| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval2012 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.) |
| Ref | Expression |
|---|---|
| ackval2012 | ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval2 48671 | . 2 ⊢ (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) | |
| 2 | oveq2 7395 | . . . . . 6 ⊢ (𝑛 = 0 → (2 · 𝑛) = (2 · 0)) | |
| 3 | 2 | oveq1d 7402 | . . . . 5 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3)) |
| 4 | 2t0e0 12350 | . . . . . . 7 ⊢ (2 · 0) = 0 | |
| 5 | 4 | oveq1i 7397 | . . . . . 6 ⊢ ((2 · 0) + 3) = (0 + 3) |
| 6 | 3cn 12267 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 7 | 6 | addlidi 11362 | . . . . . 6 ⊢ (0 + 3) = 3 |
| 8 | 5, 7 | eqtri 2752 | . . . . 5 ⊢ ((2 · 0) + 3) = 3 |
| 9 | 3, 8 | eqtrdi 2780 | . . . 4 ⊢ (𝑛 = 0 → ((2 · 𝑛) + 3) = 3) |
| 10 | 0nn0 12457 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0) |
| 12 | 3nn0 12460 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0) |
| 14 | 1, 9, 11, 13 | fvmptd3 6991 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3) |
| 15 | oveq2 7395 | . . . . . 6 ⊢ (𝑛 = 1 → (2 · 𝑛) = (2 · 1)) | |
| 16 | 15 | oveq1d 7402 | . . . . 5 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3)) |
| 17 | 2t1e2 12344 | . . . . . . 7 ⊢ (2 · 1) = 2 | |
| 18 | 17 | oveq1i 7397 | . . . . . 6 ⊢ ((2 · 1) + 3) = (2 + 3) |
| 19 | 2cn 12261 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 20 | 3p2e5 12332 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 21 | 6, 19, 20 | addcomli 11366 | . . . . . 6 ⊢ (2 + 3) = 5 |
| 22 | 18, 21 | eqtri 2752 | . . . . 5 ⊢ ((2 · 1) + 3) = 5 |
| 23 | 16, 22 | eqtrdi 2780 | . . . 4 ⊢ (𝑛 = 1 → ((2 · 𝑛) + 3) = 5) |
| 24 | 1nn0 12458 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 25 | 24 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0) |
| 26 | 5nn0 12462 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 27 | 26 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0) |
| 28 | 1, 23, 25, 27 | fvmptd3 6991 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5) |
| 29 | oveq2 7395 | . . . . . 6 ⊢ (𝑛 = 2 → (2 · 𝑛) = (2 · 2)) | |
| 30 | 29 | oveq1d 7402 | . . . . 5 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3)) |
| 31 | 2t2e4 12345 | . . . . . . 7 ⊢ (2 · 2) = 4 | |
| 32 | 31 | oveq1i 7397 | . . . . . 6 ⊢ ((2 · 2) + 3) = (4 + 3) |
| 33 | 4p3e7 12335 | . . . . . 6 ⊢ (4 + 3) = 7 | |
| 34 | 32, 33 | eqtri 2752 | . . . . 5 ⊢ ((2 · 2) + 3) = 7 |
| 35 | 30, 34 | eqtrdi 2780 | . . . 4 ⊢ (𝑛 = 2 → ((2 · 𝑛) + 3) = 7) |
| 36 | 2nn0 12459 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 37 | 36 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0) |
| 38 | 7nn0 12464 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
| 39 | 38 | a1i 11 | . . . 4 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0) |
| 40 | 1, 35, 37, 39 | fvmptd3 6991 | . . 3 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7) |
| 41 | 14, 28, 40 | oteq123d 4852 | . 2 ⊢ ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉) |
| 42 | 1, 41 | ax-mp 5 | 1 ⊢ 〈((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)〉 = 〈3, 5, 7〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 〈cotp 4597 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 2c2 12241 3c3 12242 4c4 12243 5c5 12244 7c7 12246 ℕ0cn0 12442 Ackcack 48647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-itco 48648 df-ack 48649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |