MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idaval Structured version   Visualization version   GIF version

Theorem idaval 18018
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
idaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idaval (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)

Proof of Theorem idaval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 idafval.i . . 3 𝐼 = (Ida𝐶)
2 idafval.b . . 3 𝐵 = (Base‘𝐶)
3 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
4 idafval.1 . . 3 1 = (Id‘𝐶)
51, 2, 3, 4idafval 18017 . 2 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
6 simpr 484 . . 3 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
76fveq2d 6888 . . 3 ((𝜑𝑥 = 𝑋) → ( 1𝑥) = ( 1𝑋))
86, 6, 7oteq123d 4883 . 2 ((𝜑𝑥 = 𝑋) → ⟨𝑥, 𝑥, ( 1𝑥)⟩ = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
9 idaval.x . 2 (𝜑𝑋𝐵)
10 otex 5458 . . 3 𝑋, 𝑋, ( 1𝑋)⟩ ∈ V
1110a1i 11 . 2 (𝜑 → ⟨𝑋, 𝑋, ( 1𝑋)⟩ ∈ V)
125, 8, 9, 11fvmptd 6998 1 (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  cotp 4631  cfv 6536  Basecbs 17151  Catccat 17615  Idccid 17616  Idacida 18013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-ot 4632  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ida 18015
This theorem is referenced by:  ida2  18019  idahom  18020
  Copyright terms: Public domain W3C validator