveq2 7276 . . . . . 6 (𝑛 = 1 → (2 · 𝑛) = (2 · 1))
1615oveq1d 7283 . . . . 5 (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3))
17 2t1e2 12119 . . . . . . 7 (2 · 1) = 2
1817oveq1i 7278 . . . . . 6 ((2 · 1) + 3) = (2 + 3)
19 2cn 12031 . . . . . . 7 2 ∈ ℂ
20 3p2e5 12107 . . . . . . 7 (3 + 2) = 5
216, 19, 20addcomli 11150 . . . . . 6 (2 + 3) = 5
2218, 21eqtri 2767 . . . . 5 ((2 · 1) + 3) = 5
2316, 22eqtrdi 2795 . . . 4 (𝑛 = 1 → ((2 · 𝑛) + 3) = 5)
24 1nn0 12232 . . . . 5 1 ∈ ℕ0
2524a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0)
26 5nn0 12236 . . . . 5 5 ∈ ℕ0
2726a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0)
281, 23, 25, 27fvmptd3 6892 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5)
29 oveq2 7276 . . . . . 6 (𝑛 = 2 → (2 · 𝑛) = (2 · 2))
3029oveq1d 7283 . . . . 5 (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3))
31 2t2e4 12120 . . . . . . 7 (2 · 2) = 4
3231oveq1i 7278 . . . . . 6 ((2 · 2) + 3) = (4 + 3)
33 4p3e7 12110 . . . . . 6 (4 + 3) = 7
3432, 33eqtri 2767 . . . . 5 ((2 · 2) + 3) = 7
3530, 34eqtrdi 2795 . . . 4 (𝑛 = 2 → ((2 · 𝑛) + 3) = 7)
36 2nn0 12233 . . . . 5 2 ∈ ℕ0
3736a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0)
38 7nn0 12238 . . . . 5 7 ∈ ℕ0
3938a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0)
401, 35, 37, 39fvmptd3 6892 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7)
4114, 28, 40oteq123d 4824 . 2 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩)
421, 41ax-mp 5 1 ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2109  cotp 4574  cmpt 5161  cfv 6430  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  2c2 12011  3c3 12012  4c4 12013  5c5 12014  7c7 12016  0cn0 12216  Ackcack 45956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-n0 12217  df-z 12303  df-uz 12565  df-seq 13703  df-itco 45957  df-ack 45958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator