MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idaval Structured version   Visualization version   GIF version

Theorem idaval 17960
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
idafval.i 𝐼 = (Ida𝐶)
idafval.b 𝐵 = (Base‘𝐶)
idafval.c (𝜑𝐶 ∈ Cat)
idafval.1 1 = (Id‘𝐶)
idaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idaval (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)

Proof of Theorem idaval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 idafval.i . . 3 𝐼 = (Ida𝐶)
2 idafval.b . . 3 𝐵 = (Base‘𝐶)
3 idafval.c . . 3 (𝜑𝐶 ∈ Cat)
4 idafval.1 . . 3 1 = (Id‘𝐶)
51, 2, 3, 4idafval 17959 . 2 (𝜑𝐼 = (𝑥𝐵 ↦ ⟨𝑥, 𝑥, ( 1𝑥)⟩))
6 simpr 484 . . 3 ((𝜑𝑥 = 𝑋) → 𝑥 = 𝑋)
76fveq2d 6821 . . 3 ((𝜑𝑥 = 𝑋) → ( 1𝑥) = ( 1𝑋))
86, 6, 7oteq123d 4835 . 2 ((𝜑𝑥 = 𝑋) → ⟨𝑥, 𝑥, ( 1𝑥)⟩ = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
9 idaval.x . 2 (𝜑𝑋𝐵)
10 otex 5400 . . 3 𝑋, 𝑋, ( 1𝑋)⟩ ∈ V
1110a1i 11 . 2 (𝜑 → ⟨𝑋, 𝑋, ( 1𝑋)⟩ ∈ V)
125, 8, 9, 11fvmptd 6931 1 (𝜑 → (𝐼𝑋) = ⟨𝑋, 𝑋, ( 1𝑋)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cotp 4579  cfv 6476  Basecbs 17115  Catccat 17565  Idccid 17566  Idacida 17955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-ot 4580  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ida 17957
This theorem is referenced by:  ida2  17961  idahom  17962
  Copyright terms: Public domain W3C validator