![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idaval | Structured version Visualization version GIF version |
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idafval.1 | ⊢ 1 = (Id‘𝐶) |
idaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
idaval | ⊢ (𝜑 → (𝐼‘𝑋) = ⟨𝑋, 𝑋, ( 1 ‘𝑋)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idafval.i | . . 3 ⊢ 𝐼 = (Ida‘𝐶) | |
2 | idafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | idafval.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
5 | 1, 2, 3, 4 | idafval 18006 | . 2 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ ⟨𝑥, 𝑥, ( 1 ‘𝑥)⟩)) |
6 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
7 | 6 | fveq2d 6895 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ( 1 ‘𝑥) = ( 1 ‘𝑋)) |
8 | 6, 6, 7 | oteq123d 4888 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ⟨𝑥, 𝑥, ( 1 ‘𝑥)⟩ = ⟨𝑋, 𝑋, ( 1 ‘𝑋)⟩) |
9 | idaval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | otex 5465 | . . 3 ⊢ ⟨𝑋, 𝑋, ( 1 ‘𝑋)⟩ ∈ V | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → ⟨𝑋, 𝑋, ( 1 ‘𝑋)⟩ ∈ V) |
12 | 5, 8, 9, 11 | fvmptd 7005 | 1 ⊢ (𝜑 → (𝐼‘𝑋) = ⟨𝑋, 𝑋, ( 1 ‘𝑋)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cotp 4636 ‘cfv 6543 Basecbs 17143 Catccat 17607 Idccid 17608 Idacida 18002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ida 18004 |
This theorem is referenced by: ida2 18008 idahom 18009 |
Copyright terms: Public domain | W3C validator |