Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval0012 Structured version   Visualization version   GIF version

Theorem ackval0012 48077
Description: The Ackermann function at (0,0), (0,1), (0,2). (Contributed by AV, 2-May-2024.)
Assertion
Ref Expression
ackval0012 ⟨((Ack‘0)‘0), ((Ack‘0)‘1), ((Ack‘0)‘2)⟩ = ⟨1, 2, 3⟩

Proof of Theorem ackval0012
StepHypRef Expression
1 ackval0 48068 . 2 (Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1))
2 oveq1 7431 . . . . 5 (𝑛 = 0 → (𝑛 + 1) = (0 + 1))
3 0p1e1 12386 . . . . 5 (0 + 1) = 1
42, 3eqtrdi 2782 . . . 4 (𝑛 = 0 → (𝑛 + 1) = 1)
5 0nn0 12539 . . . . 5 0 ∈ ℕ0
65a1i 11 . . . 4 ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 0 ∈ ℕ0)
7 1nn0 12540 . . . . 5 1 ∈ ℕ0
87a1i 11 . . . 4 ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 1 ∈ ℕ0)
91, 4, 6, 8fvmptd3 7032 . . 3 ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ((Ack‘0)‘0) = 1)
10 oveq1 7431 . . . . 5 (𝑛 = 1 → (𝑛 + 1) = (1 + 1))
11 1p1e2 12389 . . . . 5 (1 + 1) = 2
1210, 11eqtrdi 2782 . . . 4 (𝑛 = 1 → (𝑛 + 1) = 2)
13 2nn0 12541 . . . . 5 2 ∈ ℕ0
1413a1i 11 . . . 4 ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 2 ∈ ℕ0)
151, 12, 8, 14fvmptd3 7032 . . 3 ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ((Ack‘0)‘1) = 2)
16 oveq1 7431 . . . . 5 (𝑛 = 2 → (𝑛 + 1) = (2 + 1))
17 2p1e3 12406 . . . . 5 (2 + 1) = 3
1816, 17eqtrdi 2782 . . . 4 (𝑛 = 2 → (𝑛 + 1) = 3)
19 3nn0 12542 . . . . 5 3 ∈ ℕ0
2019a1i 11 . . . 4 ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → 3 ∈ ℕ0)
211, 18, 14, 20fvmptd3 7032 . . 3 ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ((Ack‘0)‘2) = 3)
229, 15, 21oteq123d 4894 . 2 ((Ack‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)) → ⟨((Ack‘0)‘0), ((Ack‘0)‘1), ((Ack‘0)‘2)⟩ = ⟨1, 2, 3⟩)
231, 22ax-mp 5 1 ⟨((Ack‘0)‘0), ((Ack‘0)‘1), ((Ack‘0)‘2)⟩ = ⟨1, 2, 3⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  cotp 4641  cmpt 5236  cfv 6554  (class class class)co 7424  0cc0 11158  1c1 11159   + caddc 11161  2c2 12319  3c3 12320  0cn0 12524  Ackcack 48046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-ot 4642  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-seq 14022  df-ack 48048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator