![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval0012 | Structured version Visualization version GIF version |
Description: The Ackermann function at (0,0), (0,1), (0,2). (Contributed by AV, 2-May-2024.) |
Ref | Expression |
---|---|
ackval0012 | ⊢ 〈((Ack‘0)‘0), ((Ack‘0)‘1), ((Ack‘0)‘2)〉 = 〈1, 2, 3〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval0 48068 | . 2 ⊢ (Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) | |
2 | oveq1 7431 | . . . . 5 ⊢ (𝑛 = 0 → (𝑛 + 1) = (0 + 1)) | |
3 | 0p1e1 12386 | . . . . 5 ⊢ (0 + 1) = 1 | |
4 | 2, 3 | eqtrdi 2782 | . . . 4 ⊢ (𝑛 = 0 → (𝑛 + 1) = 1) |
5 | 0nn0 12539 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
6 | 5 | a1i 11 | . . . 4 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 0 ∈ ℕ0) |
7 | 1nn0 12540 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 1 ∈ ℕ0) |
9 | 1, 4, 6, 8 | fvmptd3 7032 | . . 3 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ((Ack‘0)‘0) = 1) |
10 | oveq1 7431 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 + 1) = (1 + 1)) | |
11 | 1p1e2 12389 | . . . . 5 ⊢ (1 + 1) = 2 | |
12 | 10, 11 | eqtrdi 2782 | . . . 4 ⊢ (𝑛 = 1 → (𝑛 + 1) = 2) |
13 | 2nn0 12541 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
14 | 13 | a1i 11 | . . . 4 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 2 ∈ ℕ0) |
15 | 1, 12, 8, 14 | fvmptd3 7032 | . . 3 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ((Ack‘0)‘1) = 2) |
16 | oveq1 7431 | . . . . 5 ⊢ (𝑛 = 2 → (𝑛 + 1) = (2 + 1)) | |
17 | 2p1e3 12406 | . . . . 5 ⊢ (2 + 1) = 3 | |
18 | 16, 17 | eqtrdi 2782 | . . . 4 ⊢ (𝑛 = 2 → (𝑛 + 1) = 3) |
19 | 3nn0 12542 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
20 | 19 | a1i 11 | . . . 4 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 3 ∈ ℕ0) |
21 | 1, 18, 14, 20 | fvmptd3 7032 | . . 3 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ((Ack‘0)‘2) = 3) |
22 | 9, 15, 21 | oteq123d 4894 | . 2 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 〈((Ack‘0)‘0), ((Ack‘0)‘1), ((Ack‘0)‘2)〉 = 〈1, 2, 3〉) |
23 | 1, 22 | ax-mp 5 | 1 ⊢ 〈((Ack‘0)‘0), ((Ack‘0)‘1), ((Ack‘0)‘2)〉 = 〈1, 2, 3〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 〈cotp 4641 ↦ cmpt 5236 ‘cfv 6554 (class class class)co 7424 0cc0 11158 1c1 11159 + caddc 11161 2c2 12319 3c3 12320 ℕ0cn0 12524 Ackcack 48046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-ot 4642 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-seq 14022 df-ack 48048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |