Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idaval | Structured version Visualization version GIF version |
Description: Value of the identity arrow function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
idafval.i | ⊢ 𝐼 = (Ida‘𝐶) |
idafval.b | ⊢ 𝐵 = (Base‘𝐶) |
idafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idafval.1 | ⊢ 1 = (Id‘𝐶) |
idaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
idaval | ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idafval.i | . . 3 ⊢ 𝐼 = (Ida‘𝐶) | |
2 | idafval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | idafval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | idafval.1 | . . 3 ⊢ 1 = (Id‘𝐶) | |
5 | 1, 2, 3, 4 | idafval 17688 | . 2 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ 〈𝑥, 𝑥, ( 1 ‘𝑥)〉)) |
6 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
7 | 6 | fveq2d 6760 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ( 1 ‘𝑥) = ( 1 ‘𝑋)) |
8 | 6, 6, 7 | oteq123d 4816 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → 〈𝑥, 𝑥, ( 1 ‘𝑥)〉 = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
9 | idaval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | otex 5374 | . . 3 ⊢ 〈𝑋, 𝑋, ( 1 ‘𝑋)〉 ∈ V | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑋, ( 1 ‘𝑋)〉 ∈ V) |
12 | 5, 8, 9, 11 | fvmptd 6864 | 1 ⊢ (𝜑 → (𝐼‘𝑋) = 〈𝑋, 𝑋, ( 1 ‘𝑋)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cotp 4566 ‘cfv 6418 Basecbs 16840 Catccat 17290 Idccid 17291 Idacida 17684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ida 17686 |
This theorem is referenced by: ida2 17690 idahom 17691 |
Copyright terms: Public domain | W3C validator |