![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval0012 | Structured version Visualization version GIF version |
Description: The Ackermann function at (0,0), (0,1), (0,2). (Contributed by AV, 2-May-2024.) |
Ref | Expression |
---|---|
ackval0012 | ⊢ ⟨((Ack‘0)‘0), ((Ack‘0)‘1), ((Ack‘0)‘2)⟩ = ⟨1, 2, 3⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval0 47641 | . 2 ⊢ (Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) | |
2 | oveq1 7412 | . . . . 5 ⊢ (𝑛 = 0 → (𝑛 + 1) = (0 + 1)) | |
3 | 0p1e1 12338 | . . . . 5 ⊢ (0 + 1) = 1 | |
4 | 2, 3 | eqtrdi 2782 | . . . 4 ⊢ (𝑛 = 0 → (𝑛 + 1) = 1) |
5 | 0nn0 12491 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
6 | 5 | a1i 11 | . . . 4 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 0 ∈ ℕ0) |
7 | 1nn0 12492 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 1 ∈ ℕ0) |
9 | 1, 4, 6, 8 | fvmptd3 7015 | . . 3 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ((Ack‘0)‘0) = 1) |
10 | oveq1 7412 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 + 1) = (1 + 1)) | |
11 | 1p1e2 12341 | . . . . 5 ⊢ (1 + 1) = 2 | |
12 | 10, 11 | eqtrdi 2782 | . . . 4 ⊢ (𝑛 = 1 → (𝑛 + 1) = 2) |
13 | 2nn0 12493 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
14 | 13 | a1i 11 | . . . 4 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 2 ∈ ℕ0) |
15 | 1, 12, 8, 14 | fvmptd3 7015 | . . 3 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ((Ack‘0)‘1) = 2) |
16 | oveq1 7412 | . . . . 5 ⊢ (𝑛 = 2 → (𝑛 + 1) = (2 + 1)) | |
17 | 2p1e3 12358 | . . . . 5 ⊢ (2 + 1) = 3 | |
18 | 16, 17 | eqtrdi 2782 | . . . 4 ⊢ (𝑛 = 2 → (𝑛 + 1) = 3) |
19 | 3nn0 12494 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
20 | 19 | a1i 11 | . . . 4 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 3 ∈ ℕ0) |
21 | 1, 18, 14, 20 | fvmptd3 7015 | . . 3 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ((Ack‘0)‘2) = 3) |
22 | 9, 15, 21 | oteq123d 4883 | . 2 ⊢ ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ⟨((Ack‘0)‘0), ((Ack‘0)‘1), ((Ack‘0)‘2)⟩ = ⟨1, 2, 3⟩) |
23 | 1, 22 | ax-mp 5 | 1 ⊢ ⟨((Ack‘0)‘0), ((Ack‘0)‘1), ((Ack‘0)‘2)⟩ = ⟨1, 2, 3⟩ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ⟨cotp 4631 ↦ cmpt 5224 ‘cfv 6537 (class class class)co 7405 0cc0 11112 1c1 11113 + caddc 11115 2c2 12271 3c3 12272 ℕ0cn0 12476 Ackcack 47619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-ot 4632 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-seq 13973 df-ack 47621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |