MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idaval Structured version   Visualization version   GIF version

Theorem idaval 18020
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
idaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idaval (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)

Proof of Theorem idaval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 idafval.i . . 3 𝐼 = (Ida𝐶)
2 idafval.b . . 3 𝐵 = (Base‘𝐶)
3 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
4 idafval.1 . . 3 1 = (Id‘𝐶)
51, 2, 3, 4idafval 18019 . 2 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
6 simpr 484 . . 3 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
76fveq2d 6862 . . 3 ((𝜑𝑥 = 𝑋) → ( 1𝑥) = ( 1𝑋))
86, 6, 7oteq123d 4852 . 2 ((𝜑𝑥 = 𝑋) → ⟨𝑥, 𝑥, ( 1𝑥)⟩ = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
9 idaval.x . 2 (𝜑𝑋𝐵)
10 otex 5425 . . 3 𝑋, 𝑋, ( 1𝑋)⟩ ∈ V
1110a1i 11 . 2 (𝜑 → ⟨𝑋, 𝑋, ( 1𝑋)⟩ ∈ V)
125, 8, 9, 11fvmptd 6975 1 (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cotp 4597  cfv 6511  Basecbs 17179  Catccat 17625  Idccid 17626  Idacida 18015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ida 18017
This theorem is referenced by:  ida2  18021  idahom  18022
  Copyright terms: Public domain W3C validator