![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval2012 | Structured version Visualization version GIF version |
Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackval2012 | ⊢ ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval2 47322 | . 2 ⊢ (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) | |
2 | oveq2 7414 | . . . . . 6 ⊢ (𝑛 = 0 → (2 · 𝑛) = (2 · 0)) | |
3 | 2 | oveq1d 7421 | . . . . 5 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3)) |
4 | 2t0e0 12378 | . . . . . . 7 ⊢ (2 · 0) = 0 | |
5 | 4 | oveq1i 7416 | . . . . . 6 ⊢ ((2 · 0) + 3) = (0 + 3) |
6 | 3cn 12290 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
7 | 6 | addlidi 11399 | . . . . . 6 ⊢ (0 + 3) = 3 |
8 | 5, 7 | eqtri 2761 | . . . . 5 ⊢ ((2 · 0) + 3) = 3 |
9 | 3, 8 | eqtrdi 2789 | . . . 4 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = 3) |
10 | 0nn0 12484 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
11 | 10 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0) |
12 | 3nn0 12487 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0) |
14 | 1, 9, 11, 13 | fvmptd3 7019 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3) |
15 | oveq2 7414 | . . . . . 6 ⊢ (𝑛 = 1 → (2 · 𝑛) = (2 · 1)) | |
16 | 15 | oveq1d 7421 | . . . . 5 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3)) |
17 | 2t1e2 12372 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
18 | 17 | oveq1i 7416 | . . . . . 6 ⊢ ((2 · 1) + 3) = (2 + 3) |
19 | 2cn 12284 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
20 | 3p2e5 12360 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
21 | 6, 19, 20 | addcomli 11403 | . . . . . 6 ⊢ (2 + 3) = 5 |
22 | 18, 21 | eqtri 2761 | . . . . 5 ⊢ ((2 · 1) + 3) = 5 |
23 | 16, 22 | eqtrdi 2789 | . . . 4 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = 5) |
24 | 1nn0 12485 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
25 | 24 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0) |
26 | 5nn0 12489 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
27 | 26 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0) |
28 | 1, 23, 25, 27 | fvmptd3 7019 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5) |
29 | oveq2 7414 | . . . . . 6 ⊢ (𝑛 = 2 → (2 · 𝑛) = (2 · 2)) | |
30 | 29 | oveq1d 7421 | . . . . 5 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3)) |
31 | 2t2e4 12373 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
32 | 31 | oveq1i 7416 | . . . . . 6 ⊢ ((2 · 2) + 3) = (4 + 3) |
33 | 4p3e7 12363 | . . . . . 6 ⊢ (4 + 3) = 7 | |
34 | 32, 33 | eqtri 2761 | . . . . 5 ⊢ ((2 · 2) + 3) = 7 |
35 | 30, 34 | eqtrdi 2789 | . . . 4 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = 7) |
36 | 2nn0 12486 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
37 | 36 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0) |
38 | 7nn0 12491 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
39 | 38 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0) |
40 | 1, 35, 37, 39 | fvmptd3 7019 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7) |
41 | 14, 28, 40 | oteq123d 4888 | . 2 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩) |
42 | 1, 41 | ax-mp 5 | 1 ⊢ ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ⟨cotp 4636 ↦ cmpt 5231 ‘cfv 6541 (class class class)co 7406 0cc0 11107 1c1 11108 + caddc 11110 · cmul 11112 2c2 12264 3c3 12265 4c4 12266 5c5 12267 7c7 12269 ℕ0cn0 12469 Ackcack 47298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-n0 12470 df-z 12556 df-uz 12820 df-seq 13964 df-itco 47299 df-ack 47300 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |