| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idaval | Structured version Visualization version GIF version | ||
| Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
| idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idafval.1 | ⊢ 1 = (Id‘𝐶) |
| idaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| idaval | ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idafval.i | . . 3 ⊢ 𝐼 = (Ida‘𝐶) | |
| 2 | idafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | idafval.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 5 | 1, 2, 3, 4 | idafval 17959 | . 2 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
| 6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
| 7 | 6 | fveq2d 6821 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ( 1 ‘𝑥) = ( 1 ‘𝑋)) |
| 8 | 6, 6, 7 | oteq123d 4835 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈𝑥, 𝑥, ( 1 ‘𝑥)〉 = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
| 9 | idaval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 10 | otex 5400 | . . 3 ⊢ 〈𝑋, 𝑋, ( 1 ‘𝑋)〉 ∈ V | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑋, ( 1 ‘𝑋)〉 ∈ V) |
| 12 | 5, 8, 9, 11 | fvmptd 6931 | 1 ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cotp 4579 ‘cfv 6476 Basecbs 17115 Catccat 17565 Idccid 17566 Idacida 17955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-ot 4580 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ida 17957 |
| This theorem is referenced by: ida2 17961 idahom 17962 |
| Copyright terms: Public domain | W3C validator |