Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval2012 Structured version   Visualization version   GIF version

Theorem ackval2012 47331
Description: The Ackermann function at (2,0), (2,1), (2,2). (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval2012 ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩

Proof of Theorem ackval2012
StepHypRef Expression
1 ackval2 47322 . 2 (Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3))
2 oveq2 7414 . . . . . 6 (𝑛 = 0 → (2 · 𝑛) = (2 · 0))
32oveq1d 7421 . . . . 5 (𝑛 = 0 → ((2 · 𝑛) + 3) = ((2 · 0) + 3))
4 2t0e0 12378 . . . . . . 7 (2 · 0) = 0
54oveq1i 7416 . . . . . 6 ((2 · 0) + 3) = (0 + 3)
6 3cn 12290 . . . . . . 7 3 ∈ ℂ
76addlidi 11399 . . . . . 6 (0 + 3) = 3
85, 7eqtri 2761 . . . . 5 ((2 · 0) + 3) = 3
93, 8eqtrdi 2789 . . . 4 (𝑛 = 0 → ((2 · 𝑛) + 3) = 3)
10 0nn0 12484 . . . . 5 0 ∈ ℕ0
1110a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 0 ∈ ℕ0)
12 3nn0 12487 . . . . 5 3 ∈ ℕ0
1312a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 3 ∈ ℕ0)
141, 9, 11, 13fvmptd3 7019 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘0) = 3)
15 oveq2 7414 . . . . . 6 (𝑛 = 1 → (2 · 𝑛) = (2 · 1))
1615oveq1d 7421 . . . . 5 (𝑛 = 1 → ((2 · 𝑛) + 3) = ((2 · 1) + 3))
17 2t1e2 12372 . . . . . . 7 (2 · 1) = 2
1817oveq1i 7416 . . . . . 6 ((2 · 1) + 3) = (2 + 3)
19 2cn 12284 . . . . . . 7 2 ∈ ℂ
20 3p2e5 12360 . . . . . . 7 (3 + 2) = 5
216, 19, 20addcomli 11403 . . . . . 6 (2 + 3) = 5
2218, 21eqtri 2761 . . . . 5 ((2 · 1) + 3) = 5
2316, 22eqtrdi 2789 . . . 4 (𝑛 = 1 → ((2 · 𝑛) + 3) = 5)
24 1nn0 12485 . . . . 5 1 ∈ ℕ0
2524a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 1 ∈ ℕ0)
26 5nn0 12489 . . . . 5 5 ∈ ℕ0
2726a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 5 ∈ ℕ0)
281, 23, 25, 27fvmptd3 7019 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘1) = 5)
29 oveq2 7414 . . . . . 6 (𝑛 = 2 → (2 · 𝑛) = (2 · 2))
3029oveq1d 7421 . . . . 5 (𝑛 = 2 → ((2 · 𝑛) + 3) = ((2 · 2) + 3))
31 2t2e4 12373 . . . . . . 7 (2 · 2) = 4
3231oveq1i 7416 . . . . . 6 ((2 · 2) + 3) = (4 + 3)
33 4p3e7 12363 . . . . . 6 (4 + 3) = 7
3432, 33eqtri 2761 . . . . 5 ((2 · 2) + 3) = 7
3530, 34eqtrdi 2789 . . . 4 (𝑛 = 2 → ((2 · 𝑛) + 3) = 7)
36 2nn0 12486 . . . . 5 2 ∈ ℕ0
3736a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 2 ∈ ℕ0)
38 7nn0 12491 . . . . 5 7 ∈ ℕ0
3938a1i 11 . . . 4 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → 7 ∈ ℕ0)
401, 35, 37, 39fvmptd3 7019 . . 3 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ((Ack‘2)‘2) = 7)
4114, 28, 40oteq123d 4888 . 2 ((Ack‘2) = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 3)) → ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩)
421, 41ax-mp 5 1 ⟨((Ack‘2)‘0), ((Ack‘2)‘1), ((Ack‘2)‘2)⟩ = ⟨3, 5, 7⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  cotp 4636  cmpt 5231  cfv 6541  (class class class)co 7406  0cc0 11107  1c1 11108   + caddc 11110   · cmul 11112  2c2 12264  3c3 12265  4c4 12266  5c5 12267  7c7 12269  0cn0 12469  Ackcack 47298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-n0 12470  df-z 12556  df-uz 12820  df-seq 13964  df-itco 47299  df-ack 47300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator