MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idaval Structured version   Visualization version   GIF version

Theorem idaval 17783
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
idaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idaval (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)

Proof of Theorem idaval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 idafval.i . . 3 𝐼 = (Ida𝐶)
2 idafval.b . . 3 𝐵 = (Base‘𝐶)
3 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
4 idafval.1 . . 3 1 = (Id‘𝐶)
51, 2, 3, 4idafval 17782 . 2 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
6 simpr 485 . . 3 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
76fveq2d 6770 . . 3 ((𝜑𝑥 = 𝑋) → ( 1𝑥) = ( 1𝑋))
86, 6, 7oteq123d 4819 . 2 ((𝜑𝑥 = 𝑋) → ⟨𝑥, 𝑥, ( 1𝑥)⟩ = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
9 idaval.x . 2 (𝜑𝑋𝐵)
10 otex 5378 . . 3 𝑋, 𝑋, ( 1𝑋)⟩ ∈ V
1110a1i 11 . 2 (𝜑 → ⟨𝑋, 𝑋, ( 1𝑋)⟩ ∈ V)
125, 8, 9, 11fvmptd 6874 1 (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3429  cotp 4569  cfv 6426  Basecbs 16922  Catccat 17383  Idccid 17384  Idacida 17778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ida 17780
This theorem is referenced by:  ida2  17784  idahom  17785
  Copyright terms: Public domain W3C validator